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Abstract: A cactus graph is a connected graph in which every block is either an edge or a cycle. The next-to-shortest 

path between two vertices   and   is a path whose length is minimum among all paths between   and   with the shortest 

ones excluded. In this paper, we present an optimal algorithm to find a next-to-shortest path between any two vertices of 

a cactus graph with n vertices which runs in      time. 
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1.  INTRODUCTION 

1.1. Cactus graphs 

Let         be a finite, simple, connected and 

undirected graph. A vertex   is called a cut-vertex if 

the removal of   and all edges incident to   

disconnects the graph. A connected graph without a 

cut-vertex is called a non-separable graph. A block of 

a graph is a maximal non-separable sub graph. In 

graph theory, a cactus graph is a connected graph in 

which every block is either an edge or a cycle, in other 

words, every edge in cactus graph belongs to at most 

one simple cycle. Cactus graph were first studied 

under the name of the Husimi trees, bestowed on them  

 

 

 

 

by Frank Harry and George Eugene Unlenbeck in 

honour of previous work of these graphs by Kodi 

Husimi. Cactus graphs have been extensively studied 

and used as models for many real-world problems. 

This graph is one of the most useful discrete 

mathematical structures for modelling problems 

arising in the real-world. An early application of 

cactus graphs was associated with the representation of 

op-amps [25, 26, 27]. Also, the applications of cactus 

graphs can be found in [15, 19]. Recently cactus 

graphs have been used in comparative genomics as a 

way of representing the relationship between different 

genomes or parts of genomes [29]. This graph is a 

subclass of planner graph and superclass of tree

. 

 
Figure 1.  A cactus graph G 
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1.2. Definitions 

Let          be a graph with vertex set   and edge 

set    where   is the number of vertices and   is the 

number of edges. The distance between two vertices   

and   in   is denoted by        and it is the minimum 

number of edges required to traverse from   to   or   

to    Next-to-shortest path between two vertices u and 

v is a path whose length is minimum among all paths 

between   and   with the shortest ones excluded. 

Next-to-shortest distance between two vertices u and v 

is the length of the next-to-shortest path between   and 

  and it is denoted by          
1.3. Applications 

The next-to-shortest path problem is an important 

problem in graph theory and it has many applications 

in real life problems. This problem is a variation of  -

shortest paths problem that finds applications in 

operations research, telecommunications, VLSI 

design, optimizing compilers for embedded systems 

[17], etc. 

1.4. Survey of the related works 
Problem of finding next-to-shortest path between two 

vertices has received much less attention due to the 

fact that in directed graphs, when we allow edges of 

length zero, the problem has been shown to be NP-

hard [18]. In [32], Seidel has given an             

time sequential algorithm for all pair shortest path 

(APSP) problem for an undirected un-weighted 

arbitrary graphs with   vertices,      being the time 

necessary to multiply two     matrices of small 

integers, the best known time for      is of            
Mondal et al. [22, 23] have solved APSP problem on 

permutation graphs and trapezoid graphs in        
time. Maity and Pal [20] have designed an optimal 

algorithm to solve APSP problem on cactus graphs. In 

[31], Saha et al. have designed an optimal algorithm to 

find APSP on circular-arc graphs. In [8], Eppstein has 

designed an algorithm for finding the  -shortest paths 

in a digraph with   vertices and   edges in     
         time. In this paper, we focus on cactus 

graphs. Das et al. have solved many problems on 

cactus graphs, like maximum weight 2-colour set in 

[4], minimum dominating set in [5], minimum 2-

neighbourhood covering set in [6], etc. Also, Khan et 

al. [10, 11, 12, 13, 14] have solved edge colouring 

problem, (2, 1)-total labelling problem,       -

labelling problem, cordial labelling problem and 

adjacent vertex distinguishing colouring problem on 

cactus graphs. Finding next-to-shortest paths in 

undirected graphs with strictly positive edge length in 

time        is studied [16]. Also Lalgudi et al. [18] 

have designed an algorithm for computing strictly 

second shortest paths in directed graphs in       time. 

In [33], Shisheng et al. have designed an improved 

algorithm for finding next-to-shortest paths in a 

weighted undirected graph. Mandal et al. [21] have 

designed an optimal algorithm to solve next-to-shortest 

path problem on circular-arc graphs, in      time. 

Recently Barman et al. [1, 2] have designed       

time algorithm to solve next-to-shortest path problem 

between two vertices on permutation graphs and 

trapezoid graphs. 

1.5. Main result 
In this paper, we present an optimal algorithm to find 

next-to-shortest path between any two vertices of a 

cactus graph with   vertices which runs in      time. 

1.6. Organization of the paper 
In the next section, we discuss about the path(s) 

between two vertices in a block of cactus graphs. 

Construction of BFS tree T from cactus graph, main 

path and some notations related to our problem are 

presented in Section 3. In Section 4, we prove some 

important results related to our problem on cactus 

graphs. The algorithm is presented to find next-to-

shortest path between two vertices of cactus graphs in 

Section 5. The time complexity is also calculated in 

this section. In Section 6, we present conclusion. 

Acknowledgement is presented in last Section, i.e. 

Section 7. 

 

In the next Section, i.e., in section 2, we discuss 

about the paths between two vertices in a block of 

cactus graphs. 

 

 

2.  PATH(S) BETWEEN TWO VERTICES IN A 

BLOCK OF CACTUS GRAPHS 

We know that a block of a graph is a maximal non-

separable sub graph. Also, a path between two vertices 

of a simple graph is a finite (for finite graph) or 

infinite (for infinite graph) sequence of edges which 

connect a sequence of vertices which are all distinct 

from one another. Again from the definition of cactus 

graph, each block of a cactus graph is either an edge or 

a cycle. For examples, block    is an edge and block 

   is a cycle of length four in Figure 1. Now we 

describe the path(s) between two vertices   and   in a 

block through the following cases. 

 

Case 1: // When block is an edge. // 

 

Let a block contains only two vertices   and  , i.e., the 

block is an edge. So there is only one path between   

and     which is shortest path. Also, there is no next-to-

shortest path between  

   and     
 

Case 2: // When block is a cycle. // 

 

Let               be a cycle containing   

vertices. Also, let two specified vertices be    and   .  

Obviously, there are only two paths between    

and   , one is                 of length   
and other is                      of 

length      . Now, there are three subcases may 

arise, which are discussed below. 

Subcase 1: // When      // 
 

In this subcase, there are two shortest paths between    

and     Also, there is no next-to-shortest path between 

   and     
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Subcase 2: // When        // 
In this subcase, the path of length   is the shortest paths 

between    and    and the remaining path of length 

(      is the next-to-shortest path between    and      
 

Subcase 3: // When        // 
Here, the path of length      is the shortest paths 

between    and    and the remaining path of length   
is the next-to-shortest path between    and     
 

 

From the above discussion, we can draw the following 

conclusions. 

 

 There is neither alternative shortest path nor next-

to-shortest path between two vertices in a block which 

is an edge in cactus graphs. 

 

 In any cycle, there are only two paths between any 

two vertices, one is shortest path and other is 

alternative shortest path or next-to-shortest path. 

 

In the next section, we discuss about the 

construction of a BFS tree, denoted by   from the 

cactus graph    

 

3. CONSTRUCTION OF BFS TREE   

It is well known that the BFS is an important graph 

traversal technique. Also it constructs a BFS tree. In 

BFS, started with vertex   as root, we first visit all the 

neighbours of the root  . Then for each of those 

neighbours of     we visit their unvisited neighbour 

nodes. We keep going until all vertices reachable from 

the root   have been visited. 

 

To construct a BFS tree from the cactus graph we 

use a method in which blocks and cut-vertices of the 

cactus graph         are determined using DFS 

technique [35, 34] and thereafter form an intersection 

graph [28]            where    is the set of blocks, 

say     {          } and     is the set of edges 

such that 

   

{(     )                                       

            }  Then we construct a BFS tree, 

denoted by   with root as a block containing any one 

among the specified vertices    and   

 

              
Figure 2. An intersection graph    of the cactus graph   of Figure 1. 

 

Thus the tree            where say     
{          } and     is a subset of    is computed. 

For convenience, we refer the vertices of   as nodes. 

We note that each node of this BFS tree is a block of 

the graph    The parent of the node    in the tree   

will be denoted by             The BFS tree can be 

constructed on general graphs in         time, 

where   and   represent respectively the number of 

vertices and number of edges [34]. Also we know that 

        for cactus graphs. So the BFS tree    can 

be constructed from the cactus graphs in      time. 
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Figure 3. A BFS tree   with root as a block    of graph    of Figure 2. 

 

 

The BFS tree    with root as a block    (which 

contains the specified vertex     ) of the graph    of 

Figure 2 is shown in Figure 3.  

3.1. Computation of the main path on BFS tree   

Let the blocks    and    contain two specified vertices 

   and    respectively, where      Now, if we 

construct a BFS tree    with root as any block among 

   and      then the shortest path between    and    on 

   is called the main path. For example, if we construct 

a BFS tree   with root as    then the main path will be 

                                     

     For convenience, we denote the node of the main 

path at level   on tree    is   , k = 0,1, 2, …., l  where 

 (     )     on     So, the main path is    

                
 

3.2. Some notations 

Here we present some notations which are needed to 

design the algorithm. 

 

 

Symbol Description 

      is the number of vertices of the block   , i = 0,1, 2, …., l. 

       is the node of the main path on tree   at level                
   the cut vertex between blocks        and     

       shortest distance between the vertices   and    
        next-to-shortest distance between the vertices   and    

  very large positive integer. 

           the shortest path between      and     
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Before going to our proposed algorithm, we prove the 

following important results relating to the  

next-to-shortest paths on cactus graphs. 

 

 

 

4. SOME RESULTS RELATED TO THE NEXT-

TO-SHORTEST PATHS ON CACTUS 

GRAPHS  

In this section we present some important results related 

to the next-to-shortest paths on cactus graphs as follows. 

 

Lemma 1:  If   and   are two vertices of a cycle   of 

length   then        ⌊
 

 
⌋  

 

Proof. To prove this lemma, let               
      be an undirected cycle   of length    
 

Now, for      and       {       }   
 

 

 

 (     )  {
         ⁄                       

        ⁄             
 

 

So,        ⌊
 

 
⌋   for all         and        

  

 

Lemma 2: If   be a cycle of length    and              
and if         exists, then 

                         , i.e.,           
               
 

Proof. Let   be a cycle of length   and            
where     and          exists.  

So,                     

or,                   
or,                            

or,                     as            

Again, if          and        both exist then          

and        are both integers. 

 So,                    
Hence,                         , 

 i.e.,                               

  

  

5. THE ALGORITHM  
To find next-to-shortest path between two specified 

vertices      of a connected cactus graph     we first 

construct a BFS tree   from    After then we mark the 

main path between block which contains   and the block 

which contains    and then find the shortest path 

between    and    After then we find next-to-shortest 

path between two specified vertices u and v. If    and    
belong to same block of cactus graph then shortest path 

and next-to-shortest path between    and    are 

discussed in section  

Now we present the main algorithm to find next-to-

shortest path between two vertices    and    which are 

belong to different blocks of a connected cactus graph    
is presented following. 

 

Algorithm CNSP 

 

Input: A connected cactus graph          
 

Output: Next-to-shortest path between    and    
 

Initially let the blocks    and     contain the 

vertices   and    respectively      
Step 1. Construct a BFS tree    with root as   . 

 

Step 2. Find the main path              
     between blocks    and   , 

where     ,        and        

      
 

Step 3. Find the shortest path between       and     from 

       for                 
Step 4. Set                for              
  

Step 5. Compute                    and 

the shortest path between two vertices 

  and    is                
      

Step 6. Set      
Step 7. If       

or  
  

 
    

then set 

   
    

and         
else set 

   
   
      
and 

    
    

(by Lemma 2) 

 

 

Step 8. If        then Stop, 

 

            else go to Step 7. 

 

Step 9. Compute    {              }     (say). 

Step 10. If      then there is no next-to-shortest path 

between    and     
 

else                     and 

the next-to-shortest path between    
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and     is obtained by                                            

replacing         by the next-to-

shortest path between     and      

from      
End CNSP 
Using Algorithm CNSP we get the next-to-shortest path 

between the vertices 2 and 18 is           
              , whereas        
            is the shortest path between 2 and 

18 for the cactus graph of Figure 1. 

 

5.1. Illustrative Example 
To illustrate the execution process of Algorithm CNSP, 

we consider the vertices      and v = 18 of the cactus 

graph of Figure 1 as the specified vertices, i.e., we want 

to find next-to-shortest path between the vertices 2 and 

18. Obviously,            and        . We consider 

2 as a member of the block      In Step 1, we construct a 

BFS tree   with root as the block    (see Figure 3). 

After then, in Step 2, we compute the main path which is 

  (=   )     (=   )   (=  )   (=  ), where 

                 Also, we take       and 

            Also, from Figure 1,               
and        are the cut-vertices between the blocks    

and         and          and    respectively. In next 

Step, i.e., in Step 3, we find the shortest path between 

       and        .  For this purpose, we find 

           i.e., the shortest path between      and 

   from the block        for            as follows: 

 

               is       , 

                is          , 

                is      , 

                 is        
In Step 4, we compute                          
                                       In 

Step 5, we compute                        
         and the shortest path between 2 and 18  

is              , i.e.,           
          
In Step 6, we set      
 

Step 7 and Step 8: At first, in Step 7,       and 
  

 
      So, we set      and          In Step 8, 

          , so, go to Step 7. In Step 7,       and 
  

 
      So, we set      and           In Step 8, 

          , so, go to Step 7. In Step 7,       and 
  

 
      So, we set                   and 

         In Step 8,          , so, go to Step 7. 

In Step 7,         So, we set      and           
In Step 8,           , so, we stop the Step 8 as well 

as Step 7.  

 After then, we compute    {             
      }           in Step 9. In Step 10, 

   (2, 18) = d(2, 18)+          and next-to-

shortest path between 2 and 18 is obtained by replacing 

             i.e.,                  by the next-

to-shortest path between 16 and 17 (which is    
        ) from       Hence, the required next-

to-shortest path between 2 and 18 is        
                   
 

Theorem 1: The time complexity to find next-to-shortest 

path between any two specified vertices   and   in a 

cactus graph    is       where    is the number of 

vertices of    
 

Proof. In Step 1, the BFS tree    can be constructed in 

     time as we know that        for cactus graphs. 

In BFS tree      (     )     so       Therefore, in 

Step 2, the time complexity of marking the main path 

between the blocks     and     is       In Step 3, 

shortest path between       and     from        for 

              can be computed in         
                         time as 

       for cactus graphs. Since, Step 4 and Step 5 

are completed using the result of Step 3, so the run time 

of Step 4 and Step 5 is       Also Step 7 and Step 8 can 

be completed together in       In Step 9,    {      
            }  can be computed on      time. Run 

time of Step 10 is also        
     Hence, the overall time complexity of the Algorithm 

CNSP is       
 

6. CONCLUSION 

Next-to-shortest paths problem has been widely studied in 

the past. In this paper, we proposed an      time 

algorithm to find next-to-shortest path between any two 

vertices of simple, connected and unweighted cactus 

graphs. We feel that it would be interesting to design an 

     time algorithm to find   shortest paths between two 

vertices of weighted cactus graphs. 
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