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Abstract-In any cutting process, apart from obtaining the good surface quality, accurate dimensions, maximized 

productivity, metal removal rate and minimization of power consumed; human energy required during the machining process 

is also of most importance. In Indian scenario where majority of total machining operation are still executed manually which 

needs to be focused. A traditional machining process involves many process parameters which is directly or indirectly affects 

the human energy. This article explain an approach to formulate a  Field Data Based Model (FDBM)  to analyze the impact 

of  various machining parameters on the human energy required during the machining of ferrous and non-ferrous material  

and develop a mathematical relation which simulate the real input and output data directly from the machining  field where 

the work is actually being executed. . The findings indicate that the topic understudy is of great importance as no such 

approach of field data based mathematical simulation is adopted  for the formulation of mathematical model for human 

energy required for the machining of ferrous and non- ferrous material. 

 

Index Terms-Field data based model; optimization; Sensitivity; Reliability; Response surface model. 

 

1. INTRODUCTION 

This paper explains the mathematical simulation of man-

machine system used in the traditional machining process 

used in Indian scenario. The purpose of developing such 

field data based model (FDBM) was to overcome the 

deficiencies in current method, for process improvement, 

process management and to reduce fatigue in the workers 

and musculoskeletal injuries. Extensive study has been 

conducted in the past to optimize the process parameters in 

any machining process to have the best product. Current 

investigation on turning  process is a formulation of a field 

data based Methodology applied on the most effective 

machining field  parameters i.e. operator parameter, 

cutting tool parameter, work piece parameter ,cutting 

process parameter ,machine specifications and machining 

environment parameters.  

Turning is a widely used machining process in 

manufacturing. Therefore, an optimal selection of cutting 

parameters to satisfy an economic objective within the 

constraints of turning operations is a very important task. 

Traditionally, the selection of cutting conditions for metal 

cutting is left to the machine operator Surface roughness, 

power consumption, material removal rate and 

productivity has received serious attention for many years. 

A considerable number of studies have investigated the 

general effects of the speed, feed, and depth of cut on the 

turning process. Some researchers studied on the 

machinability of aluminium-silicon alloys [2-6]. Liu et. al 

compared the influence of several factors (cutting speed, 

feed rate and depth of cut) on cutting force and surface 

roughness by orthogonal tests in turning Si-Al alloy. The 

results showed that the surface roughness could be 

improved by using diamond tool [2]. Recently, in order to 

obtain reasonable cutting parameters in turning casting 

aluminium alloy ZL108.Wei, Wang, et al analyzed main 

influential factors of cutting force using carbide tool YG8.  

 

 

The results indicated the depth of cut had great influence 

on stability of whole cutting process in rough machining. 

Armarego et. al (1969) investigated unconstrained 

machine-parameter optimization using differential 

calculus. Brewer et.al (1963) [3] carried out simplified 

optimum analysis for non-ferrous materials. For cast iron 

(CI) and steels, they employed the criterion of reducing the 

machining cost to a minimum. A number of monograms 

were worked out to facilitate the practical determination of 

the most economic machining conditions. They pointed 

out that the more difficult- to-machine materials have a 

restricted range of parameters over which machining can 

be carried out and thus any attempt at optimizing their 

costs are artificial. Brewer (1966) [3] suggested the use of 

Lagrangian multipliers for optimization of the constrained 

problem of unit cost, with cutting power as the main 

constraint. Walvekar et.al [10] (1970) discussed the use of 

geometric programming to selection of machine they 

optimized cutting speed and feed rate to yield minimum 

production cost. Petropoulos [6] (1973) investigated. 

Gopalakrishnan et.al (1991)  described the design and 

development of an analytical tool for the selection of 

machine parameters in drilling. Geometric programming 

was used as the basic methodology to determine values for 

feed rate and cutting speed that minimize the total cost of 

machining SAE 1045 steel with cemented carbide tools of 

ISO P-10 grade. Surface finish and machine power were 

taken as the constraints while optimizing cutting speed and 

feed rate for a given depth of cut. Mangesh Phate et al [18-

24] (2012-2019) worked on artificial neural network and 

the dimensional analysis approach to model the machining 

and advanced machining performance of ferrous, 

nonferrous and composite materials.  
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2. EXPERIMENTION   

Data sets contain information and the behavior of the 

process variables, often much more than can be learned 

from just looking at plots of those observed data. 

Mathematical models based on observed input and output 

data from real life situation ( Machining Process )  help us 

to gain new information and understanding from these 

data. Thus, it is not possible to plan such activities on the 

lines of design of experimentation [12], When one is 

studying any completely physical phenomenon but the 

phenomenon is very complex to the extent that it is not 

possible to formulate a logic based model correlating 

causes and effects of such a phenomenon, then one is 

required to go in for the field data based models. Hence the 

approach of formulating a field data based model is 

suggested to analysis the machining of ferrous and non- 

ferrous material on traditional lathe machine. The 

methodology used to formulate the FDBM is described as 

follows.  

2.1. Identification of Process Variables 

The term variables are used in a very general sense to 

apply any physical quantity that undergoes change. If a 

physical quantity can be changed independent of the other 

quantities, then it is an independent variable. If a physical 

quantity changes in response to the variation of one or 

more number of independent variables, then it is termed as 

dependent or response variable. If a physical quantity that 

affects our test is changing in random and uncontrolled 

manner, then it is called an extraneous variable. The 

variables affecting the effectiveness of the phenomenon 

under consideration are operator data, single point cutting 

tool, lathe machine, work piece, process parameters and 

the environmental parameters. The dependent or the 

response variables in this case of turning operation is 

human energy. The list of various process variables which 

affects the machining phenomenon is as shown in table 1 

(Annexure). 

2.2. Reduction of variables using Buckingham’s Pi 

Theorem  

According to the theories of engineering experimentation 

by H. Schenck Jr. the choice of primary dimensions 

requires at least three primaries, but the analyst is free to 

choose any reasonable set he wishes, the only requirement 

being that his variables must be expressible in his system. 

There is really nothing basis or fundamental about the 

primary dimensions. For this case ,the variables are 

expressed in mass (M), length (L) , time ( T), temperature ( 

θ
 
) and angle ( Γ). Formulated pi terms are as shown in 

table 2 (Annexure). 

 

2.3. Experimental Planning  

 Test Envelop: To decide range of variation of an 

individual independent Π term. 

 Test Points: To decide & specify values of 

independent Π terms at which experimental setup be 

set during experimentation. 

 Test Sequence: To decide the sequence in which the 

test points be set during experimentation 

 Plan of Experimentation: Whether to adopt Classical 

Plan or Factorial Plan. 

 Physical design of an experimental set up: this step 

included physical design of the experimental area 

for data collection. 

 Execution of experimentation for data collection: 

this step included execution of the experimentation 

as per test planning and collection of data regarding 

causes (Inputs) and effects (Responses). 

 Purification of experimentation data: this step 

included purification of the gathered data using 

statistical methods. 

 Formulation of the field data based model.  

 Model optimization, Sensitivity analysis and 

Reliability of the model.  

The first six steps mentioned above constitute design of 

experimentation. The seventh step constitutes of model 

formulation where as eighth and ninth steps are 

respectively optimization and sensitivity and reliability of 

model.   

 

3. RESULT AND DISCUSSION    

Turning is carried on a traditional lathe that provides the 

power to turn the work piece at a given rotational speed 

and feed to the cutting tool at specified rate and depth of 

cut. Therefore three cutting parameters namely cutting 

speed, feed and depth of cut need to be determined in a 

turning operation The turning operations are accomplished 

using a cutting tool with high hardness help to sustain the 

high cutting forces and temperature during machining 

create a harsh environment for the cutting tool.  The 

schematic view of the experimental set-up is shown in 

Figure1. 

 

 
 

Figure 1 Experimental Setup for field data based model 

(FDBM) for human energy. 

3.1. Data Collection  

For multifactor experiments two types of plans viz. 

classical plan or full factorial and factorial plan are 

available, in this experimentation conventional plan of 

experimentation is recommended. In all data was collected 

from total 216 experiments of  three material S.S.304, 

EN1A, EN8 

3.2. Purification of Data 

Out of these 216 observations, there are chances of some 

data being erroneous either from inputs or responses. 

Adopting techniques of rejecting the erroneous data, the 

observed data was purified for proceeding further with the 

step of Formulation of Models.  

3.3. Formulation of Field Data based Model 

It is necessary to correlate quantitatively various 

independent and dependent terms involved in this very 
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complex phenomenon. This correlation is nothing but a 

mathematical model as a design tool for such situation. 

The Mathematical model for step turning operations is as 

given below: For the machining operation  Five 

independent pi terms (π1, π2, π3, π4 ,π5 and π6) and one 

dependent pi terms (πD1) were decided during 

experimentation and hence are available for the model 

formulation. Each dependent π term is the function of the 

available independent terms. 

),,,, ,(  6 5 4 3 2 1 D1  f                                       (1) 

A probable exact mathematical form for the dimensional 

equations of the phenomenon could be relationships 

assumed to be of exponential form [5]. For example, the 

model representing the behavior of dependent pi term π D1 

with respect to various independent pi terms can be 

obtained as under. 

 

fedcba xK 654321 D1  1
                                 (2) 

 

  The values of exponent are a, b, c, d, e and f  are 

established independently at a time, on the basic of data 

collected through classical experimentation. There are six 

unknown terms in the equation (2) curve fitting constant 

K1 and indices a, b, c, d, e and f  to get the values of these 

unknowns we need minimum a set of  five set of all 

unknown dimensionless pi terms  

 

                                          (3) 

 

The equation (2) can be brought in the form of equation 

(3) by taking log on both sides. Model of dependent pi 

term πD1 for surface roughness   

  

fedcba xK 654321 D1  1
                                 (4) 

  

Taking log on the both sides of equation for π D1 

 
  

63

4321 D1
    1





eLOGeLOG

dLOGcLOGbLOGaLOGLOGKLOG
                                                                  

                                                                                  (5) 

 

Let, Z = log π D1, K   = log k1, A = log π 1, B = log π 2, C 

=log π 3, D = log π 4, E = log π 5, 

Putting the values in equations 4, the same can be written 

as 

 
                    

                                                        

                                                                                 (6) 

 

Equation (7) is a regression equation of Z on A, B, C, D 

and E in a dimensional co-ordinate system 

----

-------   

------------ 

----------- 

------------ 

---------------------- 

------------------                                                    (7) 

      

   

In the above set of equations the values of the multipliers 

k, a, b, c, d and e are substituted to compute the, a, b, c, d,e  

and f in the set of equations are calculated. After 

substituting these values in the equations (9) one will get a 

set of five  equations, which are mutinously to get the 

values of k , a, b, c, d,e and  f  The above equations can be 

verified in the matrix form and further values of k , a, b, c, 

d  and  e  can be obtained by using matrix  analysis. 

 

                                                                                                                           

                                                                                 (8)                                                                           

                                                                           

Solving these equations using ‘MATLAB’ is given below. 

W = 7 x 7 matrix multipliers of k, a, b, c, d, e and f 

P1 = 7 x 1 matrix of the terms on L H S and 

X1 = 7 x 1 matrix of values of k, a, b, c, d,e and f   

After solving we get the following models  

1. Model 1 for Ferrous and Non ferrous  materials with 

all independent pi terms  

1271.0
6

0425.0
5

5341.0
4

1965.0
3

0179.0
2

3855.0
 D1  1

0002585.0









x

                                              

                                                                                   (9) 

2. Model 2 for  Ferrous Material with all independent pi 

terms  

0762.0
6

0167.0
5

4968.0
4

2389.0
3

0459.0
2

3354.0
D2  1

001297.0



 

x

                                            

                                                                                 (10) 

 

3.  Model 3 for Non ferrous Material with all 

independent pi terms 

1576.0
6

1957.0
5

5748.0
4

2842.0
3

0072.0
2

4325.0
 D3  1

00003968.0





 x
                                  

                                                                                 (11) 

The indices are as shown in figure 2. 

3.4.  Reliability of the models  

Reliability of model is established by using the relation, 

reliability = 100 – percentage mean error and mean error 

=. Sum (xi * fi )/ Sum (fi)  ,where, xi is % error and fi is 

frequency of occurrence. 

System reliability ( R ) is given by the following equation 

(12)  
100*)]1(*)1(*)1[( 321 RRRR   

                         (12) 

 CYbXAZ

 BbaXAKZ

   EeDdCcBbAaKnZ

AEeADdACcABbAAaAKZA    

ABEeBDdBCcBBbBAaBKZB    

CEeCDdCCcCBbCAaCKZC    

DEeDDdDCcDBbDAaDKZD    

EEeEDdECcEBbEAaEKZE    

1)(1 PWinvX 
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%369.99100*)]7848.01(

*)8315.01(*)8340.01[(



R   

                                                     (13)          

       

 
Fig  2a. 

 

 
 

 

Fig  2b. 

 

 

 
 

 

                                  Fig 2c. 

 

Figure 2. Indices  for  Human Energy Model Indices   (a) 

For machining ferrous and Nonferrous Materials  (b)  For 

machining Ferrous material    (c) For  machining Non 

Ferrous material  

 

3.5.  Optimization of the models  

The ultimate objective of this work is not merely 

developing the models but to find out best set of 

independent variables which will result in minimization of 

the objective functions. In this case There is one objective 

functions corresponding to surface roughness models. The 

objective functions for the surface roughness need to 

minimize. The models have non-linear form; hence, it is to 

be converted into a linear form for optimization purpose. 

This can be achieved by taking the log of both the sides of 

the model. The linear programming technique is applied 

which is detailed as below for turning Operation. 

Taking log of both the sides of the Equation 8, we get, the 

objective function is  

)(0414.0)(2591.0)(3595.0

)(1562.0)(4075.0)9268.4(

543

2
 1





LOGLOGLOG

LOGLOGLOGMinZ

    

      

                                         (14)      

           

Subject to the following constraints  

 

,

,

 

,

,

 

,

,

 

,

,

 

      

                             

                                                                             (15) 

On solving the above problem by using MS solver we get 

values of X1, X2, X3,X4,X5  and Z. Thus ΠD1 min 

=Antilog of Z and corresponding to this value of the 

ΠD1min the values of the independent π terms are 

obtained by taking the antilog of X1,X2,X3,X4,X5 ,X6 

and Z.  The optimized values are tabulated in table 5 

(Annexure). 

 

3.6. Sensitivity analysis of the models  

The influence of the various independent π terms has been 

studied by analyzing the indices of the various π terms in 

the models. Through the technique of sensitivity analysis, 

the change in the value of a dependent π term caused due 

to an introduced change in the value of individual π term is 

evaluated. In this case, of change of ± 10 % is introduced 

in the individual independent π term independently (one at 

a time).Thus, total range of the introduced change is ±20 

%. The effect of this introduced change on the change in 

the value of the dependent π term is evaluated .The 

average values of the change in the dependent π term due 

to the introduced change of ± 10 % in each independent π 

term. This defines sensitivity. The total % change in output 

for ±10% change in input is shown in Table 4 

The graphical distribution of the sensitivity analysis of the 

formulated model with respect to different pi terms is 

shown in figure 2. 

0.3855 

0.0179 
0.1965 

-0.5341 

-0.0425 

0.1271 

A B C D E F

Indices for Human Energy 

0.3354 

-0.0459 

0.2389 

-0.4968 

0.0167 0.0762 

A B C D E F

Indices for Human Energy 

0.4325 

0.0072 

0.2842 

-0.5748 

-0.1957 

0.1576 

A B C D E F

Indices for Human Energy 

)(00001 154321  MaxLOGXXXXX

)(00001 154321  MinLOGXXXXX

)(00010 254321  MaxLOGXXXXX

)(00010 254321  MinLOGXXXXX

)(00100 354321  MaxLOGXXXXX

)(00100 354321  MinLOGXXXXX

)(01000 454321  MaxLOGXXXXX

)(01000 454321  MinLOGXXXXX

)(10000 554321  MaxLOGXXXXX

)(10000 554321  MinLOGXXXXX

)(10000 554321  MaxLOGXXXXX

)(10000 554321  MinLOGXXXXX
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4. VALIDATION OF MODEL THROUGH 

RESPOSNE SURFACE MODELS  

Response surface methodology (RSM) consists of a group 

of mathematical and statistical techniques used in the 

development of an adequate functional relationship 

between a response of interest, Z, and a number of 

associated control (or input) variables denoted by A, B, 

C,D,E & F. In general, such relationship is unknown but 

can be approximated by  fitting a best fit  polynomial 

model . 

 

 

1. For ferrous and nonferrous material 

3

2232

2

*0007231.0

**01879.0**1878.0*00210.0*4423.0

**502.0*06778.0*102.1518.473.391

Y

YXYXXY

YXXYXZ







                                                                                                                                                          

                                                                            

                                                                   (16) 

2. For ferrous material 

32

232

2

*01322.0**03006.0

**04478.0*02247.0*3589.0.0

**452.1*271.1*55.1482.232.1421

YYX

YXXY

YXXYXZ







                                                                                                                                               

 

                                                                       (17) 

 

3.For Nonferrous material 

322

32

2

*01284.0**05346.0**0037416.0

*01875.0*875.1**223.1

*253.1*67.3548.2222.391

YYXYX

XYYX

XYXZ







      

                        (18) 

Where X= A*B*C and Y= D*E*F   

The response surface are as shown in figure 4 (Annexure). 

5. CONCLUSION  

In this study, a generalized field data based model was 

developed to simulate the dry turning process  for ferrous 

and nonferrous materials . The  approach  of generalized 

model formulation model provided an excellent and 

simple way to analyze  the engineering  complex process 

where the impact of field data is dominating the 

performance .It can be seen from the equation that this 

model of pi terms containing surface roughness as 

response variable.      

It can be seen from the Equation (16-18) and Figure 2 

influence of indices of independent π terms on response 

variable that this was a model of π term human energy as a 

response variable. The following primary conclusions 

appear to be justified by the above model. 

1) For the ferrous and nonferrous material, the absolute 

index of π1was the highest i.e. 0.3855. Thus π1 the 

term related to the lathe machine operator data was the 

most influencing π term in the model. The value of 

this index was positive indicating that πD1 increases 

as this π term increases or otherwise. The absolute 

index of π4 was the lowest i.e. -0.5341. Thus π4 the 

term related to cutting process parameters was the 

least influencing π term in the model. The curve fitting 

constant is 0.0002585. This curve fitting constant 

represents collective effect of certain immeasurable 

parameters which have influence on the human 

energy.  

2) For the ferrous material, the absolute index of π1was 

the highest i.e. 0.3354. Thus π1 the term related to the 

lathe machine operator data was the most influencing 

π term in the model. The value of this index was 

positive indicating that πD1 increases as this π term 

increases or otherwise. The absolute index of π4 was 

the lowest i.e. -0.4968. Thus π4 the term related to 

cutting process parameters was the least influencing π 

term in the model. The curve fitting constant is 

0.001297. This curve fitting constant represents 

collective effect of certain immeasurable parameters 

which have influence on the human energy. 

3) For the nonferrous material, the absolute index of 

π1was the highest i.e. 0.4325. Thus π1 the term related 

to the lathe machine operator data was the most 

influencing π term in the model. The value of this 

index was positive indicating that πD1 increases as 

this π term increases or otherwise. The absolute index 

of π4 was the lowest i.e. -0.5748. Thus π4 the term 

related to cutting process parameters was the least 

influencing π term in the model. The curve fitting 

constant is 0.00003968. This curve fitting constant 

represents collective effect of certain immeasurable 

parameters which have influence on the human 

energy. 

4)  Sensitivity analysis of dry cutting operation indicates  

single point cutting tool and the cutting process 

parameters are  most sensitive and work piece 

parameter, lathe machine specification as well as 

machining environmental parameters are least 

sensitive for model ΠD1and hence needs strong 

improvement. 

5) The comparison of experimental, mathematical model,  

Single Degree polynomial Response surface       

model( Analytical) and Response Surface three degree 

polynomial model ( Graphical)   is shown in      the 

figure 5a- 5c. 

6)  The comparison of indices of various input variables 

for human energy Model in case of ferrous &      

nonferrous material , ferrous material and nonferrous 

materials is as shown in fig 6(Annexure). 

The comparison of sensitivity of various input variables 

for human energy Model in case of ferrous &  nonferrous 

material, ferrous material and nonferrous materials is as 

shown in fig 7 (Annexure). 
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Annexure 

Table 1. List of various dependent and independent Variables  

S.N Description  Symbol   Nature   Dimensions  
1 Anthropometric 

dimensions ratio 

of the operator. 

An Independent  
M0 L0 T0 θ0 Δ0 

2 Weight of the 

operator. 
Wp Independent  

M1 L0 T0 θ0 Δ0 

3 Age of the 

operator. 
AGP Independent  

M0 L0 T1 θ0 Δ0 

4 Experience  EX Independent  M0 L0 T1 θ0 Δ0 

5 Skill rating  SK Independent  M0 L0 T0 θ0 Δ0 

6 Educational 

Qualification  
EDU Independent  

M0 L0 T0 θ0 Δ0 

7 Psychological  

Distress  
PS Independent  

M0 L0 T0 θ0 Δ0 

8 Systolic Blood 

pressure 
SBP Independent  

M0 L0T1 θ0 Δ0 

9 Diastolic  Blood 

pressure    
DBP Independent  

M0 L0 T0 θ0 Δ0 

10 Blood Sugar 

Level during 

Working  

BSG Independent  
M1 L-3 T0 θ0 Δ0 

11 Cutting Tool 

angles ratio.   
CTAR Independent  

M0 L0 T0 θ0 Δ0 

12 Tool nose radius R Independent  M0 L1 T0 θ0 Δ0 

13 Tool overhang 

length 
Lo Independent  

M0 L1 T0 θ0 Δ0 

14 Approach angle Α Independent  M0 L0 T0 θ1 Δ0 

15 Setting angle  Β Independent  M0 L0 T0 θ1 Δ0 

16  Single point 

cutting tool 

Hardness  

BHN Independent  
M0 L0 T0 θ0 Δ0 

17 Lip or Nose  angle 

of tool 
LP Independent  

M0 L0 T0 θ1 Δ0 

18 Wedge angle  WG Independent  M0 L0 T0 θ1 Δ0 

19 Shank Length  LS Independent  M0 L1 T0 θ0 Δ0 

20 Total length of the 

tool  
LT Independent  

M0 L1 T0 θ0 Δ0 

21 Tool shank width   SB Independent  M0 L1 T0 θ0 Δ0 

22 Tool shank Height  SH Independent  M0 L1 T0 θ0 Δ0 

23 Work piece 

hardness  
BHNW Independent  

M0 L0 T0 θ0 Δ0 

24 Weight of the  

raw work piece. 
W Independent  

M1 L0 T0 θ0 Δ0 

25 Ultimate Shear  

stress of the 

workpiece 

material 

σsut Independent  

 M1 L-1 T-2 θ0 Δ0 

26 Density of the 

workpiece 

material  

DST Independent  
M1 L-3 T0 θ0 Δ0 

27 Length of the raw LR Independent  M0 L1 T0 θ0 Δ0 
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workpiece  
28 Diameter of the 

raw workpiece  
DR Independent  

M0 L1 T0 θ0 Δ0 

29 Cutting Speed  VC Independent  M0 L1 T-1 θ0 Δ0 

30 Feed  f  Independent  M0 L1 T0 θ0 Δ0 

31 Depth of cut  D   Independent  M0 L1 T0 θ0 Δ0 

32 Cutting force  FC Independent  M1 L1 T-2 θ0 Δ0 

33 Tangential Force. FT Independent  M1 L1 T-2 θ0 Δ0 

34 Spindle revolution  N Independent  M0 L0 T-1 θ0 Δ0 

35 Machine 

Specification ratio 
MSP Independent  

M0 L0 T0 θ0 Δ0 

36 Power of the 

Machine motor 
HP Independent  

M1 L2 T-3 θ0 Δ0 

37 Weight of the 

machine 
Wm Independent  

M1 L0 T0 θ0 Δ0 

38 Age of the 

machine  
AGM Independent  

M0 L0 T1 θ0 Δ0 

39 Atmospheric 

Humidity  
Φ Independent  

M0 L0 T0 θ0 Δ0 

40 Atmospheric 

Temperature  
DT Independent  

M0 L0 T0 θ0 Δ1 

41 Air Flow Vf Independent  M0 L1T-1 θ0 Δ0 

42 Light Intensity LUX Independent  M1 L0 T-4 θ0 Δ0 

43 Sound level  DB Independent  M0 L0 T0 θ0 Δ0 

44 Human Energy  HE Dependent      M1 L2 T-2 θ0 

Δ0 

 
Table 2. Final Independent and Dependent dimensionless Pi term    

S.N Independent 

dimensionless 

ratio 

 Independent dimensionless ratio  Nature of 

Basic Physical 

Quantities 

1 π1 

 

π1 =   An*SBP*SK*Ag*Wp *SPO2 / DBP*PS*EDU*EX*BSG*D
3
 

 

Machine 

operator  data  

2 π2 
 

π2 = AR * r * β * BHNT * LT*LP*LS  /  α  * LO* SW * SH * WG 

Single point 

cutting tool 

3 π3 

 

π3  =  BHNW  *  W raw* LR * τ  /  D *   FC
 
* DST * DR 

 

Work piece 

material 

4 π4 

 

π4  = f  * FT * N * Tempwp* VB Tool   / VB Machine * FC*VC   

 

Cutting process 

parameters  

5 π5 
 

π5  =   SP * PHP * Wm/c /   AGM* FC
2 

Machine 

Specification 

6 π6 

 

 

π6  =  HUM*DTO *Vf *DB*VC*FC/  LUX*D
3 

 

Working 

environmental 

parameters  

 

7 π  D1 

HE / D * FC       

             

 

Human Energy 
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Table 3.Optimized values of response variables for dry turning operation 

Ferrous and Nonferrous Material Ferrous  material  Nonferrous Material 

Pi 

terms 

Optimum 

Pi term 

Actual Pi 

term 

Pi 

terms 

Optimum 

Pi term 

Actual Pi term  Pi 

terms 

Optimum 

Pi term 

Actual Pi 

term 

 

Z1 -0.43947 0.363521 Z1 -0.24903 0.5636078  Z1 -0.51803 0.3033  

A 14.0243 1.051e+14 A 14.02429 1.0575244e+14  A 14.4894 3.086e+14  

B 2.26068 182.25523 B 4.076405 1.1924153e+4  B 2.26068 182.25  

C 4.34298 2.2069e+4 C 4.544880 3.5065102e+4  C 4.34298 2.2069e+4  

D 0.05754 1.14166845 D 0.057544 1.1416789665  D -0.2424 0.57226  

E 0.1426615 1.3888696 E -6.57764 3.7811205e+6  E -0.18207 0.65755  

F 12.25411 1.7924e+12 F 12.25411 1.7952624e+12  F 12.3491 2.231e+12  

 
Table 4. Sensitivity analysis and Indices of model : 

Ferrous and Nonferrous Material Ferrous  material  Nonferrous Material 

Pi 

terms 

% Change Indices Of 

the Model 

Pi 

terms 

% Change Indices Of the 

Model 

 Pi 

terms 

% Change Indices Of 

the Model 

 

1  
-246.841 0.3855 1  

-377.775 0.3354  1  
-241.939 0.4325  

2  -1.841 0.0179 2  15.027 -0.0459  2  -0.6284 0.0072  
3  -38.837 0.1965 3  -87.2777 0.2389  3  -47.6521 0.2842  
4  1.39869 -0.5341 4  2.296 -0.4968  4  -4.532 -0.5748  
5  0.2759 -0.0425 5  8.822201 0.0167  5  -1.3756 -0.1957  

6  -70.88 0.1271 6  -74.9941 0.0762  6  -75.138 0.1576  

           

 

           Table 5.  Validation results of Human Energy for ferrous and nonferrous materials   

Observation no. Actual HE Calculated HE Linear RSM HE Best Fit RSM HE 

1 2.108342 2.341209952 2.08932038 2.06525036 

2 1.480574 1.769944371 1.61965808 1.60208985 

3 1.219175 1.32941068 1.34772075 1.32940619 

112 1.302734 1.268973805 1.18891511 1.17832362 

113 1.394131 1.443234548 1.31713973 1.32052638 

114 0.875416 0.799882965 0.88476113 0.8771478 

543 2.008643 1.733911788 1.42691473 1.40581341 

544 1.859629 1.474193639 1.24578636 1.2186115 

545 1.441963 1.087552446 0.93264883 0.92527436 

546 1.568178 1.047030012 0.93307735 0.92570911 

 

Table 6.  Validation results of Human Energy for ferrous materials   

Observation no. Actual HE Calculated HE Linear RSM HE Best Fit RSM HE 

1 2.108342 2.312656757 2.072305787 2.092324527 

2 1.480574 1.764998839 1.577008235 1.602256193 

3 1.219175 1.352613804 1.291035487 1.309558257 

120 0.553474 0.761859285 0.887304658 0.874184856 

121 1.042157 1.158164537 1.241405382 1.20736758 

122 0.564315 0.577886868 0.743926694 0.751729989 

327 1.370924 1.376976478 1.269519767 1.283333176 

328 1.680405 1.628207315 1.481675686 1.518130863 

329 1.869484 1.849628546 1.730658899 1.820725949 

330 1.825359 1.86514859 1.723199032 1.818599374 

 

Table 7.  Validation  results of Human Energy for nonferrous materials   

Observation no. Actual HE Calculated HE Linear RSM HE Best Fit RSM HE 

1 1.5209287 1.474108648 1.679254235 1.214397822 

2 1.3209776 1.239505672 1.46949884 1.167146 

3 1.2686133 1.075718646 1.23038785 1.0062123 
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150 0.978344 1.300522795 1.09757583 0.7036245 

151 0.6190832 0.803663269 0.81985509 0.5001718 

152 0.5617708 0.67580369 0.69949915 0.4301079 

150 0.978344 1.300522795 1.09757583 0.7036245 

213 2.0086433 1.723257138 1.59245762 1.4589382 

214 1.8596289 1.433407055 1.39022923 1.2264661 

215 1.4419635 1.182887138 1.01237944 0.9188078 

 

 

                                                                                                                                                     

 
 

Fig 4a. 

 

 
Fig 4b. 
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Fig 4c. 

     Figure 4. Response Surface Model  for Human Energy  (a) For machining ferrous and Nonferrous Materials (b)  

For Machining Ferrous material    (c) For Machining Non Ferrous material  

 

 

   
 

Fig 5a.              

 
 

Fig 5b. 
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Fig 5c. 

Figure 5. Comparison between actual, Calculated, Linear RSM and Beat fit REM for Human Energy (a) For ferrous 

and Nonferrous Materials (b)  For Ferrous material    (c) For Non Ferrous material  

 

 

 
 

Figure 6. Comparison between indices for  Ferrous & Nonferrous, Ferrous and Nonferrous material 

 

 
 

Figure 7. Comparison between Sensitivity for Ferrous & Nonferrous, Ferrous and Nonferrous material 

 

 

 

 

 

-0.8

-0.6

-0.4

-0.2

1E-15

0.2

0.4

0.6

A B C D E F

Comparision between indices for  Human Energy Model   

Ferrous & Nonferrous

Ferrous

Nonferrous

-400

-300

-200

-100

0

100

A B C D E F

Comparision between Sensitivity for  Human Energy Model   

Ferrous & Nonferrous

Ferrous

Nonferrous


