
International Journal of Research in Advent Technology, Vol.6, No.2, February 2018

E-ISSN: 2321-9637

Available online at www.ijrat.org

153

A Survey Paper on NoSQL Databases: Key-Value Data

Stores and Document Stores

Nikhil Dasharath Karande
1

Department of CSE, Sanjay Ghodawat Institutes, Atigre

 nikhilkarande18@gmail.com

Abstract- This paper focuses on next generation databases mostly addressing some of the points: being non-

relational, distributed, open-source and horizontally scalable i.e NoSQL. NoSQL databases have become more

popularity in the recent years and have been successful in many production systems. The aim of this paper is to

understand the different types of NoSQL databases and benefits of NoSQL databases. This paper includes survey

information related to key-value data stores and document stores. At the end paper concludes with important aspects

for both key-value data stores and document stores.

Index Terms- NoSQL, non-relational database, key-value data stores, document stores, RDBMS

1. INTRODUCTION

NoSQL is a non-relational database management

system, different from traditional relational database

management systems in some significant ways. It is

designed for distributed data stores where very large

scale of data storing needs. These types of data storing

may not require fixed schema, avoid join operations and

typically scale horizontally [1].

NoSQL is an approach to databases that represents

a shift away from traditional relational database

management systems (RDBMS). To define NoSQL, it is

helpful to start by describing SQL, which is a query

language used by RDBMS. Relational databases rely on

tables, columns, rows, or schemas to organize and

retrieve data. In contrast, NoSQL databases do not rely

on these structures and use more flexible data models.

NoSQL can mean ―not SQL‖ or ―not only SQL.‖ As

RDBMS have increasingly failed to meet the

performance, scalability, and flexibility needs that next-

generation, data-intensive applications require, NoSQL

databases have been adopted by mainstream enterprises

[3]. NoSQL is particularly useful for storing

unstructured data, which is growing far more rapidly

than structured data and does not fit the relational

schemas of RDBMS. Common types of unstructured

data include: user and session data; chat, messaging, and

log data; time series data such as IoT and device data;

and large objects such as video and images [9].

NoSQL databases are different than relational

databases like MQSql. In relational database you need

to create the table, define schema, set the data types of

fields etc before you can actually insert the data. In

NoSQL you don‘t have to worry about that, you can

insert, update data on the fly. One of the advantages of

NoSQL database is that they are really easy to scale and

they are much faster in most types of operations that we

perform on database [8].

2. BENEFITS OF NOSQL

NoSQL databases offer enterprises important

advantages over traditional RDBMS, including [4]:

2.1. Scalability

NoSQL databases use a horizontal scale-out

methodology that makes it easy to add or reduce

capacity quickly and non-disruptively with commodity

hardware. This eliminates the tremendous cost and

complexity of manual partitioning that is necessary

when attempting to scale RDBMS.

2.2. Performance

By simply adding commodity resources, enterprises can

increase performance with NoSQL databases. This

enables organizations to continue to deliver reliably fast

user experiences with a predictable return on investment

for adding resources—again, without the overhead

associated with manual partitioning.

2.3. High Availability

NoSQL databases are generally designed to ensure high

availability and avoid the complexity that comes with a

typical RDBMS architecture that relies on primary and

secondary nodes. Some ―distributed‖ NoSQL databases

International Journal of Research in Advent Technology, Vol.6, No.2, February 2018

E-ISSN: 2321-9637

Available online at www.ijrat.org

154

use a master less architecture that automatically

distributes data equally among multiple resources so

that the application remains available for both read and

write operations even when one node fails.

2.4. Global Availability

By automatically replicating data across multiple

servers, data centers, or cloud resources, distributed

NoSQL databases can minimize latency and ensure a

consistent application experience wherever users are

located. An added benefit is a significantly reduced

database management burden from manual RDBMS

configuration, freeing operations teams to focus on

other business priorities.

2.5. Flexible Data Modeling

NoSQL offers the ability to implement flexible and fluid

data models. Application developers can leverage the

data types and query options that are the most natural fit

to the specific application use case rather than those that

fit the database schema. The result is a simpler

interaction between the application and the database and

faster, more agile development.

3. TYPES OF NOSQL DATABASES

Several different varieties of NoSQL databases

have been created to support specific needs and use

cases. These fall into four main categories [5]:

3.1. Key-value data stores

Key-value NoSQL databases emphasize simplicity and

are very useful in accelerating an application to support

high-speed read and write processing of non-

transactional data. Stored values can be any type of

binary object (text, video, JSON document, etc.) and are

accessed via a key. The application has complete

control over what is stored in the value, making this the

most flexible NoSQL model. Data is partitioned and

replicated across a cluster to get scalability and

availability. For this reason, key value stores often do

not support transactions. However, they are highly

effective at scaling applications that deal with high-

velocity, non-transactional data.

3.2. Document stores

Document databases typically store self-describing

JSON, XML, and BSON documents. They are similar to

key-value stores, but in this case, a value is a single

document that stores all data related to a specific key.

Popular fields in the document can be indexed to

provide fast retrieval without knowing the key. Each

document can have the same or a different structure.

3.3. Wide-column stores

Wide-column NoSQL databases store data in tables

with rows and columns similar to RDBMS, but names

and formats of columns can vary from row to row

across the table. Wide-column databases group columns

of related data together. A query can retrieve related

data in a single operation because only the columns

associated with the query are retrieved. In an RDBMS,

the data would be in different rows stored in different

places on disk, requiring multiple disk operations for

retrieval.

3.4. Graph stores

A graph database uses graph structures to store, map,

and query relationships. They provide index-free

adjacency, so that adjacent elements are linked together

without using an index.

4. KEY-VALUE DATA STORES

As the name suggests, in a key-value store, data is

represented as a collection of key–value pairs. It is also

known as associative arrays, organized into rows. These

databases store the data as a hash table with a unique

key and a pointer to a particular item of data. Similar to

traditional hash tables, it allows data storage and

retrieval through keys. The key-value stores are used

whenever the data would be queried by precise

parameters and needs to be retrieved really fast [4].

4.1. How does a key-value stores work?

The key value stores do not impose a specific

schema. Traditional RDBs pre-define the data structure

in the database as a series of tables containing fields

with well defined data types. Exposing the data types to

the database program allows it to apply a number of

optimizations. In contrast, key-value systems treat the

data as a single opaque collection which may have

different fields for every record. In each key-value pair

the key is represented by an arbitrary string such as a

filename, URI or hash. The value can be any kind of

data like an image, user preference file or document.

The value is stored as a blob requiring no upfront data

modeling or schema definition.

International Journal of Research in Advent Technology, Vol.6, No.2, February 2018

E-ISSN: 2321-9637

Available online at www.ijrat.org

155

This offers considerable flexibility and more

closely follows modern concepts like object-oriented

programming. Because optional values are not

represented by placeholders as in most RDBs, key-value

stores often use far less memory to store the same

database, which can lead to large performance gains in

certain workloads.

The storage of the value as a blob removes the need

to index the data to improve performance. However,

you cannot filter or control what‘s returned from a

request based on the value because the value is opaque.

In general, key-value stores have no query language.

They provide a way to store, retrieve and update data

using simple get, put and delete commands; the path to

retrieve data is a direct request to the object in memory

or on disk. The simplicity of this model makes a key-

value store fast, easy to use, scalable, portable and

flexible.

Now let us evaluate key-value stores in terms of

different DBMs parameters [5]. Concurrency: In

Key/Value Store, concurrency is only applicable on a

single key, and it is usually offered as either optimistic

writes or as eventually consistent. In highly scalable

systems, optimistic writes are often not possible,

because of the cost of verifying that the value haven‘t

changed (assuming the value may have replicated to

other machines), there for, we usually see either a key

master (one machine own a key) or the eventual

consistency model. Queries: As mentioned above, there

really isn‘t any way to perform a query in a key value

store, except by the key. Even range queries on the key

are usually not possible. However, in many web

application use-cases, the key-based access is required,

and the need for the DBMS to actually ―understand‖ the

data is minimal. In use-cases like user profiles, user

sessions, shopping carts etc, the DBMS can actually be

oblivious to the data attributes and store this information

as blob passing it to the application layer directly and

relying on it to process it. Thus using key-value store in

such cases makes it cheap to handle (one request to

read, one request to write) when you run into

concurrency conflict (you only need to resolve a single

key). Transactions: While it is possible to offer

transaction guarantees in a key value store, those are

usually only offer in the context of a single key put. It is

possible to offer those on multiple keys, but that really

doesn‘t work when you start thinking about a distributed

key value store, where different keys may reside on

different machines. Some data stores offer no

transaction guarantees. Schema: Key-value stores do

not have a pre-defined schema – they have just two

fields – a key and the value. They rely on the

application using the data for parsing it. Scaling up:

Key-value stores scale out by implementing partitioning

(storing data on more than one node), replication and

auto recovery. They can scale up by maintaining the

database in RAM and minimize the effects of ACID

guarantees (a guarantee that committed transactions

persist somewhere) by avoiding locks, latches and low-

overhead server calls [7].

The simplest way for key-value stores to scale up is

to shard the entire key space that means that keys

starting in A go to one server, while keys starting with B

go to another server. In this system, a key is only stored

on a single server. That drastically simplifies things like

transactions guarantees, but it expose the system for

data loss if a single server goes down. At this point, we

introduce replication. Replication: In key value stores,

the replication can be done by the store itself or by the

client (writing to multiple servers). Replication also

introduces the problem of divergent versions. In other

words, two servers in the same cluster think that the

values of key ‗ABC‘ are two different things. Resolving

that is a complex issue, the common approaches are to

decide that it can‘t happen (Scalaris) and reject updates

where we can‘t ensure no conflict or to accept all

updates and ask the client to resolve them for us at a

later date (Amazon Dynamo, Rhino DHT). Portability

and lower operational costs: Key-value stores are

portable because they do not require a complex query

language. You can move an application from one

system to another without rewriting code or

constructing new architecture. Companies can expand

their product offerings on new operating systems,

without affecting their core technology [5].

4.2. When to use key-value stores?

Key-value stores handle size well and are good

at processing a constant stream of read/write operations

with low latency making them perfect for: Session

management at high scale, User preference and profile

stores, Product recommendations; latest items viewed

on a retailer website drive future customer product

recommendations, Ad servicing; customer shopping

habits result in customized ads, coupons, etc. for each

customer in real-time, Can effectively work as a cache

for heavily accessed but rarely updated data.

Key-value stores differ in their implementation

where some support ordering of keys like Berkeley DB,

FoundationDB and MemcacheDB, some maintain data

in memory (RAM) like Redis, some, like Aerospike, are

built natively to support both RAM and solid state

drives (SSDs). Others, like Couchbase Server, store data

in RAM but also support rotating disks. Some popular

key-value stores are: Aerospike, Apache Cassandra,

International Journal of Research in Advent Technology, Vol.6, No.2, February 2018

E-ISSN: 2321-9637

Available online at www.ijrat.org

156

Berkeley DB, Couchbase Server, Redis, Riak. Common

use cases for Key-Value Store: Storing data for

customer preferences and using cache to accelerate

application responses.

5. DOCUMENT STORES

A document database, also called a document store

or document-oriented database is a subset of a type of

NoSQL database. Some document stores may also be

key-value databases. A document database is used for

storing, retrieving, and managing semi-structured data.

Unlike traditional relational databases, the data model in

a document database is not structured in a table format

of rows and columns. The schema can vary, providing

far more flexibility for data modeling than relational

databases [4].

5.1. How does a document database work?

A document database uses documents as the

structure for storage and queries. In this case, the term

―document‖ may refer to a Microsoft Word or PDF

document but is commonly a block of XML or JSON.

Instead of columns with names and data types that are

used in a relational database, a document contains a

description of the data type and the value for that

description. Each document can have the same or

different structure. To add additional types of data to a

document database, there is no need to modify the entire

database schema as there is with a relational database.

Data can simply be added by adding objects to the

database.

Documents are grouped into ―collections,‖

which serve a similar purpose to a relational table. A

document database provides a query mechanism to

search collections for documents with particular

attributes.

5.2. Benefits of a document database

Document stores offer important advantages

when specific characteristics are required, including [4]:

5.2.1. Flexible data modeling

As web, mobile, social, and IoT-based applications

change the nature of application data models; document

databases eliminate the need to force-fit relational data

models to support new types of application data models.

5.2.2. Fast write performance

Unlike traditional relational databases, some document

databases prioritize write availability over strict data

consistency. This ensures that writes will always be fast

even if a failure in one portion of the hardware or

network results in a small delay in data replication and

consistency across the environment.

5.2.3. Fast query performance

Many document databases have powerful query engines

and indexing features that provide fast and efficient

querying capabilities.

5.3. When to use Document stores?

Document stores are used when we require Flexible

Schema: Document oriented databases are schema less

which means two documents can have very different

schema and data values, unlike relational model where

each row in a table will have same columns. Fast

Writes: Many document stores supports multi-version-

concurrency-control there by making the writes to

documents really fast. Whereas writes to RDMBS could

be slow for various reasons like locks, transactional

support, index updates, and so on. Partitioning:

Document stores are effectively key value stores with

document id being the key and the document itself

being the value. Under such a setting, one cans simply

shard/partition the document store by simply

partitioning the key space. This process is rather

complicated in a RDBMS setting where there are

multiple tables and the query workload contains joins.

6. CONCLUSION

The aim of this paper was to give a thorough

overview and introduction to the NoSQL database.

NoSQL is evaluating new databases to support changing

application and business requirements. NoSQL

databases are becoming an increasingly important part

of the database landscape, and when used appropriately,

can offer real benefits.

Key-value store is the simplest data model.

Technically it is just a distributed persistent associative

array. The key is a unique identifier for a value, which

can be any data application needs stored. This model is

also the fastest way to get data by known key, but

without the flexibility of more advanced querying. We

conclude that it may be used for data sharing between

application instances like distributed cache or to store

user session data.

Document store is a data model for storing semi-

structured document object data and metadata.

International Journal of Research in Advent Technology, Vol.6, No.2, February 2018

E-ISSN: 2321-9637

Available online at www.ijrat.org

157

Documents can be queried by their properties in a

similar manner to relational databases but aren‘t

required to adhere to the strict structure of a database

table. Additionally, only parts of the object may be

requested or updated. We conclude that, document

stores are used for aggregate objects that have no shared

complex data between them and to quickly search or

filter by some object properties.

REFERENCES

[1] Jing Han Meina Song and Junde Song. "A Novel

Solution of Distributed Memory NoSQL Database

for Cloud Computing" In ICIS 2011 10th

IEEE/ACIS International Conference on Computer

and Information Science 2011.

[2] Stonebraker, Michael; Madden, Samuel; Abadi,

Daniel J.; Harizopoulos, Stavros, ―The end of an

architectural era: (it‘s time for a complete rewrite),‖

Proceedings of the 33rd international conference on

Very large data bases, VLDB, p. 1150 – 1160,

2007.

[3] S Tonebraker, M.: SQL databases vs. NoSQL

databases. Communications of the ACM, 53 (4): 10

- 11, 2010

[4] http://basho.com/resources/document-databases/

[5] http://basho.com/resources/nosql-databases/

[6] Nathan Hurst "Visual Guide to NoSQL Systems."

http://blog.nahurst.comlvisual-guide-to-NoSQL-

systems/

[7] ―NoSQL databases,‖ [Online]. Available: nosql -

database.org.

[8] http://iranarze.ir/wp-

content/uploads/2014/12/Kamputer-A-Survey-on-

NoSQL-Databases.pdf

[9] NoSQL - http://nosql - database.org/

