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Abstract. This paper deals with compactness and convergence of

Hausdorff spaces and its subspaces in the real valued domain especially

the functions are in the half range series. Uniqueness of one-point

compactification function and its quadratic nature is also discussed in this

paper. The same is extended into the real uniformed spaces. Convergence

analysis of quadratic function is also arrived in a new manner.
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1. Introduction

Uniformed spaces in topology was gradually revealed its applications in

various fields especially convergence Analysis[3,6]. Despite of independent

character of uniform space it is closely connected with the theory of

topological spaces[2,7]. So the problem of defining and doing research in

uniform spaces are of most important classes of topological spaces [1,5]. In a

Hausdorff space, disjoint compact subspace can be separated by open sets. A

best one point compactification problem is a problem of achieving the

minimum distance between two sets through a function defined on one of the

sets to the other[4,8]. With this logic, we separated the odd and even

function and considered an even function in an uniformed spaces [9].
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2. Preliminaries

Some basic concepts related to even functions are discussed in the following

theorem.

Theorem 2.1. Let θ ≥ 0, 0 < p, q < 2. If g : (X, ‖., .‖) → (X, ‖., .‖) is an

even function such that

‖Tf (x, y), z‖ ≤ θ(‖x, z‖p + ‖y, z‖q) (1)

for each x, y, z ∈ X. Then there exists a unique compact subspaces in the real

line Q : X → X satisfying (2.1) and

‖Q(x)− g(x), z‖ ≤ θ ‖x, z‖q

4− 2q
(2)

for each x, z ∈ X.

Proof: Put x = 0 in (1), we have

‖g(2y)− 4g(y), z‖ ≤ θ ‖y, z‖q (3)

for each y, z ∈ X. Replacing y by x and dividing by 4 in (3), we get∥∥∥∥g(2x)

4
− g(x), z

∥∥∥∥ ≤ θ

4
‖x, z‖q (4)

for each x, z ∈ X. By using induction on n, we get∥∥∥∥g(2nx)

4n
− g(x), z

∥∥∥∥ ≤θ4 ‖x, z‖q
n−1∑
j=0

2(q−2)j

≤θ
4
‖x, z‖q

(
1− 2(q−2)n

1− 2q−2

)
(5)

for each z ∈ X. Therefore
{

g(2nx)
4n

}
is a Cauchy sequence in local compactness,

for each x ∈ X. Since X is a Hausdorff space, the sequence
{

g(2nx)
4n

}
converges

in X, for each x ∈ X. Define Q : X → X as

Q(x) = lim
n→∞

g(2nx)

4n
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for each x ∈ X. By (5), we have

lim
n→∞

∥∥∥∥g(2nx)

4n
− g(x), z

∥∥∥∥ ≤θ4 ‖x, z‖q
(

1

1− 2q−2

)
‖Q(x)− g(x), z‖ ≤θ

4
‖x, z‖q

(
4

4− 2q

)
≤θ ‖x, z‖

q

4− 2q

for each x, z ∈ X. Now we show that Q satisfies (??).

‖TQ(x, y), z‖ = lim
n→∞

1

4n
‖Tf (2nx, 2ny), z‖

≤ lim
n→∞

θ
[
2(p−2)n ‖x, z‖p + 2(q−2)n ‖y, z‖q

]
=0

for each x, y, z ∈ X. Therefore, ‖TQ(x, y), z‖ = 0 for each z ∈ X. So

TQ(x, y) = 0. Since f is an even function we have Q is an even function and

Q is a one-point compactification function.

Next we show that Q is unique. Let Q′ : X → X be another one-point

compactification function which satisfies (2.1) and (2). Since Q and Q′ are

quadratic.

Q(2nx) = 4nQ(x), Q′(2nx) = 4nQ′(x) for each x ∈ X. It follows that

‖Q′(x)−Q(x), z‖ =
1

4n
‖Q′(2nx)−Q(2nx), z‖

≤ 1

4n
[‖Q′(2nx)− f(2nx), z‖+ ‖f(2nx)−Q(2nx), z‖]

≤ 1

4n

2θ ‖2nx, z‖q

2− 2q

=
2θ ‖x, z‖q 2(q−2)n

2− 2q

→ 0 as n→∞

for each x ∈ X.

Hence Q′(x) = Q(x) for each x ∈ X.
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Corollary 2.2. Let θ ≥ 0, r > 0, 0 < p, q < 2, (X, ‖.‖) be a real uniformed

space. If g : (X, ‖.‖)→ (X, ‖., .‖) is an even function satisfying the inequality

‖Tf (x, y), z‖ ≤ θ(‖x‖p + ‖y‖q) ‖z‖r (6)

for each x, y, z ∈ X. Then there exists a unique one-point compactification

function Q : X → X satisfying (6) and

‖Q(x)− g(x), z‖ ≤ θ ‖x‖q ‖z‖r

4− 2q
(7)

for each x, z ∈ X.

Proof: The proof follows from Theorem 2.1 by taking

θ (‖x, z‖p + ‖y, z‖q) = θ (‖x‖p + ‖y‖q) ‖z‖r (8)

for all x, y, z ∈ X which is the desired result.

3. Convergence in uniform continuity

Theorem 3.1. Let θ ≥ 0 with p, q > 2. If g : X → X is an even function

such that

‖Tf (x, y), z‖ ≤ θ(‖x, z‖p + ‖y, z‖q) (9)

for each x, y, z ∈ X. Then there exists a unique quadratic function Q : X → X

satisfying (9) and

‖g(x)−Q(x), z‖ ≤ θ ‖x, z‖q

2q − 4
(10)

for each x, z ∈ X.

Proof: Put x = 0 in (9), we get

‖g(2y)− 4g(y), z‖ ≤ θ ‖y, z‖q (11)

for each y, z ∈ X. Replacing y by x in (11), we get

‖g(2x)− 4g(x), z‖ ≤ θ ‖x, z‖q (12)

for each x, z ∈ X. Replacing x by x
2

in (12), we get∥∥∥f(x)− 4f
(x

2

)
, z
∥∥∥ ≤ θ

∥∥∥x
2
, z
∥∥∥q (13)
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for each x, z ∈ X. By using induction on n, we get∥∥∥g(x)− 4ng
( x

2n

)
, z
∥∥∥ ≤ θ

2q
‖x, z‖q

n−1∑
j=0

2(2−q)j

≤ θ2−q ‖x, z‖q
(

1− 2(2−q)n

1− 22−q

)
(14)

for each x, z ∈ X.

Therefore
{

4ng
(

x
2n

)}
is a Cauchy sequence in X, for each x ∈ X. Since X

is a Hausdorff space, the sequence
{

4ng
(

x
2n

)}
converges in X, for each x ∈ X.

Define Q : X → X as

Q(x) = lim
n→∞

4ng
( x

2n

)
for each x ∈ X. By (14), we have

lim
n→∞

∥∥∥f(x)− 4nf
( x

2n

)
, z
∥∥∥ ≤θ2−q ‖x, z‖q ( 1

1− 22−q

)
‖g(x)−Q(x), z‖ ≤θ2−q ‖x, z‖q

(
2q

2q − 4

)
≤θ ‖x, z‖

q

2q − 4

for each x, z ∈ X.

The rest of the proof is similar to the proof of Theorem 2.1.

Corollary 3.2. Let θ ≥ 0, r > 0 with p, q > 2, (X, ‖.‖) be a real uniformed

space. If f : (X, ‖.‖)→ (X, ‖., .‖) is an even function such that

‖Tf (x, y), z‖ ≤ θ(‖x‖p + ‖y‖q) ‖z‖r (15)

for each x, y, z ∈ X. Then there exists a unique quadratic function Q : X → X

and satisfying (15) and

‖g(x)−Q(x), z‖ ≤ θ ‖x‖q ‖z‖r

2q − 4
(16)

for each x, z ∈ X.

Proof: The proof follows from Theorem 3.1 by taking

θ (‖x, z‖p + ‖y, z‖q) = θ (‖x‖p + ‖y‖q) ‖z‖r (17)

for all x, y, z ∈ X which leads to the expected result.
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Theorem 3.3. Let θ ≥ 0, 0 < p, q < 3. If f : (X, ‖., .‖)→ (X, ‖., .‖) is an odd

function such that

‖Tf (x, y), z‖ ≤ θ(‖x, z‖p + ‖y, z‖q) (18)

for each x, y, z ∈ X. Then there exists a mertic function C : X → X satisfying

(18) and

‖C(x)− g(x), z‖ ≤ θ ‖x, z‖q

8− 2q
(19)

for each x, z ∈ X.

Proof: Put x = 0 in (18), we get

‖g(2y)− 8g(y), z‖ ≤ θ ‖y, z‖q (20)

for each y, z ∈ X. Replacing y by x in (20), we get

‖g(2x)− 8g(x), z‖ ≤ θ ‖x, z‖q (21)

for each x, z ∈ X. Dividing by 8 in (21), we get∥∥∥∥g(2x)

8
− g(x), z

∥∥∥∥ ≤ θ ‖x, z‖q

8
(22)

for each x, z ∈ X. Therefore by using induction on n, we get∥∥∥∥g(2nx)

8n
− g(x), z

∥∥∥∥ ≤ θ

8
‖x, z‖q

n−1∑
j=0

2(q−3)j

≤ θ

8
‖x, z‖q

(
1− 2(q−3)n

1− 2q−3

)
(23)

for each x, z ∈ X. Therefore
{

g(2nx)
8n

}
is a Cauchy sequence in X, for each

x ∈ X. Since X is a Hausdorff space, the sequence
{

g(2nx)
8n

}
converges in X,

for each x ∈ X. Define A : X → X as

C(x) = lim
n→∞

f(2nx)

8n
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for each x ∈ X. By (23), we have

lim
n→∞

∥∥∥∥g(2nx)

8n
− g(x), z

∥∥∥∥ ≤ θ

8
‖x, z‖q

(
1

1− 2q−3

)
‖C(x)− g(x), z‖ ≤ θ

8
‖x, z‖q

(
8

8− 2q

)
≤ θ ‖x, z‖q

8− 2q

for each x, z ∈ X.

The rest of the proof is similar to the proof of Theorem 2.1.

Corollary 3.4. Let θ ≥ 0, r > 0, 0 < p, q < 3, (X, ‖.‖) be a real uniformed

space. If f : (X, ‖.‖)→ (X, ‖., .‖) is an odd function satisfying the inequality

‖Tf (x, y), z‖ ≤ θ(‖x‖p + ‖y‖q) ‖z‖r (24)

for each x, y, z ∈ X. Then there exists a unique inclusion function in topology

C : X → X satisfying (24) and

‖C(x)− g(x), z‖ ≤ θ ‖x‖q ‖z‖r

8− 2q
(25)

for each x, z ∈ X.

Proof: The proof follows from Theorem 3.3 by taking

θ (‖x, z‖p + ‖y, z‖q) = θ (‖x‖p + ‖y‖q) ‖z‖r (26)

for all x, y, z ∈ X. Then we get the desired result.

Theorem 3.5. Let θ ≥ 0, p, q > 3. If g : X → X be an odd function such that

‖Tf (x, y), z‖ ≤ θ(‖x, z‖p + ‖y, z‖q) (27)

for each x, y, z ∈ X. Then there exists a unique cubic function C : X → X

satisfying (27) and

‖g(x)− C(x), z‖ ≤ θ ‖x, z‖q

2q − 8
(28)

for each x, z ∈ X.
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Proof: Put x = 0 in (27) , we get

‖g(2y)− 8g(y), z‖ ≤ θ ‖y, z‖q (29)

for each y, z ∈ X. Replacing y by x in (29), we get

‖g(2x)− 8g(x), z‖ ≤ θ ‖x, z‖q (30)

for each x, z ∈ X. Replacing x by x
2

in (30), we get∥∥∥g(x)− 8g
(x

2

)
, z
∥∥∥ ≤ θ2−q ‖x, z‖q (31)

for each x, z ∈ X. By using induction on n, we get∥∥∥g(x)− 8nf
( x

2n

)
, z
∥∥∥ ≤ θ2−q ‖x, z‖q

n−1∑
j=0

2(3−q)j

≤ θ2−q ‖x, z‖q
(

1− 2(3−q)n

1− 23−q

)
(32)

for each x, z ∈ X.

Therefore
{

8nf
(

x
2n

)}
is a Cauchy sequence in X, for each x ∈ X. Since X

is a Hausdorff space, the sequence
{

8nf
(

x
2n

)}
converges in X, for each x ∈ X.

Define C : X → X as

C(x) = lim
n→∞

8ng(2−nx)

for each x ∈ X. By 32, we have

lim
n→∞

∥∥∥g(x)− 8nf
( x

2n

)
, z
∥∥∥ ≤ θ2−q ‖x, z‖q

(
1

1− 23−q

)
‖g(x)− C(x), z‖ ≤ θ

2q
‖x, z‖q

(
2q

2q − 8

)
≤ θ ‖x, z‖q

2q − 8

for each x, z ∈ X.

The rest of the proof is similar to the proof of Theorem 2.1.

Corollary 3.6. Let θ ≥ 0, r > 0 with p, q > 3, (X, ‖.‖) be a real uniformed

space. If f : (X, ‖.‖)→ (X, ‖., .‖) is an odd function such that

‖Tf (x, y), z‖ ≤ θ(‖x‖p + ‖y‖q) ‖z‖r (33)
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for each x, y, z ∈ X. Then there exists a unique cubic function C : X → X

satisfying (33) and

‖g(x)− C(x), z‖ ≤ θ ‖x‖q ‖z‖r

2q − 8
(34)

for each x, z ∈ X.

Proof: The proof follows from Theorem 3.5 by taking

θ (‖x, z‖p + ‖y, z‖q) = θ (‖x‖p + ‖y‖q) ‖z‖r (35)

for all x, y, z ∈ X. Then we get the desired result.

Theorem 3.7. Let θ ≥ 0, 0 < p < 3, f : X → X be a function satisfying the

inequality

‖Tf (x, y), z‖ ≤ θ(‖x, z‖p + ‖y, z‖p) (36)

for each x, y, z ∈ X. Then there exists a unique quadratic function Q : X → X

and a unique cubic function C : X → X satisfying (36) and

‖f(x)−Q(x)− C(x), z‖ ≤ θ ‖x, z‖p
[

1

4− 2p
+

1

8− 2p

]
(37)

for each x, z ∈ X.

Proof: Let x = y = 0 in (36), we have ‖f(0), z‖ = 0 for each z ∈ X, so we

have f(0) = 0. Define fo : X → X, fe : X → X as

fo(x) = 1
2

[f(x)− f(−x)]

fe(x) = 1
2

[f(x) + f(−x)] .

Then go is an odd function and ge is an even function. Since f(0) = 0. We

have go(0) = ge(0) = 0. Also

‖Dgo(x, y), z‖ ≤ θ (‖x, z‖p + ‖y, z‖p)
‖Dge(x, y), z‖ ≤ θ (‖x, z‖p + ‖y, z‖p)

for each x, y, z ∈ X.
Therefore by Theorem 2.1, there exists a unique quadratic function

Q : X → X satisfying (36) and the inequality.

‖ge(x)−Q(x), z‖ ≤ θ ‖x, z‖p

4− 2p
(38)
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for each x, z ∈ X.
Also by Theorem 3.3, there exists a unique cubic function C : X → X

satisfying (38) and the inequality.

‖go(x)− C(x), z‖ ≤ θ ‖x, z‖p

8− 2p
(39)

for each x, z ∈ X.
Now by (38) and (39), we have

‖g(x)−Q(x)− C(x), z‖ ≤ ‖ge(x)−Q(x), z‖+ ‖go(x)− C(x), z‖

≤
[
θ ‖x, z‖p

4− 2p
+
θ ‖x, z‖p

8− 2p

]
≤ θ ‖x, z‖p

[
1

4− 2p
+

1

8− 2p

]
for each x, z ∈ X.

Corollary 3.8. Let θ ≥ 0, r > 0, 0 < p < 3, (X, ‖.‖) be a real uniformed

space. Suppose f : (X, ‖.‖)→ (X, ‖., .‖) be a function satisfying the inequality

‖Tf (x, y), z‖ ≤ θ(‖x‖p + ‖y‖p) ‖z‖r (40)

for each x, y, z ∈ X. Then there exists a unique quadratic function Q : X → X

and a unique cubic function C : X → X satisfying (40) and

‖f(x)−Q(x)− C(x), z‖ ≤ θ ‖x‖p ‖z‖r
[

1

4− 2p
+

1

8− 2p

]
(41)

for each x, z ∈ X.

Proof: The proof follows from Theorem 3.7 by taking

θ (‖x, z‖p + ‖y, z‖p) = θ (‖x‖p + ‖y‖p) ‖z‖r (42)

for all x, y, z ∈ X. Then we get the desired result.

Theorem 3.9. Let θ ≥ 0, p > 2, f : X → X be a function satisfying the

inequality

‖Tf (x, y), z‖ ≤ θ(‖x, z‖p + ‖y, z‖p) (43)

International Journal of Research in Advent Technology, Vol.7, No.4S, April 2019
                                                      E-ISSN: 2321-9637
                                       Available online at www.ijrat.org

231



for each x, y, z ∈ X. Then there exists a unique quadratic function Q : X → X

and a unique cubic function C : X → X satisfying (43) and

‖f(x)−Q(x)− C(x), z‖ ≤ θ ‖x, z‖p
[

1

2p − 4
+

1

2p − 8

]
(44)

for each x, z ∈ X.

Proof: Let x = y = 0 in (43), we have ‖g(0), z‖ = 0 for each z ∈ X, so we

have f(0) = 0. Define fo : X → X, fe : X → X as

fo(x) = 1
2

[f(x)− f(−x)]

fe(x) = 1
2

[f(x) + f(−x)] .

Then fo is an odd function and fe is an even function. Since g(0) = 0. We

have go(0) = ge(0) = 0. Also

‖Tfo(x, y), z‖ ≤ θ (‖x, z‖p + ‖y, z‖p)
‖Tfe(x, y), z‖ ≤ θ (‖x, z‖p + ‖y, z‖p)

for each x, y, z ∈ X.
Therefore by Theorem 3.1, there exists a unique quadratic function Q : X →

X satisfying (43) and the inequality.

‖ge(x)−Q(x), z‖ ≤ θ ‖x, z‖p

2p − 4
(45)

for each x, z ∈ X.
Also by Theorem 3.5, there exists a unique cubic function C : X → X

satisfying (45) and the inequality.

‖go(x)− C(x), z‖ ≤ θ ‖x, z‖p

2p − 8
(46)

for each x, z ∈ X. Now by (45) and (46), we have

‖g(x)−Q(x)− C(x), z‖ ≤ ‖fe(x)−Q(x), z‖+ ‖fo(x)− C(x), z‖

≤ θ ‖x, z‖p
[

1

2p − 4
+

1

2p − 8

]
for each x, z ∈ X.

Corollary 3.10. Let θ ≥ 0, r > 0, p > 2, (X, ‖.‖) be a real uniformed space.

Suppose f : (X, ‖.‖)→ (X, ‖., .‖) be a function satisfying the inequality

‖Tf (x, y), z‖ ≤ θ(‖x‖p + ‖y‖p) ‖z‖r (47)
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for each x, y, z ∈ X. Then there exists a unique quadratic function Q : X → X

and a unique cubic function C : X → X satisfying (47) and

‖g(x)−Q(x)− C(x), z‖ ≤ θ ‖x‖p ‖z‖r
[

1

2p − 4
+

1

2p − 8

]
(48)

for each x, z ∈ X.

Proof: The proof follows from Theorem 3.9 by taking

θ (‖x, z‖p + ‖y, z‖p) = θ (‖x‖p + ‖y‖p) ‖z‖r (49)

for all x, y ∈ X which leads to an expected result.

4. conclusion

The compactness and convergence of Hausdorff spaces and its subspaces

in the real valued domain are identified in the half range domain. Uniqueness

of one-point compactification function and its quadratic nature is arrived in

this paper and the same is verified in 23. Convergence analysis of quadratic

function along with the cubic nature is optimized.
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