
         International Journal of Research in Advent Technology, Vol.7, No.4, April 2019 

E-ISSN: 2321-9637 

Available online at www.ijrat.org 

581 
 

Identification of Cattle using Fuzzy Speeded Up Robust 

Features  (F-SURF) 

Dr Anusha Edwin 
Department of Mathematics,Mar Ivanios College University of Kerala, Trivandrum 

email:anushaedwin@yahoo.com 

 
Abstract-  This paper presents a rotation-invariant detector and descriptor, using fuzzy- SURF (Speeded-Up Robust 

Features). Fuzzy SURF helps to increase the schemes with respect to continuous, distinctiveness and vigorous, which 

comparatively much faster. Muzzle (viz. Nose) patterns are the asymmetrical features of the skin of cattle on its surface. The 

muzzle pattern can considered as a biometric identifier for cattle. Image convolutions are done by relying on integral images ; 

by building on the strengths of the leading locators and descriptors (especially a locators based on Hessian matrix  and a 

distribution descriptor); and by matching with fuzzy similarity measure. This leads to a combination of unique recognition, 

description, and identical steps. The paper encircles a detailed description of the locator and descriptor and then explores the 

effects of the most important parameters.  
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1. INTRODUCTION 

             The muzzle pattern structure of cattle is more 

complex than that of fingerprints of human. Cattle 

Identification helps to increase food safety, to limit the 

spread of diseases. The traditional methods of cattle 

identification methods such as branding, tattooing, ear 

tagging, etc. are not damage proof. Thus the features of 

muzzle image of cattle is extracted using SURF.  

  SURF (Speeded-Up Robust Features) is rotation 

invariant detector and descriptor. It outperforms the  

proposed schemes with respect to continuance, 

distinctiveness, and vigorously  with higher speed. This is 

done by trusting on integral images for image 

convolutions.  It is done by  making use of the strengths 

of the leading existing locators and descriptors 

(specifically, using a Hessian matrix). This leads to 

combination of unique recognition, description, and 

identical steps.. 

    The task of finding point correspondences between two 

images of the same object is part of many pattern 

recognition applications. The search for discrete image 

point correspondences consists of 3 steps  

1. Interest point detection,  

2.  Feature vector/descriptor  

3.  Matching.  

               First, ‘interest points’ are distinctive locations 

in the muzzle image, such as corners, blobs, and T-

junctions. The most valuable property of an interest 

point detector is repeat. The repeatability of a detector is 

to find the same interest points under different 

conditions. 

  Second the neighborhood of every interest point is 

denoted by a feature vector. This descriptor has to be 

distinctive and at the same time to noise, detection 

displacements and geometric and photometric damages.  

Third, the descriptor vectors are matched between 

different images. The distance between the vectors helps 

in its matching.  The dimension of the descriptor has a 

direct impact on the operating time. The lesser 

dimensions is desirable for interest point matching. 

Feature vectors of lower dimensional are in general less 

distinguishable than their high dimensional counterparts. 

                 In SURF, the locator and descriptor are fast to 

compute. In SURF there is balance between simplifying 

the detection scheme while keeping it accurate, and 

reducing the descriptor’s size while keeping it sufficiently 

distinctive. 

                          Matching is done usually by using 

Euclidean distance. In this work, fuzzy similarity measure 

is compared with Euclidean distance for matching. The 

work get described as follows. Section 2, describes the 

way for fast and robust interest point detection. The scale 

invariance property is achieved by analyzing the input 

muzzle image at different scales. The detected interest 

points are described with rotation and scale-invariant 

descriptor in Section 3. Based on contrast of the interest 

point a simple and efficient first line indexing technique is 

used. In Section 4, the proposed cattle identification 

method is described with SURF and fuzzy similarity 

measure. The work gets  concluded in section 5. 

 

2. INTEREST POINT DETECTION 

                        Hessian matrix approximation helps in the 

detection of Interest point detection.  This leads to the 

adoption of integral muzzle images proposed by Viola 

and Jones [1], which reduces estimation time drastically. 

Integral muzzle images are enabled using boxlets, as 

proposed by Simard et al. [2].  

 

2.1. Integral Muzzle images 

                     The notion of integral muzzle images is 

explained.  It helps in fast estimation of box type 

convolution filters. The entry of an integral muzzle image 

      at a location          denotes the summation of 

all pixels in the input image   within a rectangular region 

denoted by the origin and  . 

                     
   
   

   
                         (1)                                      

Once the integral muzzle image has been calculated, it 

takes three additions to compute the aggregate of the 

intensities over rectangular area (see Fig. 1). Hence, the 



         International Journal of Research in Advent Technology, Vol.7, No.4, April 2019 

E-ISSN: 2321-9637 

Available online at www.ijrat.org 

582 
 

estimation time is independent of its size. This helps us 

for the use big filter sizes. 

 

 
Fig. 1. Using integral muzzle images, it takes only three 

additions and four memory accesses to calculate the sum 

of intensities inside a rectangular region of any size. 

 

2.2. Hessian Matrix-Based Interest Points 

                       Hessian matrix is used in the locator of 

SURF because of its good performance in accuracy. It 

finds blob-like structures at locations where the 

determinant is maximum. In contrast to the Hessian-

Laplace detector by Mikolajczyk and Schmid [3], SURF 

rely on the determinant of the Hessian also for the scale 

selection, as done by Lindeberg [4].  

                   The Hessian matrix         in    for a point 

        in an muzzle image,  at scale   is defined as 

follows 

       [
                

                
] 

       Where          is the convolution of the Gaussian 

second order derivative 
  

         with the muzzle image 

  in point  .  Similarly for          and          is also 

Gaussian second derivative. They are optimal for scale-

space analysis Gaussians have to be decided(Fig. 2, left 

half),  [5, 6]. This leads to a loss in repeatability under 

image rotations around odd multiples of  
 

 
. This is the 

weakness of Hessian-based locator. Fig. 3 shows the 

continuous rate of two detectors based on the image 

rotation using Hessian matrix. The multiples  of 
 

 
 gives 

the maximum continuity. This is because of the square 

shape of the filter. With the advantage of fast 

convolutions brought by the discretion, outweigh the 

slight decrease in acheivement. The real filters are non-

ideal in many cases. Lowe uses the LoG approximations 

as the approximation for the Hessian matrix can be done 

with box filters (in the right half of Fig. 2). The integral 

muzzle images helps in the approximation of  second 

order Gaussian derivatives at a very low summation cost. 

The calculation time therefore is independent of the filter 

size. As shown in Fig. 3, the performance is comparable 

or better than with the discretion 

 

. 

 

 

   

 

 

  

Fig. 2. Left to right: The (discretised and cropped) 

Gaussian second order partial derivative in y- (   ) and 

xy-direction (Lxy), respectively; approximation for the 

second order Gaussian partial derivative in y- (Dyy) and 

xy-direction (Dxy). The grey regions are equal to zero. 

 

 
Fig. 3. Top: Repeatability score for image rotation of up 

to     . Hessian-based detectors have in general a lower 

repeatability score for angles around odd multiples of 
 

 
. 

Fast-Hessian is the more accurate version of our detector 

(FH-15), as explained in Section 2.3. 

                    

The     box filters in Fig. 2 are Gaussian with 

      and denote the lowest scale (i.e. highest spatial 

resolution) for summation of the blob response maps.  

   ,     and     are the weights applied to the 

rectangular regions are kept simple for computational 

ability.  

   (       )               
  

                 The Hessian’s determinant is balanced by 

the responses of the relative weight vector w. The 

Gaussian kernels and the approximated Gaussian kernels 

helps in energy conservation, 

  
|        | 

|      | 
|        | 

|      | 

            

where | | is the Frobenius norm. The weighting changes 

depends on the scale for theoretical corrections. In 

practice, this factor is kept constant. 

The normalization of filter sizes are done with respect 

to their size. A constant Frobenius norm for any filter size 

is an important aspect for the scale space analysis as 

explained in the next section. 

The determinant of the Hessian matrix approximates 

the blob response in the muzzle image at location x. 

These responses are stored in a blob response map over 

different scales, and local maxima are computed as 

explained in Section 2.4. 

 

2.3. Scale Space Representation 

   The comparison in muzzle images at different scales are 

always required and hence interest points are also 

considered. Scale spaces are usually implemented as an 

muzzle image pyramid. The muzzle images smoothed 

with a Gaussian. It is then sub-sampled in order to receive 

a higher level of the pyramid. Lowe [7] determines  the 

difference  of these pyramid layers in order to get the 

DoG (Difference of Gaussians) muzzle images for the 

detection of edges and blobs. 
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The use of box filters and integral muzzle images helps 

in  the  iterative filtering is not required, but instead can 

apply box filters of any size at exactly the same speed 

directly on the original muzzle image and even in parallel. 

Therefore, the scale space is analyzed by up-scaling the 

filter size rather than iteratively reducing the muzzle 

image size, Fig. 4. The output of the     filter, 

introduced in previous section, is considered as the initial 

scale layer, to which referred as scale       

(approximating Gaussian derivatives with      ). The 

following layers are obtained by filtering the muzzle 

image with gradually bigger masks, taking into account 

the discrete nature of integral muzzle images and the 

specific structure of our filters. 

 
Fig. 4. Instead of iteratively reducing the image size (left), 

the use of integral muzzle images allows the up-scaling of 

the filter at constant cost (right). 

 

The scale space is divided into octaves. An octave 

represents a series of filter response maps obtained by 

convolving the same input muzzle image with a filter of 

increasing size. An octave contains a scaling factor of 2. 

Each octave is subdivided into a constant number of scale 

levels. Due to the discrete nature of integral muzzle 

images, the minimum scale difference between two 

subsequent scales depends on the length    of the positive 

or negative lobes of the partial second order derivative in 

the direction of derivation (x or y), which is set to a third 

of the filter size length. For the     filter, this length    

is 3. For two successive levels, it is required to increase 

this size by a minimum of 2 pixels (1 pixel on every side) 

in order to keep the size uneven and thus ensure the 

presence of the central pixel. These results in a total 

increase of the mask size by 6 pixels (see Fig. 5). The 

dimensions different from   , recalculates the mask 

introduces rounding-off errors. However,  the errors are 

much smaller than l0 and hence  this is an approximation. 

 
Fig. 5. Filters     (Top) and     (Bottom) for two 

successive scale levels (    and       ). The length 

of the dark lobe can only be increased by an even number 

of pixels in order to guarantee the presence of a central 

pixel (top). 

The blob response of the muzzle image for the smallest 

scale can be calculated by using a     filter. Then, 

filters with sizes      ,       , and        are 

applied, by which even more than a scale change of two 

has been received. It is a 3D non-maximum suppression 

which applies both spatially over the neighbouring scales. 

The Hessian response maps in the stack for first and last 

cannot contain such maxima themselves, as it is  used for 

comparison only. Therefore, after interpolation, see 

Section 2.4, the smallest possible scale is       

   
  

 
 correponding to a filter size      , and the 

highest to          
  

 
. 

The similar considerations holds for the other octaves 

also. The filter size increase is doubled for each of the 

new octave. The sampling intervals for the detection of 

the interest points can be doubled for every new octave. 

This helps to reduce the computation time and the loss in 

accuracy as compared with the image sub-sampling in the 

traditional approaches. 15, 27, 39, 51 are the filter sizes of 

the second octave. A third octave is determined with the 

filter sizes 27, 51, 75, 99 and, if the original muzzle image 

size is still larger than the corresponding filter sizes, the 

scale space analysis is done for a fourth octave, using the 

filter sizes 51, 99, 147, and 195. Fig. 6 gives an over-view 

of the filter sizes for the first three octaves. Further 

octaves can be computed in a similar way. In typical 

scale-space analysis, however, the number of discovered 

interest points per octave decays very quickly, Fig. 7. 
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Fig. 6. Graphical representation of the filter side lengths 

for three different octaves. The logarithmic horizontal 

axis represents the scales. 

 
Fig.7. Histogram of the detected scales. The number of 

detecting interest points per octave decays quickly. 

The first filters within these octaves (from 9 to 15 is a 

change of 1.7), for large scale changes, the sampling of 

scales is quite high. Hence the space scale with a fine 

sampling of the scales is performed. This computes the 

integral muzzle image on the muzzle image up-scaled by 

a factor of  2, and hence  the first octave filters with a 

filter of size 15. Other filter sizes  used are 21, 27, 33, and 

39. Then a second octave starts, again using filters which 

now increase their sizes by 12 pixels, after which a third 

and fourth octave follow. The scale change between the 

first two filters is only 1.4 (21/15). The lowest scale for 

the accurate version that can be detected through 

quadratic interpolation is    
   

  

 

 
     

The Frobenius norm always remains constant for our 

filters at any size, and they are already scaledormalized, 

and no further weighting of the filter response is required. 

 

2.4. Interest Point Localization 

   A       neighborhood is applied to localize 

interest points in the muzzle image and over the scales in 

non-maximum suppression. Specifically, SURF uses a 

fast variant introduced by Neubeck and Van Gool [8]. 

The maxima of the determinant of the Hessian matrix are 

then approximated in scale and muzzle image space with 

the method implemented by Brown and Lowe [9]. 

Scale space interpolation is important, as it is 

dissimilar in scale between the first layers of every octave 

which is relatively large.  

 

3. INTEREST POINT DESCRIPTION AND 

MATCHING 

SURF descriptor comprises the distribution of the 

intensity content within the interest point neighborhood, 

similar to the gradient information extracted by SIFT[7]. 

In SURF, the integral muzzle images help to increase the 

speed as the distribution of first order Haar wavelet 

responses in x and y direction rather than the gradient. 

The reduction in time for feature calculation and 

matching has helped to increase the strength.  In SURF, 

new indexing step based on the sign of the Laplacian, 

which increases not only the strongest of the descriptor, 

but also the matching speed (by a factor of 2 in the best 

case).  

The reproducible orientation fixes the interest  point in 

the circular region. Then, a square region adjusted the 

selected orientation is constructed and extract the SURF 

descriptor from it. Finally, features are matched between 

two muzzle images. These three steps are explained in the 

following 

. 

3.1. Orientation Assignment 

  The invariant muzzle image rotation is to identify a 

reproducible orientation for the interest points. 

Computation of Haar wavelet responses in   and   

direction within a circular neighborhood of radius    

around the interest point, with   the scale at which the 

interest point was detected. The sampling step is scale 

dependent and is chosen to be  . The size  of the wavelets 

are scale dependent and set to a side length of 4s. Hence  

use of integral muzzle images for fast filtering is done. 

The used filters are shown in Fig. 8. Six operations are 

needed to calculate the response in x or y direction at any 

scale. 

 
Fig. 8. Haar wavelet filters to compute the responses in x 

(left) and y direction (right). The dark parts have the 

weight -1 and the light parts +1. 

 

Calculation of the wavelet responses weighted with 

Gaussian        centered at the interest point is done. 

The responses are represented as points in a space with 

the horizontal response strength along the abscissa and 

the vertical response strength along the ordinate. The 

dominant orientation is done by finding the total of all 

responses within a sliding orientation window of size 
 

 
, in 

Fig. 9. The horizontal and vertical responses within the 

window are added. A local orientation vector is calculated 

by taking the sum of the two responses. The orientation of 

the interest point is defined by longest of such vector. The 

magnitude of the sliding window is a parameter which 

had to be chosen carefully. Small magnitudes made on 

single dominating gradients, large magnitude tend to yield 
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maxima in vector length that are not outspoken. Both 

result in a misorientation of the interest point. 

       
Fig. 9 Orientation assignment: a sliding orientation 

window of size 
 

 
 detects. 

 

3.2. Descriptor Based On Sum Of Haar Wavelet 

Responses 

The initial step consists of  the construction of a square 

region centered around the interest point is oriented along 

the orientation selected in the previous section for the 

extraction of the descriptor. The magnitude of this 

window is 20s. Examples of such square regions are 

shown in Fig. 10. 

 
 

Fig. 10. Detail of the Graffiti scene showing the size of 

the oriented descriptor window at different scales. 

The region divide regularly into smaller      square 

sub-regions and hence preserves important spatial 

information. Find Haar wavelet responses at      

regularly spaced sample points for each sub-region. Let 

   denote the Haar wavelet response in horizontal 

direction and    the Haar wavelet response in vertical 

direction (filter size 2s), in Fig. 9 again. ‘‘Horizontal’’ 

and ‘‘vertical’’ here is defined in relation to the selected 

interest point orientation (see Fig. 11).
1
 The responses    

and    are first weighted with a Gaussian (      ) 

centered at the interest point to increase the vigors 

towards geometric deformations and localization errors. 

 
Fig. 10. To build the descriptor, an oriented quadratic grid 

with     square sub-regions are laid over the interest 

point (left). For each square, the wavelet responses are 

computed from     samples. For each field, we collect 

the sums   , |  |,   , and |  |, computed relative to the 

orientation of the grid (right). 

     The initial set of entries in the feature vector is formed 

by wavelet responses    and    are total up over each 

sub-region. Extract the total of the absolute values of the 

responses, |  | and |  | to find the polarity of the 

intensity changes. The sub-region has a 4D descriptor 

vector   with intensity structure 

            |  |  |  |    Doing this for all     

regions, the results in a descriptor vector of length is 64. 

The wavelet responses are invariant to a bias in 

illumination (offset). Invariance to contrast (a scale 

factor) is achieved by making the descriptor into a unit 

vector. 

Fig. 11 shows the characteristics of the descriptor for 

three distinctively different image-intensity patterns 

within a sub-region. The combinations of such local 

intensity patterns, resulting in a distinctive descriptor can 

be seen. 

 

 
 

Fig. 11 The descriptor entries of a sub-region represent 

the nature of the underlying intensity pattern. Left: In case 

of a homogeneous region, all values are relatively low.  

Middle: In presence of frequencies in x direction, the 

value of  |  |is high, but all others remain low. If the 

intensity is gradually increasing in x direction, both 

values     and  |  |  are high. 

 

SURF is similar in concept as SIFT and both focus on 

the spatial distribution of gradient information. SURF 

outperforms SIFT in practically all cases. This is because 
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SURF integrates the gradient information within a 

subpatch, whereas SIFT depends on the orientations of 

the individual gradients. This makes SURF less sensitive 

to noise. 

The wavelet features, second order derivatives, higher-

order wavelets, Principal Component Analysis, median 

values, average values, etc helped as SURF descriptors. 

The proposed sets of descriptors turned out to perform 

best. The     sub-region, division solution helps to 

provide  better results. The finer subdivisions appeared is 

considered and found  to be less robust and helps to 

increase matching times.  Obviously, the short descriptor 

with      sub-regions (SURF-36) performs which is not 

as good, but allows for very fast matching .  

The  SURF descriptor sums a couple of similar 

features (SURF-128) which is also tested. It again uses 

the same total as before, which splits these values up 

further. The sums of    and |  |  are calculated 

separately for      and     . As the sums of    and 

|  |are split up according to the sign of   , the doubling 

the number of features is done. The descriptor is more 

different and not much slower to calculate, but slower to 

match due to its higher dimensionality. 

3.3. Fast Indexing For Matching 

The symbol of the Laplacian (i.e. The trace of the 

Hessian matrix) for the underlying interest point is 

included, for fast indexing during the matching stage. The 

interest points are found at blob-type structures basically. 

The symbol of the Laplacian differentiates bright blobs on 

dark backgrounds from the reverse situation. This feature 

can be done without extra computational cost since it was 

already computed during the detection phase. In the 

matching stage, only compare features if they have the 

same type of contrast, see Fig. 12. Hence, this minimal 

information helps in faster matching, without reducing the 

descriptor’s performance. This is also of advantage for 

more advanced indexing methods.  

 
 

Fig.  12 If the contrast between two interest points is 

different (dark on light background vs. light on dark 

background), the candidate is not considered a valuable 

match. 

 

4. THE PROPOSED CATTLE IDENTIFICATION 

APPROACH 

The proposed approach for the identification , as 

illustrated in Fig. (13), mainly consists of two phases: 

Training and Testing. The algorithm is detailed below as 

block diagram. 

Training phase 

1)  Collect and normalize all training muzzle print 

images. 

2)  Extract the features from muzzle images using a 

SURF extraction method. 

3)  Represent each muzzle image by one feature 

vector. 

4) Store the Database and find the similarity 

measures among them. 

 

 
Fig. 13: A block diagram of a cattle identification system 

using muzzle print images. 

 

Testing phase 

1. Collect and normalize the testing muzzle print 

image. 

2.  Extract the features of the collected image using 

SURF.  

3. Compare the similarity measure of feature vector 

with database feature vectors.    

4. Matching to find muzzle or not and position as a 

max similarity value if muzzle.  

  

5. RESULT AND DISCUSSION  

              In our work, normalized muzzle images are used. 

Using Speeded up Robust Feature method, the descriptors 

are calculated for each image. These features are fuzzified 

using Gaussian function and similarity values of each 

image with other images are calculated and saved in  the 

database. When an input image enters the system, its 

SURF features are calculated, fuzzified using Gaussian 

function and similarity values of each image with that in 

the database are calculated. The similarity value is 

compared with all values in the database. If maximum of 

Number of Images 10 20 30 40 

Accuracy 

(SURF with Euclidean) 
100 100 100 100 

Accuracy 

(SURF Fuzzy 

similarity) 

100 100 100 100 
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this similarity measure value is greater than second 

largest unique similarity value in the database, it is a 

recognized muzzle image in database, with position at 

highest similarity value. Otherwise it is a new muzzle 

image. 

  Here total 43 images of 43 different cows are there in the 

database. Algorithm is tested for 10, 20, 30 & 40 images 

with others as unknown. The accuracy value (%) is 

calculated using the equation 10 and results shown in 

table below. 

  Here we can see that SURF with fuzzy similarity gives 

the same results as with Euclidean distance. Here the 

proposed method works well with small amount of added 

impulse noise also. 

 

6. CONCLUSION 

 The new application of the beef cattle identification using 

muzzle pattern based on SURF Fuzzy similarity approach 

has been proposed. The performance of the proposed 

identification mechanism is similar to the existing method 

like SURF Euclidean and significantly better than the 

previous methods, i.e, the identification method proposed 

by Barry et al. The average accuracy of PCA with 

Euclidean is 52%, PCA with fuzzy similarity is 95% and 

with Fuzzy SURF is 100%. Fuzzy SURF is also rotation 

and scale invariant. Small noise resistivity(<10%) is there 

in proposed similarity method compared with Euclidean 

method.  
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