International Journal of Research in Advent Technology, Vol.7, No.4S, April 2019 E-ISSN: 2321-9637 Available online at www.ijrat.org

Characterizations of Bi-Maximal Spaces in Soft Topological Spaces

*D. Vidhya, M. Mariappan and S. Subashini

Department of Mathematics, School of Advanced Sciences, Kalasalingam Deemed University, Krishnankoil. *vidhya.d85@gmail.com

Abstract

This paper investigates the ideas of soft α Bbi-resolvable sets, soft α Bbimaximal spaces, soft α Bsub-maximal spaces and soft α Bbi-resolvable spaces. Some interesting properties and characterizations between them are established.

1 Introduction

Authors [4], [5], [3] and [2] said the concepts of soft sets, applications of soft sets and soft topological spaces. The notions of open sets, closed sets, closure, interior, neighbourhood of a point and seperation axioms are also introduced by soft set and their basic properties are investigated by Muhammad Shabir and Munazza Naz [5]. Zorulutna et al [8] introduced the concepts of soft continuity and soft compactness. They studied relationships between soft topology and fuzzy topology. S. Subashini and D. Vidhya [7] carried out the concept of soft α B-continuous function. This paper analyzes the concept of soft α Bbi-maximal spaces. Also discussed the characterizations and interrelations are investigated.

2 Preliminaries

Definition 2.1. [4] A soft set is a pair (G, ν) over the universal set U, where G is a function $G : \nu \to P(U)$ where $\nu \subseteq E$, E is a parameter.

Definition 2.2. [5] A soft topology is a collection T on X having the following conditions

- (i) Φ, \widetilde{X} belongs to T,
- (ii) $\cup_{j \in A} (J_i, \omega_i) \in T$,

(iii) $\cap_{i \in A}(J_i, \omega_i) \in T$ where A is finite.

(X, T, E) is a soft topological space over X. Every members of T are open sets and its complement are closed sets.

Definition 2.3. [5] If there exists a open set (H, δ) such that $x \in (H, \delta) \subseteq (F, \mu)$ over X then (F, μ) is soft neighborhood of x.

Definition 2.4. [7] The intersection of soft α -open(closed) and soft t-open(closed) is soft αB -open(closed).

Definition 2.5. [1] If every dense set is open then (X, T) is said to be a sub-maximal space.

3 Soft αB bi-maximal Spaces, Soft αB sub-maximal Spaces and Soft αB bi-resolvable Spaces

3.1 Soft αB bi-maximal Spaces

Definition 3.1. A soft set (C, γ) is a soft α B-neighborhood of x, if there exists a α B-open (D, ψ) such that $x \in (D, \psi) \subseteq (C, \gamma)$.

Definition 3.2. x is a soft α B-limit point of (F, μ) , if every soft α B-neighborhood of x intersects (F, μ) in some point other than x itself.

The group of α B-limit points of (F, μ) is a soft α B-derived set of (F, μ) and is represented by $\alpha Bd(F, \mu)$.

Remark 3.1. The following conditions hold in (X, T, E)

(i)
$$\alpha Bd(\Phi) = \Phi, \ \alpha Bd(\widetilde{X}) = \widetilde{X}.$$

- (ii) $\alpha Bd(\bigcup \{A_i/i \in I\}) = \bigcup \{\alpha Bd(A_i)/i \in I\}.$
- (iii) $\alpha Bd(\alpha Bd(G,\varepsilon)) = \alpha Bd(G,\varepsilon).$

Definition 3.3. For any closed set (H, η) , $\alpha Bd(F, \mu) \subseteq (H, \eta)$.

Definition 3.4. If $s \alpha Bcl(I, \theta) \sqcup s \alpha Bcl(I, \theta)' = \widetilde{X}$ for any soft set (I, θ) then (I, θ) is said to be soft αB bi-closure set. The complement of αB bi-closure is αB bi-interior.

Note 3.1. (i) $s \alpha Bcl(F, \mu) \sqcup s \alpha Bcl(F, \mu)'$ denoted by $s \alpha B \mathcal{BC}(F, \mu)$.

(ii) $s \alpha Bint(F,\mu) \sqcap s \alpha Bint(F,\mu)'$ denoted by $s \alpha B \mathcal{BI}(F,\mu)$.

Definition 3.5. Every soft αB bi-closure is soft αB -open then (X, T, E) is αB bi-maximal.

Remark 3.2. (i) $s\alpha B\mathcal{BC}(F,\mu)' = s\alpha B\mathcal{BC}(F,\mu)$.

(ii) $s \alpha B \mathcal{BI}(G, \nu)' = s \alpha B \mathcal{BI}(G, \nu).$

Proposition 3.1. The following conditions are equivalent in (X, T, E).

- (i) A soft αB bi-maximal space.
- (ii) $s\alpha B\mathcal{BC}(J,\omega)$ - (J,ω) is soft αB -closed, for any soft set (J,ω) .
- (iii) For each soft set (J, ω) , if $s\alpha B\mathcal{BI}(J, \omega) = \Phi$, then (J, ω) is soft α B-closed and $\alpha Bd(J, \omega) = \Phi$.
- (iv) $s\alpha B\mathcal{BC}(J,\omega)$ - (J,ω) is soft αB -closed and $\alpha Bd(J,\omega) = \Phi$, for each soft set (J,ω) .

Proof. (ii) \Rightarrow (i) Suppose (J, ω) is a soft αB bi-closure set. Consider,

$$s\alpha B\mathcal{BC}(J,\omega) - (J,\omega) = [s\alpha Bcl(J,\omega) \sqcup s\alpha Bcl(J,\omega)'] \sqcap (J,\omega)'$$
$$= \widetilde{X} \sqcap (J,\omega)'$$
$$= (J,\omega)'.$$

Since $s\alpha B\mathcal{BC}(J,\omega) - (J,\omega)$ then (J,ω) is soft αB -closed, (J,ω) is soft αB -open. Hence (X,T,E) is soft αB bi-maximal.

(i) \Rightarrow (iii) Let $s \alpha B \mathcal{BI}(J, \omega) = \Phi$. Then, $\{s \alpha B \mathcal{BI}(J, \omega)\}' = s \alpha B \mathcal{BC}(J, \omega)' = \widetilde{X}$. Thus, $(J, \omega)'$ is soft αB bi-closure. Since (X, T, E) is αB bi-maximal, $(J, \omega)'$ is soft αB -open set. Then, (J, ω) is a soft αB -closed set and $\alpha B d(J, \omega) = \Phi$.

(iii) \Rightarrow (i) Let (J, ω) be a soft αB bi-closure set. Then,

$$s\alpha B\mathcal{BC}(J,\omega) = \widetilde{X}$$

$$\Rightarrow s\alpha B\mathcal{BI}(J,\omega)' = \Phi.$$

By (iii), $(J, \omega)'$ is soft αB -closed. Thus, (J, ω) is soft αB -open and (i) is soft αB bimaximal.

(iii) \Rightarrow (ii) Let (J, ω) be a soft set. Since by (iii), $s\alpha B\mathcal{BI}(J, \omega) = \Phi$, then $s\alpha B\mathcal{BI}(s\alpha B\mathcal{BC}(J, \omega) - (J, \omega)) = \Phi$. Hence, $s\alpha B\mathcal{BC}(J, \omega) - (J, \omega)$ is a soft αB -closed set.

(ii) \Rightarrow (iii) Suppose, $s \alpha B \mathcal{BI}(J, \omega) = \Phi$. Then,

$$(J,\omega)' = (J,\omega)' \sqcup s\alpha B\mathcal{BI}(J,\omega)$$

= $(J,\omega)' \sqcup [s\alpha B\mathcal{BC}(J,\omega)']'$
= $[(J,\omega) \sqcap s\alpha B\mathcal{BC}(J,\omega)']'$
= $[s\alpha B\mathcal{BC}(J,\omega)' - (J,\omega)']'.$

International Journal of Research in Advent Technology, Vol.7, No.4S, April 2019 E-ISSN: 2321-9637 Available online at www.ijrat.org

Thus $(J, \omega)'$ is soft αB -open set. Hence (J, ω) is a soft αB -closed set. Thus, $\alpha Bd(J, \omega) \sqsubseteq (J, \omega)$. It is enough to prove that $\alpha Bd(s\alpha B\mathcal{BC}(J, \omega)) = \Phi$. Suppose not. Let $x \in s\alpha B\mathcal{BC}(J, \omega)$. Since, $s\alpha B\mathcal{BL}(s\alpha B\mathcal{BC}(J, \omega)) = \Phi$, $s\alpha B\mathcal{BL}(s\alpha B\mathcal{BC}(J, \omega) - \{x\}) = \Phi$. Thus, $(s\alpha B\mathcal{BC}(J, \omega) - \{x\})$ is soft αB -closed and $\{x\} \sqcup s\alpha B\mathcal{BC}(J, \omega)'$ is soft αB -open. But then there is a soft αB -open neighborhood $(M, \vartheta) = \{x\} \sqcup s\alpha B\mathcal{BC}(J, \omega)'$ of x such that $(M, \vartheta) \sqcap$ $(s\alpha B\mathcal{BC}(J, \omega) - \{x\}) = \Phi$. Thus, $x \notin \alpha Bd(s\alpha B\mathcal{BC}(J, \omega))$. It follows that $\alpha Bd(s\alpha B\mathcal{BC}(J, \omega)) = \Phi$. Therefore, $s\alpha Bcl(J, \omega) \sqcup s\alpha Bcl(J, \omega)'$ is soft closed and $\alpha Bd(J, \omega) = \Phi$. (iii) \Rightarrow (iv) Since, $s\alpha B\mathcal{BL}[s\alpha B\mathcal{BC}(J, \omega) - (J, \omega)] = s\alpha Bint[\{s\alpha Bcl(J, \omega) \sqcup s\alpha Bcl(J, \omega)'\} - (J, \omega)] \sqcap$

$$saBbL[saBbc(J,\omega) = (J,\omega)] = saBint[(saBcl(J,\omega) \sqcup saBcl(J,\omega)'] = (J,\omega)]'$$

$$s\alphaBint[(saBcl(J,\omega) \sqcup saBcl(J,\omega)'] = s\alphaBint[(J,\omega) \sqcap \{s\alphaBcl(J,\omega) \sqcup s\alphaBcl(J,\omega)'\}'] \sqcap$$

$$s\alphaBint[(J,\omega) \sqcap \{s\alphaBcl(J,\omega) \sqcup s\alphaBcl(J,\omega)'\}']'$$

$$= s\alphaBint[(J,\omega) \sqcap \{s\alphaBint(J,\omega) \sqcap s\alphaBint(J,\omega)'\}]'$$

$$s\alphaBint[(J,\omega) \sqcap \{s\alphaBint(J,\omega) \sqcap s\alphaBint(J,\omega)'\}]'$$

$$= \Phi \sqcap \widetilde{X}$$

$$= \Phi.$$

By (iii), $s \alpha B \mathcal{BC}(J, \omega) - (J, \omega)$ is soft αB -closed. Hence, $s \alpha B \mathcal{BC}(J, \omega) - (J, \omega)$ is soft αB -closed and $\alpha B d(J, \omega) = \Phi$

(iv) \Rightarrow (i) Let (J,ω) be a soft αB bi-closure set. Then, $s\alpha B\mathcal{BC}(J,\omega) = \widetilde{X}$. Since by (iv), $s\alpha B\mathcal{BC}(J,\omega) - (J,\omega)$ is soft αB -closed, $(J,\omega)'$ is soft αB -closed. Thus (J,ω) is soft αB -open. Hence (X, T, E) is soft αB bi-maximal.

3.2 Soft αB sub-maximal Spaces

Definition 3.6. For any soft set (K, χ) is a soft αB -dense set, if $s \alpha Bcl(K, \chi) = \widetilde{X}$.

Definition 3.7. A soft topological space is said to be αB sub-maximal space if every αB -dense is αB -open.

Proposition 3.2. Prove that the conditions below are equivalent.

- (i) (X, T, E) is αB sub-maximal.
- (ii) $s\alpha Bcl(F,\mu) (F,\mu)$ is soft αB -closed where (F,μ) is any soft set.
- (iii) If $s \alpha Bint(F, \mu) = \Phi$, then (F, μ) is soft αB -closed and $\alpha Bd(F, \mu) = \Phi$ for each soft set (F, μ) .
- (iv) $s \alpha Bcl(F,\mu) (F,\mu)$ is soft αB -closed and $\alpha Bd(F,\mu) = \Phi$, for any soft set (F,μ) .

Proof. This proof is similar to the Proposition 3.1.

3.3 Soft α Bbi-resolvable Spaces

Definition 3.8. If (P, ϱ) and $s \alpha Bint(P, \varrho)'$ are soft αB bi-closure sets then (P, ϱ) is called a αB bi-resolvable set.

Definition 3.9. If each soft αB bi-resolvable set is αB -open then (X, T, E) is αB bi-resolvable.

Proposition 3.3. The conditions (i),(ii) and (iii)are equivalent.

- (i) (X, T, E) is soft αB bi-resolvable space.
- (ii) For every soft set (R, ϵ) , $s \alpha B \mathcal{BC}(R, \epsilon) (R, \epsilon)$ is soft αB -closed.
- (iii) Any soft set (S, ρ) , if $s \alpha B \mathcal{BC}(S, \rho) = \Phi$ and $s \alpha B \mathcal{BI}(s \alpha Bint(S, \rho)') = \Phi$, then (S, ρ) is soft αB -closed and $\alpha B d(S, \rho) = \Phi$.
- (iv) $s \alpha B \mathcal{BC}(R, \epsilon) (R, \epsilon)$ is soft αB -closed and $\alpha B d(R, \epsilon) = \Phi$, for each soft set (R, ϵ) .

Proof. (ii) \Rightarrow (i) Let (R, ϵ) be a soft αB bi-resolvable set. Then (R, ϵ) and $s \alpha Bint(R, \epsilon)'$ is a soft αB bi-closure set. Consider, $s \alpha B \mathcal{BC}(R, \epsilon) - (R, \epsilon) = [s \alpha Bcl(R, \epsilon) \sqcup s \alpha Bcl(R, \epsilon)'] \sqcap$ $(R, \epsilon)' = \widetilde{X} \sqcap (R, \epsilon)' = (R, \epsilon)'$. Since $s \alpha B \mathcal{BC}(R, \epsilon) - (R, \epsilon)$ is soft αB -closed then (R, ϵ) is αB -open. Hence (X, T, E) is αB bi-resolvable.

(i) \Rightarrow (iii) Suppose, $s \alpha B \mathcal{BI}(R, \epsilon) = \Phi$ and $s \alpha B \mathcal{BI}(s \alpha Bint(R, \epsilon)') = \Phi$. Then, $\{s \alpha B \mathcal{BI}(R, \epsilon)\}' = s \alpha B \mathcal{BC}(R, \epsilon)' = \widetilde{X}.$

Thus $(R, \epsilon)'$ is soft αB bi-closure. Since (X, T, E) is αB bi-resolvable, $(R, \epsilon)'$ is αB -open. Then, (R, ϵ) is a soft αB -closed set and $\alpha B d(R, \epsilon) = \Phi$.

 $(iii) \Rightarrow (iv)$

```
\begin{split} &s\alpha B\mathcal{BI}[s\alpha B\mathcal{BC}(S,\rho) - (S,\rho)] \\ &= s\alpha Bint[\{s\alpha Bcl(R,\epsilon) \sqcup s\alpha Bcl(S,\rho)'\} - (S,\rho)] \sqcap \\ &s\alpha Bint[\{s\alpha Bcl(S,\rho) \sqcup s\alpha Bcl(S,\rho)'\}(S,\rho)]' \\ &= s\alpha Bint[(S,\rho) \sqcap \{s\alpha Bcl(S,\rho) \sqcup s\alpha Bcl(S,\rho)'\}'] \sqcap \\ &s\alpha Bint[(S,\rho) \sqcap \{s\alpha Bcl(S,\rho) \sqcup s\alpha Bcl(S,\rho)'\}']' \\ &= s\alpha Bint[(S,\rho) \sqcap \{s\alpha Bint(S,\rho) \sqcap s\alpha Bint(S,\rho)'\}] \sqcap \\ &s\alpha Bint[(S,\rho) \sqcap \{s\alpha Bint(S,\rho) \sqcap s\alpha Bint(S,\rho)'\}]' \\ &= \Phi \sqcap \widetilde{X} \\ &= \Phi. \end{split}
```

Also,

 $s\alpha B\mathcal{BI}[s\alpha Bint(s\alpha B\mathcal{BC}(S,\rho) - (S,\rho))]'$

$$= s\alpha Bint[s\alpha Bint(s\alpha BBC(S,\rho) - (S,\rho))]' \sqcap$$

 $=\Phi$.

By (iii), $s\alpha B\mathcal{BC}(S,\rho) - (S,\rho)$ is a soft αB -closed set and $\alpha Bd(S,\rho) \sqsubseteq (S,\rho)$. It is enough to prove that $\alpha Bd(s\alpha B\mathcal{BC}(S,\rho)) = \Phi$. Suppose not. Let $x \in s\alpha B\mathcal{BC}(S,\rho)$. Since, $s\alpha B\mathcal{BI}(s\alpha B\mathcal{BC}(S,\rho)) = \Phi$, $s\alpha B\mathcal{BI}(s\alpha B\mathcal{BC}(S,\rho)) - \{x\} = \Phi$. Thus, $(s\alpha B\mathcal{BC}(S,\rho) - \varphi)$.

International Journal of Research in Advent Technology, Vol.7, No.4S, April 2019 E-ISSN: 2321-9637

Available online at www.ijrat.org

 $\{x\}$ is soft αB -closed and $\{x\} \sqcup s \alpha B \mathcal{BC}(S, \rho)'$ is soft αB -open. But then there is a soft αB -open neighborhood $U = \{x\} \sqcup s \alpha B \mathcal{BC}(S, \rho)'$ of x such that $U \sqcap (s \alpha B \mathcal{BC}(S, \rho) - \rho)$ $\{x\}$ = Φ . Thus, $x \notin \alpha Bd(s\alpha B\mathcal{BC}(S,\rho))$. It follows that $\alpha Bd(s\alpha B\mathcal{BC}(S,\rho)) = \Phi$. Therefore, $s \alpha Bcl(S, \rho) \sqcup s \alpha Bcl(S, \rho)'$ is soft closed and $\alpha Bd(S, \rho) = \Phi$.

 $(ii) \Rightarrow (iii)$ Suppose $s \alpha B \mathcal{BI}(R, \epsilon) = \Phi$. Then,

$$(R,\epsilon)' = (R,\epsilon)' \sqcup s\alpha B\mathcal{BI}(R,\epsilon)$$
$$= (R,\epsilon)' \sqcup [s\alpha B\mathcal{BC}(R,\epsilon)']'$$
$$= [(R,\epsilon) \sqcap s\alpha B\mathcal{BC}(R,\epsilon)]'.$$

By (ii), $[s\alpha B\mathcal{BC}(R,\epsilon)' - (R,\epsilon)']'$ is soft αB -open set. Hence, (R,ϵ) is soft αB -closed and $\alpha Bd(R,\epsilon) = \Phi$.

(iii) \Rightarrow (i) Let (R, ϵ) be a soft αB bi-resolvable set. Then, (R, ϵ) and $s \alpha Bint(R, \epsilon)'$ are soft αB bi-closure sets. Since, $s \alpha B \mathcal{BC}(R, \epsilon) = \widetilde{X}$ and $s \alpha B \mathcal{BC}(s \alpha Bint(R, \epsilon)') = \widetilde{X}$. Thus, $s \alpha B \mathcal{BI}(R, \epsilon)' = \Phi$. By (iii), $(R, \epsilon)'$ is a αB -closed set. Thus (R, ϵ) is a soft αB -open set. Hence, the space (X, T, E) is soft αB bi-resolvable.

 $Proof(iii) \Rightarrow (ii), (iv) \Rightarrow (i) and (iv) \Rightarrow (iii) is similar to (iii) \Rightarrow (iv), (ii) \Rightarrow (i) and (ii) \Rightarrow (iii)$ respectively.

Interrelations 4

Remark 4.1. The interrelations among the spaces introduced are given clearly in the following diagram and the converses need not to be true as shown in the following Example 4.1, 4.2 and 4.3.

Example 4.1. $X = \{a, b, c\}$ and $E = \{e_1, e_2, e_3\}$ and $\varsigma = \{e_1, e_2\}$. Let F, G, H, Ibe mapping from E to P(X) defined by, $(F,\varsigma) = \{(e_1, \{a\}), (e_2, \{b,c\})\}, (G,\varsigma) =$ $\{(e_1, \{b\}), (e_2, \{a\})\}, (H, \varsigma) = \{(e_1, \{a, b\}), (e_2, \{\phi\})\}, (I, \varsigma) = \{(e_1, \{a, b\}), (e_2, \{\widetilde{X}\})\}$ are soft sets. Then $T = \{\Phi, X, (F, \varsigma), (G, \varsigma), (H, \varsigma), (I, \varsigma)\}$ is a soft topological space. Here (F,ς) is soft αB bi-closure but not a soft αB -dense.

Example 4.2. Let $X = \{a, b, c\}$ and $E = \{e_1, e_2, e_3\}$ and $\nu = \{e_1, e_2\}$. Let F, Gbe mapping from E to P(X) defined by, $(F, \nu) = \{(e_1, \{a\}), (e_2, \{c\})\}, (G, \nu) =$ $\{(e_1, \{b, c\}), (e_2, \{a, b\})\}$, are soft sets over X. $T = \{\Phi, \widetilde{X}, (F, \nu), (G, \nu)\}$ is a soft topological space. Take $(H, \nu) = \{(e_1, \{c\}), (e_2, \{a\})\}$. Here (H, ν) is αB bi-closure but not αB -open. Therefore (X, T, E) is αB sub-maximal but not αB bi-maximal.

International Journal of Research in Advent Technology, Vol.7, No.4S, April 2019 E-ISSN: 2321-9637 Available online at www.ijrat.org

Example 4.3. Let $X = \{a, b, c\}$ and $E = \{e_1, e_2, e_3\}$ and $\kappa = \{e_1, e_2\}$. Let F, G be mapping from E to P(X) defined by the soft sets, $(F, \kappa) = \{(e_1, \{a\}), (e_2, \{c\})\}, (G, \kappa) = \{(e_1, \{b, c\}), (e_2, \{a, b\})\}$. Thus T is $T = \{\Phi, \widetilde{X}, (F, \kappa), (G, \kappa)\}$. For any soft set $(H, \kappa) = \{(e_1, \{c\}), (e_2, \{a\})\}$ is αB bi-closure but not αB -open. (X, T, E) is αB bi-resolvable but not αB bi-maximal.

References

- Arhangelskii A.V and Collins P.J, On submaximal spaces, Topology and its Applications 64(1995)219-241.
- [2] Maji P. K, Biswas R and Roy A. R, An application of soft sets in decision making problems, Computers and Mathematics with Applications, Vol.44(2002), 1077-1083.
- [3] Maji P. K, Biswas R and Roy A. R, *Soft set theory*, Computers and Mathematics with Applications, Vol.45(2003), 555-562.
- [4] Molodtsov D, Soft set theory-First results, Computer and Mathematics with Applications, Vol.37(1999)19-31.
- [5] Muhammad Shabir and Munazza Naz, On soft topological spaces, Computer and Mathematics with Applications, Vol.61(2011)1986-1799.
- [6] Rajendiran R and Thamilselvan M, Properties of g*s* Closure,g*s* Interior and g*s* Derived Sets in Topological Spaces, Applied Mathematical Sciences, Vol.8, No.140(2014)6969-6978.
- [7] Subashini S and Vidhya D, A View on Soft αB-Continuity on Soft Topological Spaces, International Journal of Mathematical Archive, Vol. 9, N0.3, 2018, 206-212.
- [8] Zorlutuna I, Akdag M, Min W.K and Atmaca S, Remarks on soft topological spaces, Annals of Fuzzy Mathematics and Informatics, Vol.3, No.2(2012),171-185.