Heat Equation Generated By Two Dimensional l-Difference Operator

1D.Rejin Rose, 2G.Dominic Babu
1Research Scholar, (Reg. No:19113012092003), 2Associate Professor,
1,2Department of Mathematics, Annai Velankanni College,Tholayavattam-629157, Kanyakumari District,
1,2Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli- 627012, Tamil Nadu, India.
1Corresponding Author: rejinrosejustes1980@gmail.com,

Abstract: The heat equation is of fundamental importance in diverse scientific fields. Heat is a form of energy that exists in any material. For example, the temperature in an object changes with time and the position within the object. In this paper Generalized Heat equation generated by two dimensional l-difference operator.

Keywords: Partial difference equation, partial difference operator, discrete heat equation

1. INTRODUCTION

In 1984, Jerzy Popenda [6] introduced the difference operator \(\Delta_\alpha \) defined on \(u(k) \) as
\[
\Delta_\alpha u(k) = u(k+1) - \alpha u(k).
\]
In 1989, Miller and Rose [5] introduced the discrete analogue of the Riemann-Liouville fractional derivative and proved some properties of the inverse fractional difference operator \((21,[3]). \) Several formulas on higher order partial sums on arithmetic, geometric progressions and products of n-consecutive terms of arithmetic progression have been derived in [7].

In 2011, M.Maria Susai Manuel, et.al, [4] extended the operator \(\Delta_\alpha \) to generalized \(\alpha \)-difference operator as \(\Delta_{\alpha(l)}(k) = v(k + l) - \alpha v(k) \) for the real valued function \(v(k) \). The generalized difference operator with \(n \)-shift values \(l = (l_1, l_2, l_3, \ldots, l_n) \neq 0 \) on a real valued function \(v(k) : \mathbb{R}^n \rightarrow \mathbb{R} \) is defined as
\[
\Delta_{\alpha(l)}(k) = v(k_1 + l_1, k_2 + l_2, \ldots, k_n + l_n) - v(k_1, k_2, \ldots, k_n).
\]

A linear generalized partial difference equation is of the form \(\Delta_{\alpha(l)}(k) = u(k) \), then the inverse of generalized partial difference equation \(v(k) = \Delta_{\alpha(l)}^{-1}(k) \) is given as
\[
u(k) = v(k_1, k_2, \ldots, k_n)
\]

where \(k=(k_1-rl_1, k_2-rl_2, \ldots, k_n-rl_n) \), is any positive integer. Relation (1.2) is the basic inverse principle with respect to \(\Delta_{\alpha(l)} \).

Partial difference and differential equations take vital role in Heat equation. To reach partial differential equation from Partial difference equation. We need to introduce an operator called generalized two dimensional difference operators which is defined as
\[
\Delta_{\alpha(l_1,l_2,k_1)} = v(k_1 + l_1, k_2 + l_2) - v(k_1, k_2)
\]

For real valued function \(v(k_1, k_2) \) the equation is
\[
f(\Delta_{\alpha(l_1,l_2)}, \Delta_{\alpha(0)}, \Delta_{\alpha(0)}) \ v(k_1,k_2) = 0
\]

1.1. Generalized Discrete Heat equation

Consider the temperature of a very long rod. Assume that the rod is so long that it can be laid on top of the set \(\mathbb{R} \) of real numbers. Let \(v(k_1, k_2) \) be the temperature at the real time \(k_1 \) and real position \(k_2 \) of the rod. At time \(k_1 \) the temperature \(v(k_1, k_2 - l_2) > 0 \) is higher than \(v(k_1, k_2) \). Heat will flow from the point \(k_2 - l_2 \) to \(k_2 \). The amount increase is \(\delta v(k_1, k_2 - l_2) - v(k_1, k_2) \) say \(\delta v(k_1, k_2 - l_2) = \delta (v(k_1, k_2) \prod(k_1, k_2) \) where \(\delta \) is a positive diffusion rate constant.

\[
\nu(k_1, k_2) = \nu(k_1, k_2) = \delta [v(k_1, k_2 - l_2) - v(k_1, k_2)]
\]

Substituting \(\delta \) value in equation (1.3) we get,
\[
\prod(k_1 + l_1, k_2 + l_2) - \prod(k_1, k_2) = \frac{l_1}{l_2}
\]

Equation (1.3) is a model of simple heat equation. Where \(k_1, k_2 \) and \(l_1, l_2 \) are variables and \(l_1, l_2 \) are Parameters, where \(l_1, l_2 \geq 2 \).

Two dimensional heat equation with variable coefficient is defined as
\[
\nu(k_1 + l_1, k_2 + l_2) - \nu(k_1, k_2) = \delta (k_1, k_2)
\]

Substituting \(\delta \) value in equation (1.4) we get,
\[
\prod(k_1 + l_1, k_2 + l_2) - \prod(k_1, k_2) = \frac{l_1}{l_2}
\]

Equation (1.3) is a model of simple heat equation. Where \(k_1, k_2 \) and \(l_1, l_2 \) are variables and \(l_1, l_2 \) are Parameters, where \(l_1, l_2 \geq 2 \).

Two dimensional heat equation with variable coefficient is defined as
\[
\nu(k_1 + l_1, k_2 + l_2) - \nu(k_1, k_2) = \delta (k_1, k_2)
\]

Substituting \(\delta \) value in equation (1.4) we get,
\[
\prod(k_1 + l_1, k_2 + l_2) - \prod(k_1, k_2) = \frac{l_1}{l_2}
\]
Theorem: 1.1.1

From equation (1.3) we have, since $A_{k_1k_2}^{1}$ is linear

$$v(k_1, k_2) = \delta A_{k_1k_2}^{1} [u(k_1, k_2)]$$

Proof: From experimental value, we take $A_{k_1k_2}^{1} v(k_1, k_2) = u(k_1, k_2)$

(1.5)

$$v(k_1, k_2) = \delta \sum_{r=1}^{m} (k_1 - rl_1, k_2)$$

Replace k_1 by $k_1 - rl_1$ in equation (1.5) we get

$$v(k_1, k_2) = \delta \sum_{r=1}^{m} u(k_1 - rl_1, k_2)$$

We have $v(k_1, k_2) = \delta \sum_{r=1}^{m} u(k_1 - rl_1, k_2)$

(1.6)

In equation (1.6) $u(k_1 - rl_1, k_2)$ is obtained by replacing k_1 by $k_1 - rl_1$ in (1.5) and Substituting (1.5) in (1.6) we get,

$$v(k_1, k_2) = \delta \sum_{r=1}^{m} A_{k_1k_2}^{1} [v(k_1 - rl_1, k_2)]$$

(1.7)

Equation (1.7) is a numerical solution of equation (1.3)

Corollary: 1.1.2

From equation (1.4) we have, since $A_{k_1k_2}^{1}$ is linear

$$v(k_1, k_2) = \delta (k_1, k_2) A_{k_1k_2}^{1} [A_{k_1k_2}^{1} v(k_1, k_2)]$$

Proof: Replace δ by $\delta (k_1, k_2)$ in theorem (1.1.1)

Example: 1.1.3

Take $k_1 = 3, k_2 = 4, l_1 = 2, l_2 = 2, m = 2$,

$$\delta = -\frac{1}{m} = -1 \text{ in (1.7)}$$

$$v(k_1, k_2) = \delta \sum_{r=1}^{m} [(k_1 - rl_1 + k_2 - l_2) - (k_1 - rl_1 + k_2)]$$

$$= \delta \sum_{r=1}^{m} \left[(k_1 - rl_1 + k_2 - l_2) - (k_1 - rl_1 + k_2)\right]$$

(1.9)

Theorem: 1.1.4

Let $\delta \in \mathbb{R}, k_1, k_2$ be the variables and l_1, l_2 be the difference operator, then

$$v(k_1, k_2) = \frac{1}{1 - \delta} v(k_1 + ml_1, k_2)$$

(1.10)

Proof: Consider the two dimensiona 1-difference heat equation,

$$v(k_1 + l_1, k_2) - v(k_1, k_2) = \delta \left[v(k_1, k_2 - l_2) - v(k_1, k_2)\right]$$

(1.11)

Substituting (1.9) in (1.8) we get,

$$v(k_1, k_2) = \frac{1}{1 - \delta^2} v(k_1 + 2l_1, k_2)$$

(1.12)

In General,

$$v(k_1, k_2) = \frac{1}{1 - \delta^m} v(k_1 + ml_1, k_2)$$

(1.13)

Corollary: 1.1.5

Let $\delta \in \mathbb{R}, k_1, k_2$ be the variables and l_1, l_2 be the difference operator, then

$$v(k_1, k_2) = \frac{1}{1 - \delta} \prod_{r=1}^{m} \left[(1 - \delta (k_1 + (r - 1)l_1, k_2))\right]$$

(1.14)

Proof: Replace δ by $\delta (k_1, k_2)$ in theorem (1.1.4)

Example: 1.1.6

Take $k_1 = 3, k_2 = 4, l_1 = 2, l_2 = 2, m = 2$,

$$\delta = -\frac{1}{m} = -1 \text{ in (1.13)}$$

$$v(k_1 + k_2) = \frac{1}{1 - \delta^m} \left[(1 - \delta (k_1 + (r - 1)l_1 + k_2))\right]$$

(1.15)

Substituting (1.9) in (1.8) we get,

$$v(k_1, k_2) = \frac{1}{1 - \delta^2} v(k_1 + 2l_1, k_2)$$

(1.16)

In General,

$$v(k_1, k_2) = \frac{1}{1 - \delta^m} v(k_1 + ml_1, k_2)$$

(1.17)

Example: 1.1.7

Take $k_1 = 3, k_2 = 4, l_1 = 2, l_2 = 2, m = 2$,

$$\delta = -\frac{1}{m} = -1 \text{ in (1.13)}$$

$$v(k_1 + k_2) = \frac{1}{1 - \delta^m} \left[(1 - \delta (k_1 + (r - 1)l_1 + k_2))\right]$$

(1.18)

Substituting (1.9) in (1.8) we get,
Theorem: 1.1.7

Let $\delta \in \Re, k_1, k_2$ be the variables and l_1, l_2 be the difference operator, then

$$v(k_1, k_2) = \frac{1}{(1-\delta)} v(k_1 + l_1, k_2)$$

$$- \frac{(1-\delta)^{(m+1)}}{(1-\delta)^{m+1}} v(k_1 + ml_1, k_2 - l_2)$$

$$+ \sum_{r=1}^{m} \frac{\delta^2}{(1-\delta)^{r+1}} v(k_1 + (r-1)l_1, k_2 - 2l_2)$$

Proof:

Consider the two dimensional 1-difference heat equation (1.8), we have

$$v(k_1, k_2) = \frac{1}{(1-\delta)} v(k_1 + l_1, k_2)$$

Replace k_2 by $k_2 - l_2$ in equation (1.8) we get,

$$v(k_1, k_2 - l_2) = \frac{1}{(1-\delta)} v(k_1 + l_1, k_2 - l_2)$$

$$- \frac{(1-\delta)}{(1-\delta)} v(k_1, k_2 - 2l_2)$$

(1.14)

Substituting equation (1.14) in (1.8) we get,

$$v(k_1 + l_1, k_2 - l_2) + \frac{(1-\delta)}{(1-\delta)^{m+1}} v(k_1, k_2 - 2l_2)$$

(1.15)

Replace (k_1, k_2) by $(k_1 + l_1, k_2 - l_2)$ in equation (1.8) we get,

$$v(k_1 + l_1, k_2 - l_2) = \frac{1}{(1-\delta)} v(k_1 + 2l_1, k_2 - l_2)$$

$$- \frac{(1-\delta)}{(1-\delta)} v(k_1 + l_1, k_2 - 2l_2)$$

(1.16)

Substituting equation (1.16) in (1.15) we get,

$$v(k_1 + l_1, k_2) + \frac{\delta^2}{(1-\delta)^2} v(k_1 + 2l_1, k_2 - l_2)$$

$$+ \frac{(1-\delta)}{(1-\delta)^{m+1}} v(k_1 + l_1, k_2 - 2l_2)$$

(1.17)

Corollary: 1.1.8

Let $\delta \in \Re, k_1, k_2$ be the variables and l_1, l_2 be the difference operator, then

$$v(k_1, k_2) = \frac{1}{(1-\delta)} v(k_1 + l_1, k_2)$$

$$- \frac{(1-\delta)}{(1-\delta)^{m+1}} v(k_1 + ml_1, k_2 - l_2)$$

$$+ \sum_{r=1}^{m} \frac{\delta^2}{(1-\delta)^{r+1}} v(k_1 + (r-1)l_1, k_2 - 2l_2)$$

(1.19)

In General,

$$v(k_1, k_2) = \frac{1}{(1-\delta)} v(k_1 + l_1, k_2)$$

$$- \frac{(1-\delta)^{(m+1)}}{(1-\delta)^{m+1}} v(k_1 + ml_1, k_2 - l_2)$$

$$+ \sum_{r=1}^{m} \frac{\delta^2}{(1-\delta)^{r+1}} v(k_1 + (r-1)l_1, k_2 - 2l_2)$$

(1.20)

Example: 1.1.9

Take $k_1 = 3, k_2 = 4, l_1 = 2, l_2 = 2, m = 2$,

$$\delta = -\frac{l_1}{l_2} = -1 \text{ in (1.20)}$$

$$(k_1 + k_2) = \frac{1}{(1-\delta)}(k_1 + l_1 + k_2)$$

$$- \frac{(1-\delta)^{(m+1)}}{(1-\delta)^{m+1}}(k_1 + ml_1 + k_2 - l_2)$$

$$+ \sum_{r=1}^{m} \frac{(1-\delta)^{r+1}}{(1-\delta)^{r+1}}(k_1 + (r-1)l_1 + k_2 - 2l_2)$$

$$3 + 4 = \frac{1}{1 + 1} (3 + 2 + 4)$$

$$- (-1)^{(3 + 4 + 4 - 2)} [(-1)^{(2 + 4 - 4)} + (-1)^{(2 + 4 - 4)}]$$

$$3 + 4 = 4.5 + 1.125 + 0.75 + 0.625$$

2. CONCLUSION:

This equation can be applied in solving the heat flow that is related in science and engineering. The accuracy in using difference method is more reliable rather than using other method. In this paper Generalized Heat equation generated by two dimensional 1-difference operator.

REFERENCES

Variational Problems. Signal Processing, 91, 513-524

