
International Journal of Research in Advent Technology, Vol.7, No.4S, April 2019 

 E-ISSN: 2321-9637  

Available online at www.ijrat.org 

21 
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Abstract:In this article, we study the existence, uniqueness and stability of  random impulsive semilinear integro-

differential systems. The results are obtained by using the contraction mapping principle. finally an example is given to 

illustrate the applications of the abstract results. 
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1. INTRODUCTION 

   Impulsive differential equation have become more 

important in recent years in some mathematical models 

of processes and phenomena studied in physics, optimal 

control, chemotherapy, biotechnology, population 

dynamics and ecology. There have been much research 

activity concerning the theory of impulsive differential 

equations see [2-6]. The impulses may exists at 

deterministic or random points. There are  lot of papers 

which investigate the properties of deterministic 

impulses see [9] and the references therein. 

   Thus the random impulsive equations gives more 

realistic than deterministic impulsive equations.There are 

few publications in this field,  Wu and Duan  brought 

forword random impulsive ordinary differential 

equations and investigated boundedness of soloutions to 

these models by Liapunov’s direct function in [11] . Wu 

et al, studied some qualitative properties of random 

impulses in [7,8,10].  In [12-14] the author studied the 

existence results for the random impulsive neutral 

functional differential equations and differential 

inclutions with delays. In [13] , the authors generalized 

the distribution of random impulses with the Erlang 

distribution. 

  The stabilities like continuous dependence, Hyers- 

Ulam stability, Hyers- Ulam-Rassias stability, 

exponential stability and asymptotic stability have 

attracted the attention of many mathematicians see [15-

18]. Motivated by the above mentioned works, the main 

purpose of this paper is to study of random impulsive 

semilinear integrodifferential systems. We relaxed the 

Lipchitz condition on the impulsive term and under our 

assumption it is enough to be bounded.  

   This article is organized as follows: In section 2, we 

recall some notations, definitions, concepts of  random 

impulsive semilinear integrodifferential systems, In 

section 3, the assumptions, existence and uniqueness  of 

solutions of  random impulsive semilinear 

integrodifferential systems, In section 4, we study the  

stability of random impulsive semilinear 

integrodifferential systems, In section 5, we provide an 

example to illustrate the applications of the obtained 

result. 

 

2. PRELIMINARIES 

   Let ‖‖ • ‖‖ denote the Euclidean norm in   . If B is a 

vector or a matrix, its transpose is denoted by   ; if b is 

a matrix, its Frobenius norm is represented by  ‖‖ B ‖‖ = 

            
 

 . Let    be the n-dimensional Euclidean 

space and   a nonempty set. Assume that     is a 

random variable defined from   to      (0 ,   ) for all 

k=1,2,…where  0<        . Furthermore, assume that 

    and     are independent with each other as i ≠ j for i,j 

= 1,2,…. Let  ,T   ℛ  be two constants satisfying   < T. 

For the sake of simplicity, we denote     = [      
     We consider semilinear integro- differential systems 

with random impulses of the form  

   (t) = Bx(t) + f (t, x(t) ) +  ∫       
 

 
) ,    t ≠   , t     ,                                 

(2.1 

x(  ) =           x(  
 ) ,  k = 1,2,… ,                                                                 

(2.2) 

        =                                                                                                               

(2.3) 

Where B is a matrix of dimension n    : the functions 

f,g :              ;          →       is a matrix 

valued function for each k = 1,2,…;    =    and    = 

     +     for k = 1,2,…, here         is arbitrary real 

number. Obviously,     =        < … <    < …;  

x(  
 ) =        

     according to their paths with the 

norm  ‖‖ x ‖‖ =           ‖ x(s) ‖  for each t satisfying  

      .  

    Let us denote {        } by the simple counting 

process generated by {  }, that is , {          {   

  }, and denote     the           generated by 

{        }. Then (        }) is a probability space. 

Let   be the Banach space with the norm defined for 

any      ,        =             E        ), where  

    , for any given t       . 
Definition 2.1: For a given T   (     , a stochastic 

process {x(t),         is called a solution to 

equations (2.1)-(2.3) in (        }) , if  
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(i) x(t) is     - adapted; 

(ii) x(t) = ∑    ∏     
 
   

  
   (   )           + 

∑ ∏    
 
   

 
   (   ) ∫       

  

    
[f (s, x(s) ) 

+  ∫       
 

 
)]ds  + ∫       

 

  
[f (s, x(s) ) 

+  ∫       
 

 
)]ds              (t) , t       ,   

(2.4) 

where ∏     
    = 1 as m > n, ∏   

 
   (   ) =       ) 

          )…       ),    (.) is the index function, 

ie.,   (t) = {
          
          

. 

 

 

3. EXISTENCE AND UNIQUENESS 
   In this section we give the existence and 

uniqueness of the system  (2.1) – (2.3). We start 

with thefollowing assumptions, 

(I) The function f satisfies the Lipchitz 

condition. ie; for          and        

there exists a constant L > 0 such that  

E                             , 

E            
 

 
          

                 

(II) The condition         ∏     
 
   (   )   } is 

uniformly bounded if, there is a constant C 

> 0 such that         ∏     
 
   (   )   } 

                      ,j = 1,2,… 

Theorem 3.1 : Let the hypotheses (I) ,(II) hold. If the 

following inequality 

        max{1,   }L         [1+ (      ] < 1 , is 

satisfied , then the (2.1)-(2.3) has a unique solution in   

. 

Proof : Let T be an arbitrary number     < +  . First  

we define the nonlinear operator   :     as follows 

    (t) = ∑    ∏     
 
   

  
   (   )           + 

∑ ∏    
 
   

 
   (   ) ∫       

  

    
[f (s, x(s) ) +  

∫       
 

 
)]ds  + ∫       

 

  
[f (s, x(s) ) +  

∫       
 

 
)]ds              (t) , t       , 

It is easy to prove the continuity of    . Now , we have 

to show that          into itself. 

              ∑     ∏     
 
   

  
               

           ∑   ∏    
 
   

 
           ∫      

  

    

                  ∫       
 

 
         ∫      

 

  

                  ∫       
 

 
                        

  

                           2        ∏            
            

+ 2             ∏              
                                                

 ∫  
 

  
             ∫       

 

 
                    

    

                   2            + 2  max {1,   } 

 ∫  
 

  
             ∫       

 

 
         

                   2            + 2  max {1,   }(t 

    ) ∫  
 

  
             ∫       

 

 
                     

                        + 2  max {1,   }(  

    ∫   
 

  
             ∫       

 

 
       

                                               + 4  max 

{1,   }       ( 
 

 
 

 

 
   + 4  max {1,   }(  

      ∫  
 

  
           ∫      

 

 
     . 

Thus , 

                                         + 

4  max {1,   }       k + 4  max {1,        
     L            E         +                        

           E       for all t       . 

Therefore   maps   into itself. 

Now , we have to show   is a contraction mapping 

                         

∑    
    ∑  ∏     

 
   

 
   (   ) ‖ ∫      

  

    

    [  (      )    ∫       
 

 
)]                

  ∫       
 

 
         ∫          

 

  
              

  ∫       
 

 
                 

  ∫       
 

 
                        

  

                                          ∏           
   

    ∫  
 

  
                ∫       

 

 
                 

  ∫       
 

 
                       

    

                                     max{1,   }(t -      

∫  
 

  
                ∫       

 

 
                 

  ∫       
 

 
     ds 

E                            max{1,   }(t -      

∫   
 

  
                ∫       

 

 
                 

  ∫       
 

 
     ds 

                                    max{1,   }(T -  

     ∫  
 

  
                ∫         

 

 
      

Taking the supremum over t, we get, 

                            max{1,   }[   
     L              +                    ]. 

Thus , 

                         ∆ {               
           },  

Since  0 < ∆ < 1. This shows that the operator  
 satiafies the Contraction mapping principle and 

therefore,   has a unique fixed point which is the 

solution of the system (2.1)- (2.3).  

 

4. STABILITY 

In this section, we study the stability of the system (2.1) 

–(2.3) through the continuous dependence of solutions 

on intial condition. 
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Definition 4.1 : A solution x(s) of the system (2.1) – 

(2.2) with intial value   which satisfies (2.3) is said to be 

stable in the mean square if for all 

                      such that  

              E                  whenever E    ̂    < 

   for all s       ,                     (4.1) 

Where y(s) is another solution of the system (2.1) – (2.2) 

with intial value  ̂ defined in (2.3). 

Theorem 4.1: Let x(t) and  ̅ (t) be solutions of the 

system (2.1) –(2.3) with intial values    and   ̅̅ ̅      

respectively. If the assumptions of theorem 3.1 are 

satisfied, then the solution of the system (2.1) – (2.3) is 

stable in the mean square. 

Proof:  By the assumptions, x and  ̅  are the two 

solutions of the system (2.1) –(2.3) for t       . Then, 

        [ x(t) -   ̅ (t)] =  ∑    ∏     
 
   

  
   (   )            -

   ̅̅ ̅̅    + ∑ ∏    
 
   

 
   (   ) ∫        

  

    
 [f (s, x(s) ) +  

∫       
 

 
)] - [f (s,  ̅ (s)) +  ∫      ̅  

 

 
)] }ds  + ∫     

 

  

    [f (s, x(s) ) +  ∫       
 

 
)] - [f (s,  ̅ (s)  ) +  

∫      ̅  
 

 
)] }ds              (t) 

By using hypotheses (I) , (II), we get  

E          ̅            

∑    ∏            
   

  
            

          ̅̅ ̅̅     

               ] + 2E 

[∑    
    ∑ ∏     

 
   

 
          ∫      

  

    

                      ∫       
 

 
            ̅        

  ∫      ̅  
 

 
           ∫           

 

  
             

  ∫       
 

 
            ̅         

 ∫      ̅  
 

 
                            

  

  2        ∏            
              ̅̅ ̅̅     + 2   

          ∏              
       [∫  

 

  
[  (      )  

∫       
 

 
)]          ̅         

 ∫      ̅  
 

 
                    

  

  2              ̅̅ ̅̅     + 2   max{1,   }(t -  

    [∫   
 

  
[  (      )  ∫       

 

 
)]          ̅         

 ∫      ̅  
 

 
                    

  

           E        ̅          2              ̅̅ ̅̅     

+ 2   max{1,   }(T-     ∫            
 

  
      

 ̅           ∫        ̅  
 

 
      

By applying Grownwall’s inequality, we have 

            E        ̅          2              ̅̅ ̅̅     

exp ( 2   max{1,   }       [1 + (T-     L) 

                                                         ̅̅ ̅̅    . 

Where    2    exp ( 2   max{1,   }       [1 + 

(T-     L) 

 

        Now given               =  
 

 
 such that  

          ̅̅ ̅̅     <    Then  

           E        ̅           . 

Thus, it is apparent that the difference between the 

solution           ̅     in the interval       is small 

provided the change in the intial point (     ) as well as 

in the function   (      )  do not exceed prescribed 

amounts. This completes the proof. 

 

5. APPLICATION 

Let   ̃      be a bounded domain with smooth 

boundary    ̃ . 

{
 
 

 
                    ∫                        

 

  
 

                    
                                                   ̃ 

                                                                            ̃           

                                                                                   ̃ 

                 

              (5.1) 

Let X =    ( ̃) , and    be a random variable defined on 

     (0,     for k = 1,2,…, where 0 <        and 

            is a positive function. Furthermore, 

assume that    follow Erlang distribution, where k = 

1,2,…; and               independent with each other as 

i ≠ j for i,j = 1,2,…; q is a function of k;        ; 

         +    for  k = 1,2,…  and         is an 

arbitrarily given real number . 

  Define B is an operator on X  by Bu = 
   

    with the 

domain 

D(B) = {u   | u and 
  

  
  are absolutely continuous , 

   

                 ̃ } . 

It is well known that B generates a strongly continuous 

semigroup S(s) which is compact, analytic and self 

adjoint. Moreover, the operator B can be expressed as 

B    =  ∑   〈    〉 
           D(B),  

Where         =  
 

 
 
 

 ⁄  sin(n ) , n = 1, 2,…, is the 

orthonormal set of eigenvectors of B and for every 

       
S(s)u = ∑              

    which satisfies        

   (         )  s >    . Hence S(s) is a contraction 

semigroup. 
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