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Abstract- A higher degree precision quadrature rule has been constructed with the problem of determining the
approximated solution of real definite integrals using anti Lobatto five point rule and anti Clenshaw Curtis seven
point rule which has been further compared with another mixed quadrature rule for different integrals with their
anti Gaussian rules. Some numerical examples are provided to illustrate the accuracy and comparison of absolute
error of proposed rule with constituent quadrature rules.

Index Terms- Numerical Integration, Anti-Gaussian quadrature rules, Gaussian quadrature rules, Mixed
quadrature rule, Degree of precision

1. INTRODUCTION

Numerlca_l Integration Is the approximate numerical quadrature rule using an anti Lobatto four point rule.
computation of an integral. Gauss quadrature could be a g i )
wide spread approach to approximate the value of an The proposed work is a comparison with [2] - They
integral determined by a measure with support on the have used only the ant Gaussian with Gaussian rule for
real axis. the mixed quadrature where as we have applied
Dirk P. Laurie [1]W3.S first coined the idea of anti- Gaussian as well as anti Gaussian rule for the mixed
quadrature rule. The Lobatto four point rule and
Gaussian quadrature formula. The (n +1) point Clenshaw Curtis five point Gaussian rule have chosen
formula of anti-Gaussian quadrature rule of for derivation of Lobatto five point rule and Clenshaw

degree (2n —1) integrates the polynomials of degree up Curt_is_sevgn point ar_1ti Gaussian rule each of degree of
precision five respectively.

to (2!‘1 +1) with an error equal in magnitude but of N I o
opposite sign to that of the Gaussian n point formula. It G, = ZW,- f(xj ) (1.1)
meant the application is to evaluate the error occurred i=1

in Gaussian integration by having the distinction of degree (2!‘1 _1)f0rthe integral
between the results occurred from the two formulas.

The anti Gaussian formula has positive weights and the | = f( ) ( )d

nodes within the integration interval and reticulate by __[ XWX jax

the corresponding Gaussian formula. a

The method of mixing quadrature rule is based on GW(”)(p): |(p)1 VpeP?! where PMis the

forming a higher degree precision quadrature rule by .
taking the convex combination of two lower precision SPacé of polynomial of degree not greater than m . If

uadrature rules. The concept of mixed quadrature was ot . . .

q. . P d SO HO = Z/l- f(é’- )IS an anti Gaussian formula for
first introduced by Das and Pradhan [5] Various <!

research work have been done in this area towards the
numerical evaluation of real definite integrals. Among

them, Jena and Nayak [6] has applied mixed

. (n+1) _ (n)
quadrature rule to find the approximate solution of non NYPOthesis 1(p)-H"(p)= _(I (p)-G (p))
linear Fredholm integral equation of second kind, Jena where P defined as polynomial of degree < 2n+1.

and Dash [7]has established mixed quadrature over The organization of the paper is as follows. In
sphere with finite element approach. Dash and Section 2, construction of anti Gaussian Lobatto five
e point has been described. Section 3 contains

construction of anti Gaussian Clenshaw Curtis seven

(1.2)

(n+1) point and G™(p)be n point Gaussian
formula, then by

Das[8],[11] has proposed identification of som

Clenshaw- Curtis rule with Fejer rules and also in point rule and the mixed quadrature rule has been
adaptive field. Tripathy etal. [9]used a mixed formed for different constituent rules in section 4.

quadrature of Lobatto four point rule with Gaussian Numerical results are verified in section 5. Section 6
quadrature for approximate evaluation of real definite has drawn some conclusion.

integrals. Singh and Dash [Z]has formed a mixed
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2. CONSTRUCTION OF ANTI-LOBATTO
FIVE POINT RULE FROM LOBATTO
FOUR POINT RULE

We choose the Lobatto four point rule,

s (F(C1)+ F )+ o
O]

to develop a five point Lobatto rule RH ,°(f )from

four point Lobatto rule LW4(f ) . Using the principle

1(p)~H"(p)=—(1(p)~G"(p)) as adopted
in Dirk. P. Laurie [1], we obtain

j L, (f) (2.2)
alf( 1)+0‘2 (51)+a3 (& )+a, f(&)+

) J‘ ) (2'3)
where

RH, (f)=a, f(-1)+a, f(&)+as f(£,)

+a,f (53)"‘0‘5 f (1)

In order to obtain the unknown weights and nodes, a
rule of precision five has been considered. Since the
rule has been integrated for polynomial of degree seven,
we obtain following system of eight equations having
eight unknowns namely,

a;(j=12,345) &/(j=123) for
f(x)=x'(j=012,34,56,7)
The system of equations are

o+, +ta;+a, +o =2

dx

as (1) x)dx-L,,*

—a, o8 +oé, +a,é +ag =0
—ay + a8 s s +a :g (2.6)
—a, + a2§13 + a3§23 + a4§33 +oa,=0 (2.7)
—a + ol et v +a :% (2.8)

—oy + ,E° s, v as ag =0 (29)
118

6 6 6
—o,+al +os, +tas, tas=——
1 251 352 453 5 525

(2.10)

7 7 7
-, +a,é +aé, +a,é, +a,=0 (2.11)
The solution of above system of equations are

1 245
) =053 =
18 414

054:%,51:\/7 & = \/7 &3 =

o, =0; =—

Hence the anti Lobatto five rule becomes

o] (E)

5] LV

414 ( 23}

+ |, |=

35

()=, 84
RH,’(f)= 59 £(0)

1 ((-1) (2.12)

e )

The error associated with the rule is computed as

1

EH,*(f)=[ f(x)dx—RH,*(f)

-1

525 x 6! 55125 x 8!
348714 ., 0)+

J’_ e —
2358125x10!

3. CONSTRUCTION OF ANTI-CLENSHAW
CURTIS SEVEN POINT RULE FROM
CLENSHAW CURTIS FIVE POINT RULE

We choose the Clenshaw-Curtis five point rule,

D+ F@)+
(4

+f(1

(3.1)

8 +121(0)

7)
and develop a seven point Clenshaw-Curtis

rule RH W7 (f )from five point Clenshaw-Curtis
ruleC,°(f)

Using the principle

I (p)— H ("”)(p) = —(I (p)— G(n)(p)) as adopted
in Dirk. P. Laurie [1] we obtain

I

x)dx-C,°(f)  (3.2)
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a, f(-1)+a, f(&)+a, (&)
+0‘4 f(&)+asf(1)

_2J'

where

(3.3)

x)dx—-C,°(f)
RHW7(f):alf(_l)+a2 f(£)
+ayf(&,)+a, f(&)+as (1)

In order to obtain the unknown weights and nodes, a
rule of precision five has been considered. Since the
rule has been integrated for polynomial of degree seven,
we obtain following system of eight equations having
eight unknowns namely,

a;(j=12345) &/(j=123) for
f(x)=x(j=042,34,5,6,7)
The system of equations are

o, +a,+ay+oa,+og =2

(3.4)

—ay o6 o, taéy +ag =0 (3 5)

2 2 2
—ay a6 tad,” +a,é, +a5——(

N

6)
—al+a2§1 +a3§2 +a4§3 +a,=0 (3 7)
8

- (338)

o v o, é ot vt va, =0 (3.9)
2
105

_0‘1"'0‘251 +a3§2 +054§3 tas =

U'I

6 6 6
—oy s tags, tads tag =

(3.10)
—oy + a8 v ayE, +a,E +as =0 (3.11)

The solution of above system of equations are
o —o 17 a0 —a 392
P13t P R 675!

44 5 5
05427—5,61:\/%, 52:_\/;’ 5320

Hence the anti Clenshaw-Curtis seven point rule
becomes

5

14

o] )

675

(3.12)

The error associated with the rule is computed as
1

EH," ()= [ f(x)dx—RH,,"(f)

-1
. 107
£Vi(0)- £ Vil (0
©) 2205x8! ©)
2897

__2897  tao)..
37730101

4, CONSTRUCTION OF MIXED QUADRATURE

RULE

2
105x 6!

5

ruleRH,, 14

'(1)-

23

35

23

5

In this section we have constructed a mixed quadrature
4.1 Anti-Clenshaw Curtis seven point rule with anti
392 5 J (
+ f
75 135
RH,°(f) J}
69 18

rule taking four constituent rules and error analysis has
been made.
Lobatto five point rule
We have anti-Clenshaw Curtis seven point
>l - |2
675 14
+ 2 10)+ L {1 (-1)+ T}
and the anti Lobatto five rule
2850 B
414
64 1
=5 F0)=={f(-2)+ )}
where RH,”(f )and RH,," () is of degree of
precision fiveand EH,’(f)and EH,"(f) denote
the corresponding errors by the rules RH W5 (f ) and
RH,,'(f )for the integrals I ( f ) respectively. Now

| =RH,°+EH,’ (4.1.2)
| =RH, +EH, (4.1.2)
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By Maclaurin’s expansion of function in equation We have anti_LObattO five point )
(4.1) and (4.2), we have f( 23}
EH,°(f)= 32 g (0) 245 35
525x 6! 414
6208 ¢ vii (413) + f( 23}
Vil 0 1. e
TR 35
348714 X 5 64
—— f*(0)+.... RH C(f)=|+—f 2.
+2358125><10! ( )+ v ( ) " 69 (0) (#.21)
2 i 1
EH, (f)=- f(0)- - {1+ f(
(=2 1() {0+ 1)
107 i
f"(0 414
2205x8! ©) ( )
__2897__¢xo).. I |
37730X10L( ) and Fejer’s five point second rule
Eliminating f"'(0) from i i
. 79 f —ﬁ + f ﬁ
equation (4.1.3)and (4.1.4)We have 2 2
|:2i1[5RHW5(f)+16RHW7(f)] szs(f):% +131(0)
1 5 7 0! f _lj f(lj (4.2.2)
+£[5EHW (f)+16 EH,, (f)] + { > )73
5 7 5 7 - B
|(f): RH,H, (_f )+ EH, HW_ (f) (4'1'5) where the rules RHWS(f)and szs(f) is of
5
RH,°H,"(f)= 1|5RH,’(f) (4.1.6) precision five and EH ,°( )and E,,¢(f )is the

21| +16RH, (1),

o ) ) o errors for the integrals I(f ) due to the rules
which is the estimated mixed rule of precision seven.

The truncated error for the approximation is RH ws(f ) and R, s (f )respectively. Now
5EH,5(f) | —RH° 5
eH.SH,7(f)= L [SEHw (7) (a17) | =RH,TEH, (f) (4.2.1)
21| +16EH,,"(f), 1(f)=Ry5(f)+Eys(F)
EH,°H, (f)= - 22 - 11(0) (4.2.2)
11025x8! Expanding equation (4.2.1) and (4.2.2) by Maclaurin’s
_—995302686 5 f *(0).... expansion, we have
4125x10! ;
EH, ()= =22 £(0)
4.2 Anti Lobatto five point rule with Fejer’s five 525x6!
point second rule . 6208 vil ) (4.2.3)
55125x8! .
N 348714 X (0)+
2358125x10!
_ 3 vi
()= 2 17(0)
f vii 2
+oe = 10) (4.2.4)
P L *(0)....
1408x10!
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Eliminating f‘”(O) from
equation (4.2.3)and (4.2.4) we have

I(f):ﬁ[l792R2f5(f)—315RHW5(f)]

1
+ﬁ[1792 Ezfs(f)—315EHW5(f)]

I(f): R HW5R2f5(f)

. (4.2.5)
+E H,° Ry5(f)
RH, "Ry s (f(f)
1 [1792R,5(f)- (4.2.6)
ZWLﬁRHWF’(f) }

which is the mixed rule of precision seven and the
truncated error for this approximation is

EHWSRZfS(f)

1 [1792E,4(f) (4.2.7)
©1477| -315EH 5(f)
6848
EH,’Rys(f)=— £ (0
v Ras(f) 2326275x8! ©)
2180 _x0)..
207 x10!

4.3 Anti-Clenshaw Curtis seven point rule with
Fejer’s five point second rule
We have anti Clenshaw-Curtis seven point rule

sl ()
+% f(0)+%{f(—1)+ f(l)}

and Fejer’s five point second rule

)
N ® +13f(0)+9{f(—%)+ f[%)}

Where RH " (f)and R, 5(f ) is of precision five

and EH,"(f)and E,s(f)is the error for the
integrals | ( f ) for the rules RH,,"(f) and

R, ( f )respectively. Now
| =RH,  +EH

| =R, +E,¢

RH,,'(f)=

(4.3.2)
(4.3.2)

Expanding equation (4.1) and (4.2) by Maclaurin’s
expansion , we have

2 .
B ()=~ 15 T0)

f viil (0)
2897

- {£X(0)...
37730x10! ( )

3 Vi
E2f5(f) f (0)+

" 2806l
(4.3.4)

1 f viii(o)

45x 8!

Y __£x0)..
1408x10!
Eliminating " (0) from
equation (4.3.3)and (4.3.4) ,we have

1
| :ﬁ[ﬂZ szs(f)+63RHW7(f)]

107
22058!

(4.3.3)

+

1
+ﬁ[112 E,s(f)+63EH,(f)]

I(f): RHW7R2f5(f)

7 (435
+E H, szs(f)

RHW7R2f5(f):%[112 R2f5(f)+63RHW7(f)]
(4.3.6)

which is the mixed rule of precision seven and the
truncated error generated for the approximation is

‘iFleZfS(f) ] (437)

175| +63EH,7(f) |
179

551258

f*(0)....

EH,"Ry1s(f)

EHw7R2f5(f)=

f viii (0)
260557
41503000 10!

4.4 Error Analysis and error bounds of mixed
quadrature rules
Theorem-1

Let the smooth function f(X) is defined on
—~1<x<1, then the error EH °H " () due to the

mixed quadrature rule RH ,°H., " ( f )is given by
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112
EH 5H 7 f)=— £ Vi (o
v ( ) 11025x 8! ( )
230686 ¢y
9904125x10!
Proof:

The proof of theorem follows from equation (4.1.7).

Theorem-2

Let the smooth function f(x) is defined on
—1<x<1, then the error EH R, () due to the

mixed quadrature rule RH ° szs(f )is given by

6848 f viii (O)
2326275x 8!

f *(0)....

Estszs(f)z

2740

+

207 x10!
Proof:
The proof of theorem follows from equation (4.2.7).
Theorem-3

Let the smooth function f(x) is defined on
—~1<x<1, then the error EH 'R, () due to the

mixed quadrature rule RH 'R, . ( f )is given by

7 _ 179 viii
EHW Rars(f)=-ore 5 10)
_ 260557 gy
41503000x101
Proof:

The proof of Theorem follows from equation (4.3.6).

Theorem-4
The truncated error bound for

EH,H, (f)=1(f)-RH,H,"(f) is
64M
105x 6!

evaluated by‘E H,H, (f XS

£(x).

where M = max
—1<x1!

Proof

EH,(f)=

32 vi
f (771 )’

525 61 mel-11]

j () m,e[-11]

EH,H,(f)=

(Conte & Boor [10])

‘EHWSHV[(f)(;

J‘ f VII dX
105 6!

_ 32 (d
105 x 6!
for
some y €[-1, 1]
where |d —C| <2

—c)f"(y)

64 vii
EH,H, ()< oeg )
Hence ‘EH H., (fj adl where
105x% 6!

M = max
—1<x<1l

f vii (X)‘ .
Theorem-5
The truncated error bound for

EHWSRZfS(f)zl(f)_RHWSRZfS(f) is

5 1344M
evaluated by‘ EH,R,s(f )(Sm
where M = max f Vii(XX :
Proof: _
50¢y 32 vi -~
EH, ()= g ) mel-2]]
3 vi
ERZfs(f):280x6! f (772)' 7726[_1’1]
5 _ 672 Vi _fVi
EH, R2f5(f)_51695x6! [f (772) f (771)]
As per Theorem-4,
5 ~L vi _ g
EH Ry (1) = e [17(0)- 1)
672 [ v
~ 51695 6! _Ilf ()
672 vii
= 516056 0 9)1"0)

for some y e[-1, 1]
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where |d —C| <2 exact results than the constituent rules for different
B integrals.
EH., 5p (f 1344 f\,ii( ) The approximate value of the following integrals have
‘ 215 x 51695x 6! been calculated which has given in Table-1.
1 1
Hence ‘EH szs(f)( . 1344M I, = jex dX =2.350402387287603, |, = jexz dx =1
51695x% 6! -
where M = max| f Vii(xj . .4626511745907181 ,
~1<x<1 )
Theorem-6 I, = je‘x dX =0.746824132812427,
The truncated error bound for 0
EH,'R,s(f)=1(f)-RH, 'R, s(f) is 2 sin?
o Rars(F)=1(F) ! 82;;/? ) J' X dx =0.794825180668111,
evaluated by‘EHW7R2f5(f1£— 1 X
6125x 6! 1
where M = max fvn(x)‘ I\/_ X dX =0.666666666666667,
—1<x1l 0
Proof j.. \/_
2 i = | v/ xsin xdx =0.364221932032132
EH, (f)=- £ (m,), el-1g s !
()=o) mel11
1
ER,o(f)=———£%(p,),  me[-11] 17 =]sin\/mxdx =0849726325420498,
280x 6! 0

1
- j X' cos X© dX =0.049121729517639

EHW7R2f5(f):%[fVi(n2)_fVi(ﬂl)] J-In\/—
I =

As per Theorem-4 and Theorem-5,

B Ryps(1) 2 e [£1(0)- 17(0)]

6125 x 6!
1

42 j Y1 (x)dx=

dx =0.181623986723595,

dx =1.980270250563978,

j cosh x
1

4
42 (d—c)f vii(}/ n= J' cosh™ xlog x dx =2.40709642933493
3

" 6125x6! 6125x 6!
forsome » e [_1 1] Table-1(Comparison of absolute error for anti mixed
4 ’ quadrature ruIe(RstHw7(f)) with mixed rule of
where |d —C|SZ Gaussian and anti  Gaussian (Rstzfs(f))
7 84 vii and{R_ 5. . .(f))).
‘EHW RZfS(fXSmf (}/) ( Hw 2f5( ))
84M :
Hence ‘EH szs(fx 6125x 6! | Ere | Bats | Buw | Brwstay Brwiarg Euwrgrs
(F) | () [(f) [(f) | (f) |(F)

where M =max|f"(x).
—1<x<1!

5. Numerical Results I,

In this section some numerical examples are taken t

validate our proposed work. The absolute error shows

solid comparison between different mixed quadratu

rules (RHWSHW7 (f )) (RHWSZfS(f )) an
(RHWSsz(f )) which provides better approximation {

0.00 | 0.000 | 0.000 | 0.000 | 0.0000 | 0.00
0087 | 01544 | 02767 | 00025 | 00075 | 0000
4902 | 13877 | 99203 | 84465 | 51248 | 0822
6950 | 45 75 95 8 8317

@™ o O

o

0.00 | 0.000 | 0.000 | 0.000 | 0.0000 | 0.00
0326 | 05844 | 10765 | 00433 | 01313 | 0001
3044 | 11378 | 89892 | 43685 | 89805 | 3549

o
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1788 | 70 45 00 6 0789
4 1
I 0.00 | 0.000 | 0.000 | 0.000 | 0.0000 | 0.00
0012 | 00213 | 00352 | 00029 | 00079 | 0000
4956 | 05773 | 16722 | 19767 | 98397 | 0957
5367 | 28 35 91 8 6748
3 5
l, 0.00 | 0.000 | 0.000 | 0.000 | 0.0000 | 0.00
0227 | 03939 | 06754 | 00276 | 00776 | 0000
7650 | 70923 | 47352 | 71151 | 16597 | 8980
3667 | 07 97 71 0 3437
4 0
I 0.00 | 0.001 | 0.006 | 0.003 | 0.0003 | 0.00
6073 | 32957 | 52000 | 52160 | 17887 | 1496
2674 | 53161 | 50195 | 68133 | 42099 | 2736
4668 | 37 92 35 6 0425
6
l 0.00 | 0.000 | 0.000 | 0.000 | 0.0000 | 0.00
0304 | 07092 | 18232 | 06639 | 21089 | 0020
5806 | 18388 | 66554 | 63559 | 40112 | 2476
0249 | 63 72 6 1 1909
6 8
I, 0.01 | 0.002 | 0.011 | 0.006 | 0.0005 | 0.00
1050 | 42791 | 73085 | 30457 | 83410 | 2671
1526 | 52683 | 02728 | 00702 | 48677 | 1603
5770 | 85 01 98 6 2644
5 2
g 0.00 | 0.001 | 0.007 | 0.006 | 0.0028 | 0.00
5114 | 41956 | 12085 | 64312 | 13060 | 5836
3904 | 30211 | 61627 | 62418 | 21653 | 7181
9503 | 41 05 31 4 3539
6 7
ly 0.00 | 0.000 | 0.000 | 0.000 | 0.0000 | 0.00
0000 | 00011 | 00021 | OOOOO | OOOO1 | 0000
6534 | 61459 | 10239 | 51994 | 55744 | 0016
3881 | 68 53 85 7 3520
2 3
I, 0.00 | 0.000 | 0.000 | 0.000 | 0.0000 | 0.00
0010 | 00182 | 00338 | 00016 | 00050 | 0000
1431 | 42603 | 06413 | 06839 | 08316 | 0495
798 |13 78 46 4 0429
6
I 0.00 | 0.000 | 0.000 | 0.000 | 0.0000 | 0.00
0000 | 00001 | 00002 | 00000 | OOOOO | 0000
0691 | 22301 | 20113 | 03056 | 09022 | 0000
5276 | 25 93 41 5 9682
5 2

exact

mixed o
X antj mixed
Comparison of exact result with

approximate result for 11
(Fig.-1)
6. CONCLUSION
The efficiency of our proposed rule is a good
agreement with the exact result, which has been drawn
from Table-1 numerically as well as from FIG-1
graphically. Error analysis of these methods besides the
test numerical examples provide a solid foundation to
compare between anti Gaussian-anti Gaussian mixed
quadrature rule and mixed Gaussian-anti Gaussian
quadrature rule for numerical estimation of real definite
integrals. The main advantages of the presented method
is its simple computational evaluations which is wholly
competitive in comparison with the Gaussian methods.
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