Integral solutions of Quadratic Diophantine equation

$$4w^2 - x^2 - y^2 + z^2 = 16t^2$$

with five unknowns

R.Anbuselvi1, * S.Jamuna Rani2

1. Associate Professor, Department of Mathematics, ADM College for Women, Nagapattinam, Tamilnadu, India
2. Asst Professor, Department of Computer Applications, Bharathiyar college of Engineering and Technology, Karaikal, Puducherry, India

Abstract - The Quadratic Diophantine equation given by

$$4w^2 - x^2 - y^2 + z^2 = 16t^2$$

is analyzed for its patterns of non-zero distinct integral solutions. A few interesting relations between the solutions and special polygonal numbers are exhibited.

Keywords: Quadratic, integral solutions, polygonal numbers.

INTRODUCTION

The theory of Diophantine equation offers a rich variety of fascinating problems. There are Diophantine problems, which involve quadratic equations with five variables. Quadratic Diophantine equations with five unknowns are rich in variety [1-3]. For an extensive review of sizable literature and various problems, one may refer [4-15]. In this communication, we consider yet another interesting quadratic equation

$$4w^2 - x^2 - y^2 + z^2 = 16t^2$$

and obtain infinitely many non-trivial integral solutions. A few interesting relations between the solutions and special Polygonal numbers are presented.

OTATIONS USED

- t_{mn} - Polygonal number of rank ‘n’ with size ‘m’
- C_{kn}^6 - Centered hexagonal Pyramidal number of rank ‘n’
- G_{an} - Gnomic number of rank ‘n’
- FN_{kn} - Figurative number of rank ‘n’ with size ‘m’
- Pr_{kn} - Pronic number of rank ‘n’
- P_kn^m - Pyramidal number of rank ‘n’ with size ‘m’
- So_{an} - Stella octagonal number of rank ‘n’
- sn - Star number of rank ‘n’
- j_n - Jacobsthal –Lucas number of rank ‘n’
- T_n - Triangular number of rank ‘n’
- Hex_{kn} - Hexagonal number of rank ‘n’
- Ob_{kn} - Oblong number of rank ‘n’
- OH_n - Octagonal number of rank ‘n’
- PT_n - Pentagonal number of rank ‘n’

METHOD OF ANALYSIS

The Quadratic Diophantine equation with five unknowns to be solved for its non-zero distinct integral solutions is

$$4w^2 - x^2 - y^2 + z^2 = 16t^2$$

On substituting the linear transformation

$$x = w + z$$
$$y = w - z$$

in (1), leads to

$$2w^2 - (4t)^2 = z^2$$

We obtain different patterns of integral solutions to (1) through solving (3) which are illustrated as follows

PATTERN I

Equation (3) can be written as

$$w^2 - (4t)^2 = z^2 - w^2$$

$$(w + 4t)(w - 4t) = (z + w)(z - w)$$

Choice 1:

Equation (4) can be written in the form of ratio as

$$w + 4t = \frac{z + w}{A}$$
$$w - 4t = \frac{z - w}{B}$$

Which is equivalent to the system of equations

$$(B - A)w + 4Bt - Az = 0$$
$$(A + B)w - 4At - Bz = 0$$

Applying the method of cross multiplication and simplifying, the values of w, t and z are as follows
Substituting (5) in (2), the corresponding non-zero distinct integral solutions of (1) are given by
\[x(A, B) = x = 8A^2 + 8AB \\
\]
\[y(A, B) = y = 8B^2 - 8AB \\
\]
\[z(A, B) = z = 4A^2 + 4B^2 \\
\]
\[w(A, B) = w = A^2 - B^2 - 2AB \\
\]
\[t(A, B) = t = 4A^2 + 8AB - 4B^2 \\
\]

Properties
1. \(z(1, B) + w(1, B) - 16t_B \equiv 0 \)
2. \(z(1, B(B + 2)) + w(1, B(B + 2)) - 48B^3 \equiv 0 \)
3. \(x(A, A) + y(A, A) \) can be expressed as a perfect square
4. \(x(1,1) \) is a perfect square
5. \(t(2,1) \) as a carol number
6. \(x(0,1) - t(1,2) \) is a Kynea number
7. \(w(1,1) + t(0,1) \) is a Woodall number
8. The following expression represents a Nasty number
 a. \(x(1,2) - w(0,1) \)
 b. \(x(2,1) \)
 c. \(w(1,2) + z(0,1) \)
9. The following expression represents a perfect number
 a. \(x(1,2) - w(1,2) \)
 b. \(z(1,2) \)

Choice 2:
Equation (4) can be rewritten in the form of ratio as
\[\frac{w}{z} = \frac{w + 4t}{z - w} = \frac{A}{B} , \quad B \neq 0 \]
Which is equivalent to the system of equations
\[(A + B)w + 4Bt - Az = 0 \]
\[(B - A)w + 4At + Bz = 0 \]
Applying the method of cross multiplication and simplifying, the values of w, t and z are as follows
\[w = w(A, B) = 4A^2 + 4B^2 \]
\[t = t(A, B) = A^2 - 2AB - B^2 \]
\[z = z(A, B) = 4A^2 + 8AB - 4B^2 \]
\[\] Substituting (6) in (2), the corresponding non-zero distinct integral solutions of (1) are given by
\[x(A, B) = x = 8A^2 + 8AB \\
\]
\[y(A, B) = y = 8B^2 - 8AB \\
\]
\[z(A, B) = z = 4A^2 + 4B^2 \\
\]
\[w(A, B) = w = A^2 - B^2 - 2AB \\
\]
\[t(A, B) = t = 4A^2 + 8AB - 4B^2 \\
\]

Choice 3:
Equation (4) can be rewritten in the form of ratio as
\[\frac{w - 4t}{z + w} = \frac{A}{B} , \quad B \neq 0 \]
Which is equivalent to the system of equations
\[(B - A)w - 4Bt - Az = 0 \]
\[(-B - A)w - 4At + Bz = 0 \]
Applying the method of cross multiplication and simplifying, the values of w, t and z are as follows
\[w = w(A, B) = -4A^2 - 4B^2 \]
\[t = t(A, B) = A^2 + 2AB - B^2 \]
\[z = z(A, B) = 4A^2 - 8AB - 4B^2 \]
\[\] Substituting (7) in (2), the corresponding non-zero distinct integral solutions of (1) are given by
\[x(A, B) = x = -8B^2 - 8AB \\
\]
\[y(A, B) = y = -8A^2 + 8AB \\
\]
\[z(A, B) = z = 4A^2 - 4B^2 \\
\]
\[w(A, B) = w = A^2 - B^2 + 2AB - A^2 \\
\]
\[t(A, B) = t = -4A^2 - 8AB + 4B^2 \]

Choice 4:
Equation (4) can be rewritten in the form of ratio as
\[\frac{w - 4t}{z - w} = \frac{A}{B} , \quad B \neq 0 \]
Which is equivalent to the system of equations
\[(B + A)w - 4Bt - Az = 0 \]
\[(B - A)w - 4At + Bz = 0 \]
Applying the method of cross multiplication and simplifying, the values of w, t and z are as follows
\[w = w(A, B) = -4A^2 - 4B^2 \]
\[t = t(A, B) = -A^2 + 2AB + B^2 \]
\[z = z(A, B) = -4A^2 - 8AB + 4B^2 \]
\[\] Substituting (8) in (2), the corresponding non-zero distinct integral solutions of (1) are given by
\[x(A, B) = x = -8A^2 - 8AB \\
\]
\[y(A, B) = y = 8B^2 - 8AB \\
\]
\[z(A, B) = z = -4A^2 - 4B^2 \\
\]
\[w(A, B) = w = B^2 + 2AB - A^2 \\
\]
\[t(A, B) = t = -4A^2 - 8AB + 4B^2 \]
PATTERN II

The equation \((3) \) can be written as
\[
2w^2 - 16t^2 = z^2 + 1 \quad (9)
\]
Then consider
\[
z = 8a^2 - b^2 \quad (10)
\]
Also
\[
1 = \frac{(n\sqrt{2} + n)(n\sqrt{2} - n)}{n^2} \quad (11)
\]
Where \(n = 1, 2, 3 \ldots \)

Substituting (11) and (10) into (9) reduces to
\[
2w^2 - 16t^2 = (8a^2 - b^2)^2 + 1
\]

Then
\[
\left(\sqrt{2}w + 4t\right) \left(\sqrt{2}w - 4t\right) = \frac{1}{n^2}(2\sqrt{2}a + b)^2 (\sqrt{2}a - b)^2 (n\sqrt{2} + n)(n\sqrt{2} - n)
\]

Now define
\[
\left(\sqrt{2}w + 4t\right) = \frac{1}{n}(8a^2 + b^2 + 4\sqrt{2ab})(n\sqrt{2} + n)
\]
\[
= (8a^2 + b^2 + 8ab) + \sqrt{2}(8a^2 + b^2 + 4ab)
\]

Equating rational and irrational parts, the coefficient values are
\[
w = w(a, b) = 8a^2 + b^2 + 4ab
\]
\[
t = t(a, b) = \frac{1}{4}(8a^2 + b^2 + 8ab)
\]
\[
z = z(a, b) = 8a^2 - b^2
\]

As our interest is on finding integer solutions, it is seen that the values of \(x, y \) and \(z \) are integers when both \(a \) and \(b \) are of the same parity. Thus by taking \(a = 2A, b = 2B \) in (12) and substituting the corresponding values of \(u, v \) in (2) the non-zero integral solutions of (1) are given by
\[
x = x(A, B) = 64A^2 + 16AB
\]
\[
y = y(A, B) = 88B^2 + 16AB
\]
\[
z = z(A, B) = 32A^2 - 4B^2
\]
\[
w = w(A, B) = 32A^2 + 4B^2 + 16AB
\]
\[
t = t(A, B) = 8A^2 + B^2 + 8AB
\]

CONCLUSION

To conclude, one may search for other patterns of solutions and their corresponding properties.

REFERENCES

Journal Articles

Reference Books

