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Abstract: In this paper our main purpose is to discuss some techniques of higher order decomposition of well-known 

Cartan’s first curvature tensor      . Moreover, we attempted to establish few significant results that may produce vital 

connections between Complex Finsler Manifold and Riemannian Christoffel Symbol (Curvature Tensor). Also, by 

adopting the techniques of decomposition, various cases and conditions have been developed. 
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1. INTRODUCTION 

A tensor which has the property that all its components 

are same in all the co-ordinate system is said to be 

isotropic tensor. Even if either the co-ordinate system or 

medium is rotated (by rotation we mean either rotation 

by 180 degree where the determinant of rotation matrix 

is 1 or complete rotation in which determinant of 

reflection matrix is -1), all the components of tensor 

remains same. Otherwise, tensor is anisotropic in nature.

  

A fourth order tensor can be considered as a conjunction 

of second order tensors. We know that the second order 

isotropic tensor is the identity tensor which is also 

symmetric.   The possible conjunction of second order 

identity tensors are                         . Therefore, 

we can write 

              , 

             , 

              

and the given these three conjunctions of the general 

fourth order tensors are: 

                                    

Fourth order tensors have been used widely in the field 

of fine element method and computational mechanics in 

the last twenty years. Few important applications of 

them include tangent (elastic and elasto-plastic) moduli 

as well as damage tensors which play important role in 

formulation of evolution and constitutive equations. 

Due to absence of closed theory embracing many 

important aspects, the use of fourth order tensors remain 

complicated. 

The fundamental idea of a Finsler manifold may be 

traced back to the famous lecture of Riemann: “Uber 

die hypothese, welche der Geometrie zugrunde liegen”. 
In this memoir of 1854 Riemann discusses various 

possibilities by means of which an n-dimensional 

manifold may be endowed with a metric, and pays 

particular attention to a metric defined by the positive 

square root of a positive definite quadratic differential 

form. 

Thus the foundations of Riemannian geometry are laid; 

nevertheless. It is also suggested that the positive fourth 

root of a fourth order differential form might serve as a 

metric function. These functions have three properties in 

common: they are positive, homogeneous of the first 
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Figure I.1:  The original Co-ordinate system I (solid lines) and the 

rotated system I
’
 (dashed line). 
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degree in the differentials, and are also convex in the 

latter. It would seem natural, therefore, to introduce a 

further generalisation to the effect that the distance    
between two neighbouring points represented by the 

coordinates     and       be defined by some 

function  (      ) in a complex Finsler manifold as: 

    (      ) (           ) 
Again, the theory took a new and unexpected turn in 

1934 when E. Cartan published his tract on Finsler 

spaces. He showed that it was indeed possible to define 

connection coefficients and hence a covariant derivative 

such that the preservation of Ricci’s lemma was 

ensured. On this basic, Cartan developed a theory of 

curvature and practically all subsequent investigations 

concerning the geometry of Finsler spaces were 

dominated by this approach. Several mathematicians 

expressed the opinion that the theory had thus attained 

its final form. 

The above- mentioned theories make use of a certain 

device which basically involves the consideration of a 

space whose elements are not the points of the 

underlying manifold, but the line- elements of the latter, 

which form a (    ) dimensional variety. This 

facilitates the introduction of what Cartan calls the 

“Euclidean connection”, which by means of certain 

postulates, may be derived uniquely from the 

fundamental metric function   (      ) . The method 

also depends on the introduction of a so-called “element 

of support”, namely, that at each point a previously 

assigned direction must be given, which then serves as 

directional argument in all functions depending on 

direction as well as position. Thus, for instance, the 

length of a vector and the vector obtained from it by an 

infinitesimal parallel displacement depend on the 

arbitrary choice of the element of support. It is this 

device which led to the development of Finsler 

geometry in terms of direct generalisations of the 

methods of Riemannian geometry. 

1.1 Preliminaries 

Fundamental postulate of E. Cartan: The theory of E. 

Cartan which treats the Finsler manifolds from an 

entirely different point of view has played the most 

prominent role in the development of the Finsler 

Geometry. In this section, we shall take a brief look on 

Cartan’s monograph in which he discussed his 

postulates by means of covariant derivatives. 

In order to be able endows, the Finsler manifold   
( )

 

with so-called “Euclidean connection” Cartan 

considered the manifold       of the line element 

(    ̇ ) which is (    ) dimensional, since only the 

ration of  ̇  are necessary define a direction in the 

tangent manifold  ( 
 ̇ ). The co-ordinates are referring 

to the centre of the line element(     ̇ ). All quantities 

such as tensors are to be defined by means of the 

functions of line elements. 

An analytic expression would come into existence, 

which would represent the variation of the vector    
when its element of support (     ̇ )  experiences an 

infinitesimal small change and becomes  (   
      ̇     ̇ ) . This variation of    will be 

represented by means of a covariant differential: 

           
 (   ̇)     ̇     

 (   ̇)     , 

where the coefficients     
        

  are the functions of 

the element of support. 

If a vector    is transported from (     ̇ )  to (   
       ̇     ̇ )  by parallel displacement, i.e., if the 

actual change     in    is in accordance with the 

equation. 

                  
      ̇      

      , 
then the length of   remains invariant. 

Fourth rank identity tensor for isotropic: The fourth 

rank identity tensor I maps any second rank, symmetric 

tensor U to itself  

I: U = U 

It is straight forward to work out the components of 

I(accounting for both minor and major symmetries) 

       
 

 
(              ) 

Properties of Riemann - Christoffel Tensors of first 

kind and fourth order:  

i.               

ii.               

iii.                 

iv.                       

 
2. ISOTROPIC TENSOR DECOMPOSITION OF 

CARTAN’S CURVATURE TENSOR  IN  

COMPLEX  FINSLER  MANIFOLDS 
Some techniques for isotropic tensor decompositions are 

available to reduce the dimensionality or to transform 

the tensor in such a way that describes important aspects 

about those for which they are standing for. In order to 

decompose the Cartan’s curvature tensor in Riemann 

Christoffel (Curvature tensor) and complex Finsler 

Manifolds, we shall make use the following techniques: 

Technique I: Using Riemann Christoffel tensor to 

decompose Cartan’s curvature tensor as the cyclic 

property of isotropic tensor. 

Theorem 2.1. Under the decomposition the higher 

order tensor i.e.      , the quantities       (fourth 

order Riemann curvature tensor) and       (fourth 

order Cartan’s curvature tensor) behave like, Isotropic 

tensor      . The cyclic properties of these quantities are 

given by 

                                                                                                                               (2.1) 

Proof:  Let us assume that, these three quantities  (                   ) are equivalent to each other 

                    

Let,                                 
                                                                                                                              (2.2) 

 Also,                         [
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}      {

 
   
} {
 
   }       {

 
   
} {
 
   }                         (2.3) 

Or,          
 

   
{
 
   }   

 

   
[   {

 
   }]   {

 
   }

    

   
 
 [    ]

   
  {

 
   }

    

   
                                                    (2.4) 

Similarly for 

                          
 

   
{
 
   
}   

 [    ]

   
  {

 
   }

    

   
                                                                                      (2.5) 

By the formula 

   
  

  
        

   

  
 
   

  
 

Using (3.4) (3.5) in eq. (3.3) we get 
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} [    ]  

                
 [    ]

   
   

 [    ]

   
   {

 
   } [    ]    {

 
   } [    ]                                                                         (2.6) 

It is also written as 

                                              |
 

   

 

   

[    ] [    ]
|    |

{
 
   
} {

 
   
}

[    ] [    ]
|                                                      (2.7) 

But we know that 

                          [    ]              
 

 
[
    

   
 
    

   
  

    

   
]                                                                              (2.8) 

                          [    ]             
 

 
[
    

   
 
    

   
   

    

   
]                                                                               (2.9) 

Using (2.8) and (2.9), equation (2.6) implies 

        
 

 

 

   
[
    

   
 
    

   
 
    

   
]  

 

 

 

   
[
    

   
 
    

   
   

    

   
]  {

 
   } [    ]  {

 
   } [    ]                (2.10) 

Or, 

           
 

 
[
     
      

 
     

      
 
     
      

 
     

      
]    {

 
   } [    ]    {

 
   } [    ]  

Since,      {
 
   }    

  [    ]      And          {
 
   }    

  [    ] 

Therefore, 

        
 

 
[
     

      
 

     

      
 

     

      
 

     

      
]       [    ][    ]     [    ][    ]                (2.11) 

Similarly, 

          
 

 
[
     

      
 

     

      
 

     

      
 

     

      
]       [    ][    ]     [    ][    ]                         (2.12) 

         
 

 
[
     

      
 

     

      
 

     

      
 

     

      
]       [    ][    ]     [    ][    ]                          (2.13) 

Adding equations (2.11), (2.12) and (2.13), we get eq. (2.1) i.e. 

                        

This completes the proof of theorem. 

In order to make the significance of above expression 

the following cases are arises: 

Case I: The total number of distinct non- vanishing 

components of Cartan tensor        with four distinct 

indices is  
 

  
  (    ) , where           

             . For     the number of distinct non 

– vanishing components of Cartan’s curvature tensor 

        i.e. scalar, hence after decomposition of 

fourth rank tensor we reduce it to zero rank tensor and 

curve seems to be a straight line. 

Case II:  For      or higher order components of 

Cartan’s curvature tensor       , the non- vanishing 

components seems to be a curve and total number of 

distinct non – vanishing components does not exceed  
 

  
  (    )  

Remark: When       is the form       (i.e.       

 ) then       has no any component. 

Technique II: Using Finsler equation to decompose the 

Cartan’s curvature tensor in symmetric and anti-

symmetric property of isotropic tensor. 

Theorem 2.2. Under the decomposition of fourth order 

isotropic tensor  (     ) , in the form of Cartan’s 
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curvature tensor  (     ) , behave like symmetric and anti-symmetric tensor and the relation between them is 

                                  
 

 
(             )  

 

 
(             )                                     (2.14) 

Proof: Making use the concept of covariant differentiation of the equation as: 

 ‖     ‖     [
 

 
(              )  

 

 
(                   )] 

For the feasibility, we write the covariant differentiation given by equation (    ) with respect to    as below 

                          ‖     ‖      
 

 
 [‖      ‖  ‖      ‖]  

 

 
 [‖      ‖  ‖      ‖]                          (2.15) 

Using by part covariant differentiation in equation (    ) 
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Adding equations(    )and(    ), we get 

 ‖     ‖      [‖      ‖  ‖      ‖]   [‖      ‖  ‖      ‖] 

                                                                                             ‖      ‖                     (2.18) 

 

This is the symmetric part of isotropic tensor.  

Hence after decomposition of isotropic tensor in the 

form of Cartan’s curvature tensor behave like 

symmetric tensor and the relation (2.14) is satisfied. 

Also we define the following: 

Definition 2.1.  ‖     ‖         is the isotropic 

symmetric tensor, where 

       
 

 
(              ). 

Therefore, Cartan curvature tensor       is symmetric 

as: isotropic tensor       is symmetric. Hence       is 

covariant symmetric tensor of rank four called 

fundamental covariant tensor. 

 

3. CONCLUSION 

In this paper we have relevant a theory of higher order 

tensor decomposition. The theory entitled to solve 

several suitable problems in the decomposition of 

higher order tensor, which are still chase the letter. The 

decomposition of higher order rank tensor to lower 

order rank tensor shows by the process of cyclic rotation 

of curve to make a straight line.  

By adopting the process of covariant differentiation for 

the symmetric and anti-symmetric part of isotropic 

tensor, we have developed an expression which most 

probably predicts some complicated relations among the 

components of isotropic tensor and various tensorial and 

non-tensorial quantities. The relation (2.18) is vitally 

important as it describes direct or indirect co-relation 

between components of complex isotropic tensor and 

Christoffel second kind bracket symbol, Cartan tensor, 

scalar curvature, Riemann metric tensor as well as a 

third order tensor    
 
(   ̇) etc. 
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