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Abstract—This paper presents the optimization of milling parameters like spindle rotational speed, feed, axial and radial 

depth of cuts along with the varying percentage composition of silicon carbide in metal matrix composite (MMC),  which are 

highly influential parameters on cutting forces and surface roughness. A thirty two experiments design matrix is best suited 

for five parameters with five levels based on the central composite design (CCD).  This design matrix is advantageous for 

both the minimizing number of experiments as well as optimizing the cutting responses such as surface roughness and in-

feed, cross-feed and thrust forces in end milling. The main aim of this work is to put forth an integrated novel approach called 

as Grey-ANFIS (Adaptive Neuro Fuzzy Inference system) approach, which is useful for the investigation of the multi-

objective response characteristics and also for determination of the optimal combination of influential input parameters. The 

predicted results stated that the proposed Grey-ANFIS is an effective technique and exhibit significant improvement in multi-

objective optimization of cutting forces and surface roughness. 
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I. INTRODUCTION  

Milling is one of the most commonly and globally used 

machining processes because of its ability to remove material 

faster with a good surface quality.  In aerospace, automobile, 

biomedical and industrial applications milled surfaces are 

necessary in large to mate with other very precisely.  

While machining, the cutting tool and workpiece expose 

the cutting forces, crucial for removal of unwanted materials 

in the form of chips. A correct estimation of such cutting 

forces is critical and could avoid quality problems related to 

the vibrations and tool deflection and also the productivity. 

The optimization of a milling process necessitates the 

accurate measurement of the cutting force by a special device 

called a machine tool dynamometer, which is capable of 

measuring the components of the cutting force in a given 

coordinate system. Determination of milling parameters such 

as spindle speed, axial and radial depth of cuts and feed rate, 

involved in machine setup suitable for optimum machining is 

one of the vital modules in process planning. Since the 

optimum machining operations are always economical and 

plays an important role in increasing productivity and 

competitiveness. 

In the present work, an investigation on cutting forces 

and surface quality is considered in order to determine the  

 

 

optimum machining conditions and study their effect on end 

milling process together with its predictive model by Grey-

ANFIS approach. The literature survey pertaining to the 

work done by other researchers is given below. 

Hazza, M., Hazza, F.Al, Adesta, E.Y.T and Riza, M. [1] 

presented an integrated approach called multi objective 

genetic algorithm optimization (MOGA) for the optimization 

of high cutting temperatures and surface roughness in high 

speed machining of hard metals. M.Subramanian, 

M.Sakthivel, K.Sooryaprakash, and R.Sudhakaran [2] 

investigated the effect of machining parameters on cutting 

forces in shoulder milling of AL7075-T6 by way of response 

surface methodology and genetic algorithm and found that 

the cutting speed was the dominant factor.  Korkut and 

Donertas [3] observed that the increasing cutting speed 

increases the cutting forces while at lower and intermediate 

cutting speeds cutting tool built up edge (BUE) formation 

tendency increased. 

Nik Masmiatia, Ahmed A. D. Sarhan, Mohsen Abdel 

Naeim Hassan and Mohd Hamdi [4] unpublished work 

results showed that minimum residual stress and cutting 

force can be achieved in up milling while using the minimum 

quantity lubrication with silicon dioxide nano particles and in 
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down milling due to flood cutting. Moreover, minimum 

surface roughness can be achieved during flood cutting in 

both up and down milling. M.Y.Tsai, S.Y.Chang, J.P.Hung, 

C.C.Wang [5] compared the altintas and recursive least 

square (RLS) simulation models with experimental data and 

found that RLS simulation results are reliable. Their 

investigation showed that raise in the feed per tooth increases 

the cutting force and reduces tangential shear force 

coefficient and this model could gives the closet to the actual 

shear strength of the material. 

Pramanik, Zhang, and Arsecularatne [6] developed a 

systematic force prediction model based on Merchant‟s 

analysis, slip line field theory of plasticity and the Griffith 

theory of fracture. Authors reported that the cutting force in 

the chip formation is more compared with the ploughing and 

particle fracture. Siva sakthivel, Vel Murugan, and 

Sudhakaran [7] fronted up a central composite rotatable 

second order RSM to develop a mathematical model to 

predict cutting forces in terms of helix angle, axial depth of 

cut, radial depth of cut, feed rate and spindle speed of 

Al6063 of high speed steel end mill cutter. The empirical 

analysis reveals that increment in feed and axial depth of cut 

minimize the in-feed and cross-feed forces. 

Klilckap, Cakir, Aksoy,and Inan [8]  used the uncoated 

and TiN coated tool to study the surface roughness and tool 

wear of 5% SiCp in Aluminum MMC in turning. They 

observed that raise in cutting speed increases tool wear and 

surface roughness; and also noticed that built up edge was 

not present during direct machining of cast materials. 

Arokiadass, Palaniradja, and Alagumoorthi [9] included % 

weight of silicon carbide in their study on tool wear in 

machining LM25 Al alloy reinforced with SiC in end milling 

operation. They analyzed that the spindle speed and the 

content of SiC are the influencing factor on tool wear. 

Aezhisai Vallavi Muthusamy Subramanian, Mohan Das 

Gandhi Nachimuthu, Velmurugan Cinnasamy [10] 

investigation on LM6 AL/SiCp  results showed that increase 

in spindle speed decreases the cutting forces and the axial 

depth of cut is more sensitive on cutting forces compared to 

weight percentage of SiCp, radial depth of cut and feed rate.  

The above literature survey reveals that not much work 

has been stated on prediction and optimization of cutting 

considering weight percentage of silicon carbide as one of 

the parameters. Most of them focused on the effect of cutting 

parameters such as speed, feed and depth of cut only. It gives 

opportunity to embark on to study the effect of the weight 

percentage of silicon carbide on cutting force and surface 

roughness. Henceforth, the main objective of this work is to 

develop a new approach for multi-objective optimization of 

in-feed, cross-feed, thrust forces as well as surface roughness 

in order to study the effect of milling parameters including  

spindle rotational speed, feed, axial and radial depth of cut  

varying SiC weight % based on Grey-ANFIS integrated 

approach. Reference [10] experimental data is exactly 

suitable for implementing the proposed hybrid approach, 

hence without making modifications to that data the present 

approach is build up on the base of their experimental data.  

 

II. EXPERIMENTAL DATA 

The complete experimental setup is shown in Figure1, 

the experimental data required for the accomplishment of 

experiments are mainly influential input factors and their 

levels, design of experiments and experimentation procedure. 

A. Input factors 

The influential factors and their levels considered on 

optimization of machining responses such as in-feed force 

(Fx), cross-feed force (Fy), thrust force (Fz) and surface 

roughness (Ra), are summarized in below Table 1. 

TABLE I.  MILLING FACTORS AND FACTOR LEVELS  

Controllable 

factors 
Symbol Factor levels 

Spindle speed 

(rpm) 
N 1500 2000 2500 3000 3500 

Feed rate 

(mm/rev) 
F 0.02 0.03 0.04 0.05 0.06 

Axial depth 

of cut (mm) 
X 1 1.5 2 2.5 3 

Radial depth 

of cut (mm) 
Y 1 1.5 2 2.5 3 

Silicon 

carbide 

(wt%) 

W 5 10 15 20 25 

B. Design of Experiments (DOE) 

For five-factor five-level, Box and Hunter proposed the 

central composite rotatable design for fitting a second order 

response surface. This design consists of 32 experiments 

with the combination of sixteen factorial design points (lie at 

the vertices of the regular polyhedral), ten star points (to 

form sphere with α radius, consisting of equally spaced 

points from the center) and six replicated center points (also 

known as axial points which provide roughly equal precision 

of standard error). The MINITAB statistical software 

(version 16) package has been used to develop the response 

equations and evaluate the coefficient values. This software 

is also used to perform the data analyses. 

C. Experimental setup 

Reference[10] experimental setup information shown in 

Figure 1, which consists of HAAS CNC vertical machining 

center with 12 mm diameter two carbide insert end mill 

cutter with the specifications having: table length 1070 mm, 

width 230 mm, maximum spindle speed 4000 rpm, feed rate 

5.1 m/min and the power of spindle motor 5.6 kW. The 

considered dimension for the workpiece was 100 mm × 100 

mm × 25 mm. 
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Fig. 1. Experimental setup and methodology. 

III. GREY-ANFIS MODEL 

The proposed one is a hybrid approach consists of two 

main steps. First, grey relation analysis (GRA) based 

experimental data preparation for multi-objective 

optimization; second, train and test ANFIS model based on 

grey relation grade (GRG). Figure 2 shows the schematic 

diagram of the proposed approach. Detail steps in proposed 

Grey-ANFIS approach are:  

 Normalization of the empirical responses data. 

 Determination of grey relation coefficients (GRC) 

related to the multiple objectives. 

 Calculation of GRG representing a multi-objective 

function (ɣ). 

 Rank the  GRG for finding the optimal parametric set  

 Input GRG data to train/test and generate initial FIS.  

 Grey-ANFIS model development and training 

 Response prediction using the model 

 Model evaluation  

The machining conditions where the multi-

objective function (ɣ) has the highest rank are said to be 

optimum.  

 
Fig. 2. Schematic diagram of the proposed approach 

A. Grey Relational analysis (GRA) 

The grey relational analysis (GRA) is used to optimize 

multiple responses. This process is done in three steps (1) 

Normalization, Calculation of (2) Grey relation coefficient, 

and (3) Grey relation grade [11]. 

a) Normalization: Normalization is performed to 

prepare the basic data for the analysis where the original 

combination is transferred to a comparable combination. 

Linear normalization is usually in the range between zero 

and unity is also called as the grey relational generation 

Data Pre-Processing is normally required, since the range 

and unit in one data sequence may differ from others. It is 

also necessary when the sequence scatter range is too large, 

or when the directions of the target in the sequences are 

different. The formulae are given in equations (1) and (2). 

„Higher – the – Better‟: 

         
(1)

 
„Lower – the – better‟: 

    
(2)

 
where Xi

*
(k) and Xi(k) are normalized data and observed data 

respectively for the i
th
 experiment by using k

th
  response. 

b) Grey Relational Coefficient (GRC): GRC expresses 

the relationship between the ideal (best) values and actual 

normalized values for all the combinations. GRC can be 

calculated using the following equation (3): 

          
(3)

 
where, Δi(k) is absolute value of the difference between 

xi
0
 (k) and xi

*
 (k) and Δi(k)=|xi

*
(k) − xi

0
 (k)|.  Δmax and Δmin 

are global maximum and global minimum values in different 

data series, respectively.  The distinguishing coefficient (ζ) 

Experimental Setup HaaS CNC 

vertical milling center 

ANFIS-Grey Model 

Optimization of Fx, Fy, Fz and Ra 

Data Normalization 

Grey relation coefficient (GRC)  

GRG ranking to find optimal machining set 

Load training/ testing GRG data & Generate initial FIS model 

Grey-ANFIS model training and testing 

Response prediction based on Grey-ANFIS model  

Model evaluation at optimal set 

Multi-Objective related Grey Relation Grade 

(GRG) determination 
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lays between 0 and 1, which is to expand or to compress the 

range of GRC, generally, ζ = 0.5 is taken. 

c) Grey Relational Grade (GRG): In this step, the grey 

relational grade is computed by finding the average of the 

grey relational coefficient corresponding to each 

performance characteristics. This grade is being estimated 

with the following equation (4): 

                   
(4) 

where yi the grey relational grade and n is the number of 

process response. The optimal value of the GRG can be 

predicted by using Eq. (5) 

   
(5) 

where, ym is total mean of the GRG value, q is number of 

input process parameters, and yi is mean GRG value at the 

optimal level for the i
th
 parameter. 

B. ANFIS approach 

Jang [12] introduced the ANFIS (Adaptive Neuro Fuzzy 

Inference System) in 1993, is a hybrid intelligent system 

having the advantages of both artificial neural network 

(ANN) and fuzzy logic theory in a single system. 

Abdulshahed & Badi [13] explained the concept of ANFIS 

structure, five distinct layers: fuzzification, rule base, 

normalization, de-fuzzification and summation layers are 

used to describe the structure of an Grey-ANFIS model 

shown in Figure 3.  

a) Development of the initial fuzzy model: For the 

obtained empirical data set an ANFIS-Grid partition method 

based initial fuzzy model has develped. In this method the 

data space is partitioned into rectangular sub-spaces based 

on a pre-defined number of membership functions (MFs) 

and their types in each dimension [14]. This method creates 

strong model due to the more  number of rules which 

resulted with the increase of number of input variables. In 

order to get a limited number of rules, an integrated ANFIS-

subtractive clustering method (SCM) can be used.  

b) Max-min inference: The inference engine then 

performs fuzzy reasoning on fuzzy rules by taking max–min 

inference (Equation 6) for generating a fuzzy value μD0(y).   

 

 
 

Fig. 3. (a) Structure of the Grey-ANFIS model and (b) trainig and testing of the model 

TABLE II.  GREY RELATION ANALYSIS DATA  

Exp. 

Set 

No. 

Normalization Grey Relation Coefficient (GRC) 

Grey 

Grade 

(GRG) 

In-

feed 

force 

(Fx) 

Cross-

feed 

force 

(Fy) 

Thrust 

Force 

(Fz) 

Surface 

roughness 

(Ra) 

ξ1(Fx) ξ2(Fy) ξ3(Fz) ξ4(Ra) ɣ (or) y 

1 0.47 0.44 0.44 0.61 0.64 0.58 0.60 0.58 0.60 

2 0.99 0.91 0.95 1.00 0.99 0.89 0.94 1.00 0.96 

3 0.73 0.67 0.68 0.43 0.78 0.70 0.72 0.48 0.67 

4 0.83 0.65 0.79 0.46 0.85 0.68 0.80 0.50 0.71 

5 0.56 0.64 0.63 0.00 0.69 0.68 0.69 0.35 0.60 

6 0.70 0.64 0.73 0.69 0.76 0.68 0.76 0.63 0.71 

7 0.06 0.00 0.11 0.73 0.50 0.43 0.49 0.67 0.52 

8 0.85 0.66 0.84 0.47 0.86 0.69 0.84 0.50 0.73 

9 0.77 0.94 0.87 0.79 0.80 0.93 0.87 0.72 0.83 

10 0.83 0.78 0.81 0.49 0.85 0.77 0.81 0.51 0.74 

11 0.31 0.27 0.42 0.29 0.58 0.51 0.59 0.43 0.53 

12 0.77 0.69 0.78 0.89 0.81 0.71 0.79 0.83 0.79 

13 0.15 0.16 0.14 0.37 0.53 0.47 0.50 0.46 0.49 

14 0.89 0.82 0.89 0.84 0.89 0.81 0.88 0.77 0.84 
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15 0.42 0.53 0.67 0.61 0.62 0.62 0.72 0.58 0.63 

16 0.00 0.00 0.00 0.29 0.49 0.43 0.46 0.43 0.45 

17 0.31 0.41 0.49 0.26 0.58 0.56 0.62 0.42 0.55 

18 0.91 0.73 0.93 0.58 0.91 0.74 0.92 0.56 0.78 

19 0.89 0.88 0.86 0.17 0.89 0.86 0.86 0.39 0.75 

20 0.51 0.39 0.54 0.01 0.66 0.55 0.65 0.35 0.55 

21 0.78 0.66 0.72 0.99 0.81 0.69 0.75 0.98 0.81 

22 0.26 0.23 0.24 0.75 0.56 0.49 0.53 0.69 0.57 

23 0.63 0.66 0.65 0.61 0.72 0.69 0.71 0.58 0.67 

24 0.36 0.49 0.51 0.64 0.60 0.60 0.64 0.60 0.61 

25 1.00 1.00 1.00 0.80 1.00 1.00 1.00 0.73 0.93 

26 0.34 0.24 0.26 0.54 0.59 0.50 0.53 0.54 0.54 

27 0.69 0.59 0.71 0.43 0.76 0.65 0.74 0.48 0.66 

28 0.68 0.62 0.69 0.43 0.75 0.67 0.73 0.48 0.66 

29 0.68 0.60 0.69 0.43 0.75 0.65 0.73 0.48 0.66 

30 0.68 0.61 0.69 0.42 0.75 0.66 0.73 0.48 0.65 

31 0.68 0.59 0.68 0.43 0.75 0.65 0.73 0.48 0.65 

32 0.68 0.59 0.70 0.42 0.75 0.65 0.74 0.48 0.65 

 

 

μD0(y) = (μFx1(ξ1) ˄ μFy1(ξ2) ˄ μFz1(ξ3) ˄ μAG1(yo)) 

 (μFx2(ξ1) ˄ μFy2(ξ2) ˄ μFz2(ξ3) ˄ μAG2(yo))… 

˅( μFxi(ξ1) ˄ μFyi(ξ2) ˄ μFzi(ξ3) ˄ μAGi(yo))         
(6)

 

 

where, ∧ is minimum operation, and ∨ is maximum 

operation respectively. The fuzzy subsets defined by the 

corresponding membership functions, i.e., μFxi(ξ1), μFyi(ξ2), 

μFzi(ξ3) and μAGi(yo) . The inference engine then performs 

fuzzy reasoning on fuzzy rules by taking max–min inference 

(Equation 6) for generating a fuzzy value μD0(y). 

c) Defuzzifiction: defuzzifier converts the fuzzy value 

into crisp output using the centroid-defuzzification method 

(Equation 7); i.e. Grey-ANFIS reasoning grade (y) is 

calculated from the ANFIS multi-response output μD0 (yo) 

using the following equation: 

        
(7)

 
The non-fuzzy value yo gives Grey-ANFIS Relational 

Grade. Invariably, a larger grey relational grade is opted 

[15], which gives an improved performance characteristic. 

Table.3 shows the results of Grey-ANFIS relational grade 

for 32 set of experiments. 

TABLE III.  ANFIS-GREY RESPONSE DATA  

Exp. Set 

No. 

ANFIS-Grey 

Predicted 

Response 

Rank 

1 0.615 22 

2 0.977 1 

3 0.644 17 

4 0.692 13 

5 0.58 23 

6 0.7203 10 

7 0.553 27 

8 0.7052 11 

9 0.8211 4 

10 0.7271 9 

11 0.542 28 

12 0.766 7 

13 0.511 30 

14 0.85 3 

15 0.64 18 

16 0.443 32 

17 0.51 31 

18 0.79 6 

19 0.75 8 

20 0.57 25 

21 0.82 5 

22 0.57 25 

23 0.66 16 

24 0.58 23 

25 0.91 2 

26 0.52 29 

27 0.63 20 

28 0.67 15 

29 0.633 19 

30 0.6212 21 

31 0.683 14 

32 0.695 12 

IV. RESULTS AND DISCUSSION 

In this work the experimental data is studied based on a 

GRA method by which it is possible to identify the 

significant effect of each machining parameter on the GRG 

at different levels. The mean Grey-ANFIS analysis data at 

each level for the different machining parameters is 

presented in Table 4, which is referred to as a response table. 

The influence of each machining parameter can be more 

clearly presented by means of the Grey-ANFIS response 

graph shown in figure 4. The Grey-ANFIS graph shows the 

change in the response when a given factor goes from level 1 

to level 5. 

TABLE IV.  GREY RELATION ANALYSIS DATA  

Level Speed Feed 
Axial 

DoC 

Radial 

DoC 
Wt % 

1 0.5472 0.7526 0.8084 0.6728 0.9315 
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2 0.61 0.7202 0.7272 0.687 0.7556 

3 0.6767 0.6794 0.6715 0.6822 0.661 

4 0.739 0.6288 0.6218 0.662 0.5934 

5 0.7832 0.5535 0.5681 0.6075 0.54 

A. ANOVA analysis 

ANOVA analysis identifies which machining parameter is 

significantly affecting the response characteristics. This is 

accomplished by separating the total variability of the Grey-

ANFIS grade verses machining parameters, which is 

measured by dividing each parameter sequential sum of 

squared deviations with total sum of squares. 

TABLE V.  ANOVA ANALYSIS  

Source DF 
Seq 

SS 

Adj 

SS 

Adj 

MS 
F 

% of 

influence 

Speed 1 0.09 0.09 0.09 44.64 20.47 

Feed 1 0.05 0.05 0.05 25.21 11.56 

Axial-

Doc 
1 0.07 0.07 0.07 34.61 15.87 

Radial-

Doc 
1 0.00 0.00 0.00 2.17 0.99 

Wt % 1 0.18 0.18 0.18 85.48 39.19 

Error 26 0.05 0.05 0.00 
 

Total 31 0.46 
 

From the ANOVA Table.5 it was observed that varying 

silicon carbide weight percentage in composite has 

influenced most significantly on both cutting forces and 

surface roughness. 

B. ANFIS-Grey model evaluation 

Finally an evaluation test was conducted to verify the 

improvement in the cutting forces and surface roughness for 

the estimated Grey-Anfis, using the optimal level of the 

machining parameters.  Table 6, shows the comparisons of 

predicted and actual machining responses for the optimal 

machining parameters set spindle speed of 3500 rpm, feed 

rate of 0.02 mm/rev, axial DoC of 1 mm, radial Doc of 1.5 

mm and 5% weight ratio of SiCp. 

TABLE VI.  GREY-ANFIS MODEL EVALUATION 

Responses Predicted Experimental 
% of 

Error 

Fx 78.62 76.34 2.90 

Fy 46.35 49.26 5.91 

Fz 102.48 100.2 2.22 

Ra 3.36 3.6 6.67 
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Fig. 4. ANFIS-Grey response plots of SN ratio

Based on the confirmation experiments, for the optimal 

combination of parameters the cutting forces and surface 

roughness were reduced. Hence it can be affirmed that there 

is a significant improvement in responses after optimization. 

 

V. CONCLUSIONS 

In this paper the Grey-ANFIS approach is used for 

solving the multi-objective optimization problem in end 

milling and also for determining the optimal conditioned 

representing the levels of spindle speed, feed rate, axial depth 

of cut, radial depth of cut, with varying wt % SiCp.  

ANOVA is also used to find out the significantly most 

effective parameter on responses. From the analysis the 

following conclusions are drawn: 

1. GRA analysis results the experimental set 2 

containing 3000 rpm speed, 0.03mm/rev feed, 

1.5mm axial doc, 1.5 mm radial doc, 10% wt ratio 

of SiCp.  

2. From the proposed Grey-ANFIS model the optimal 

responses are obtained at spindle speed of 3500 

rpm, feed rate of 0.02 mm/rev, axial DoC of 1 mm, 

radial Doc of 1.5 mm and 5% weight ratio of SiCp. 
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3. ANOVA confirms that SiC weight percentage ratio 

has greater significance on both cutting forces and 

surface roughness. 

4. The proposed approach would serve as best 

alternative model for the multi-objective 

optimization problem. Especially for predicting 

cutting responses and determining the optimal 

machining conditions. 

This novel approach paves way for new research 

directions in the ANN based multi-objective optimization 

area. Qualitative data requirement hinders in this model and 

provided in the further improvements can make this model 

more effective.   
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