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Abstract-  A  higher  degree precision quadrature rule has been constructed with the problem of determining  the 

approximated solution of real definite integrals using anti Lobatto five point rule and anti Clenshaw Curtis seven 

point rule which has been further compared with  another mixed quadrature rule for different integrals with their 

anti Gaussian rules. Some numerical examples are provided to illustrate the accuracy and comparison of absolute 

error of proposed rule with constituent quadrature rules.       

Index Terms- Numerical Integration, Anti-Gaussian quadrature rules, Gaussian quadrature rules, Mixed 
quadrature rule, Degree of precision 

1. INTRODUCTION 

Numerical integration is the approximate numerical 

computation of an integral. Gauss quadrature could be a 

wide spread approach to approximate the value of an 

integral determined by a measure with support on the 

real axis.  

    Dirk P. Laurie  1 was first coined the idea of anti-

Gaussian quadrature formula. The  1n  point 

formula of anti-Gaussian quadrature rule  of 

degree  12 n  integrates the polynomials of degree up 

to  12 n  with an error equal in magnitude but of 

opposite sign to that of the Gaussian n point formula. It 

meant the application is to evaluate the error occurred 

in Gaussian integration by having the distinction  

between the results occurred from the two formulas. 

The anti Gaussian formula has positive weights and the 

nodes within the integration interval and reticulate by 

the corresponding Gaussian formula. 

  The method of mixing quadrature rule is based on 

forming a higher degree precision quadrature rule  by 

taking  the convex combination of two lower precision 

quadrature rules. The concept of mixed quadrature was 

first introduced by Das and Pradhan  5 . Various 

research work  have  been done in this area towards the 

numerical evaluation of real definite integrals. Among 

them, Jena and Nayak  6  has applied mixed 

quadrature rule to find the approximate solution of non 

linear Fredholm integral equation of second kind, Jena 

and Dash  7 has established mixed quadrature over 

sphere with finite element approach. Dash and 

Das  11[,]8  has proposed identification of some 

Clenshaw- Curtis rule with Fejer rules and also in 

adaptive field. Tripathy etal.  9 used a mixed 

quadrature of  Lobatto four point rule with Gaussian 

quadrature for approximate  evaluation of real definite 

integrals. Singh and Dash  2 has formed a mixed  

 

 

 

quadrature rule using an anti Lobatto four point rule. 

The proposed work is a comparison with  2  . They 

have used only  the ant Gaussian with Gaussian rule for 

the mixed quadrature where as we have applied 

Gaussian as well as anti Gaussian rule for the mixed 

quadrature rule. The Lobatto four point rule and 

Clenshaw Curtis five point Gaussian rule have chosen 

for derivation of  Lobatto five point rule and Clenshaw 

Curtis seven point  anti Gaussian rule each of degree of 

precision five respectively. 
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of degree  12 n for the integral  
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is an anti Gaussian formula  for 

 1n  point and  pG n)(
be n point Gaussian 

formula, then by 

hypothesis         pGpIpHpI nn )()1(  
 

where p  defined  as polynomial of degree 12  n .      

        The organization of  the paper  is as follows. In 

section 2, construction of  anti Gaussian Lobatto five 

point has been described. Section 3 contains 

construction of anti  Gaussian Clenshaw Curtis seven 

point rule and  the  mixed quadrature rule has been 

formed for different constituent rules in section 4. 

Numerical results are verified in section 5. Section 6 

has drawn some conclusion. 
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2. CONSTRUCTION OF ANTI-LOBATTO 

FIVE POINT RULE FROM LOBATTO 

FOUR POINT RULE 

We choose the Lobatto four point rule, 
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to  develop a five point Lobatto rule  fRH w

5
from 

four point Lobatto rule  fLw

4
  . Using  the principle 

          pGpIpHpI nn  1
  as adopted 

in Dirk. P. Laurie  1 , we obtain 
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In order to obtain the unknown weights and nodes, a 

rule of precision five has been considered. Since the 

rule has been integrated for polynomial of degree seven, 

we obtain following system of eight equations having 

eight unknowns namely, 

    3,2,1,5,4,3,2,1  jj jj  for 

   7,6,5,4,3,2,1,0 jxxf j

 
The system of  equations are 
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The solution of  above system of equations are 

 
18

1
51  , 

414

245
32  , 

69
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4  ,
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23
1  ,   

35

23
2  ,   03   

Hence the anti Lobatto five rule becomes 
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The error associated with the rule is computed as 
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 3. CONSTRUCTION OF ANTI-CLENSHAW 

CURTIS SEVEN POINT RULE FROM 

CLENSHAW CURTIS FIVE POINT RULE 

   We choose the Clenshaw-Curtis five point rule, 
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and develop a seven point Clenshaw-Curtis 

rule  fRH w

7
from five point Clenshaw-Curtis 

rule  fCw

5
                                            

Using  the principle 

          pGpIpHpI nn  1
  as adopted 

in Dirk. P. Laurie  1 , we obtain 
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In order to obtain the unknown weights and nodes, a 

rule of precision five has been considered. Since the 

rule has been integrated for polynomial of degree seven, 

we obtain following system of eight equations having 

eight unknowns namely, 

   3,2,1,5,4,3,2,1  jj jj  for 

   7,6,5,4,3,2,1,0 jxxf j

 
The system of equations are 
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The solution of  above system of equations are 

 
135
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51  , 
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392
32  , 

75

44
4  ,

14

5
1  ,   

14

5
2  ,   03   

Hence the anti Clenshaw-Curtis seven point rule 

becomes 

      

    







































































































11
135

17

0
75

44

14

5

14

5

675

392

7

ff

f

f

f

fRH w          12.3                                                                 

The error associated with the rule is computed as 
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4. CONSTRUCTION OF MIXED QUADRATURE 

RULE 

In this section we have constructed a mixed quadrature 

rule taking four constituent rules and error analysis has 

been made. 

4.1 Anti-Clenshaw Curtis seven point rule with anti 

Lobatto five point rule 

We have anti-Clenshaw Curtis seven point 

rule  
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and the anti Lobatto five rule 
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where  fRH w

5
and  fRH w

7
 is of  degree of 

precision five and   fEH w

5
and  fEH w

7
 denote 

the corresponding errors by the rules  fRH w

5
 and 

 fRH w

7
for  the integrals  fI  respectively. Now 

55

ww EHRHI                            1.1.4  

77

ww EHRHI                                 2.1.4  
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By Maclaurin’s expansion  of function in equation 

 1.4  and  2.4 , we have 
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Eliminating  0vif  from 

equation  3.1.4 and  4.1.4 we have 
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which is the estimated mixed rule of  precision seven. 

The truncated error for the approximation is 
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4.2 Anti Lobatto five point rule with Fejer’s five 

point second rule 

We have  anti Lobatto five point 
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and  Fejer’s five point second rule 
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where the rules  fRH w

5
and  fR f 52  is of 

precision five and  fEH w

5
and   fE f 52 is the 

errors for the integrals  fI  due to the rules 
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 and  fR f 52 respectively. Now 
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expansion, we have 
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Eliminating  0vif  from 

equation  3.2.4 and  4.2.4 we have 
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which is the  mixed  rule of precision seven and the 

truncated error for this approximation is  
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4.3 Anti-Clenshaw Curtis seven point rule with 

Fejer’s five point second rule 

We have  anti Clenshaw-Curtis seven point rule  
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Where  fRH w

7
and  fR f 52  is of  precision five 

and  fEH w

7
and   fE f 52 is the error  for the 

integrals  fI  for the rules  fRH w

7
 and 

 fR f 52 respectively. Now 
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Eliminating  0vif  from 

equation  3.3.4 and  4.3.4 ,we have 
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which is the mixed rule of precision seven and  the 

truncated error generated  for  the approximation is  
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4.4 Error Analysis and error bounds of mixed 

quadrature rules 

Theorem-1 

Let the smooth function  xf  is defined on 

11  x , then  the error  fHEH ww

75
  due to the 

mixed quadrature rule  fHRH ww

75
is given by 
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Proof:      
      

The proof of theorem follows from equation  7.1.4 . 

Theorem-2 

Let the smooth function  xf  is defined on 

11  x , then  the error  fREH fw 52
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Proof:       

The proof of theorem follows from equation  7.2.4 . 

Theorem-3 
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Proof:       

The proof of Theorem follows from equation  6.3.4 . 
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5. Numerical Results

 In this section some numerical examples are taken to 

validate our proposed work. The absolute error shows  a 

solid comparison between different mixed quadrature 

rules   fR
HwHw 75 ,   fR

fHw 525  and 

  fR
fHw 525  which provides better approximation to 

exact results than  the constituent rules for  different 

integrals. 

 The approximate value of the following integrals have 

been calculated which has given in Table-1. 






1

1

1 dxeI x
=2.350402387287603, 

1
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2

2

dxeI x
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.462651745907181  ,               
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3
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x
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1
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1
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1
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3
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11 logcosh dxxxI =2.40709642933493 

Table-1(Comparison of absolute error for anti mixed 

quadrature rule   fR
HwHw 75  with mixed rule of 

Gaussian and anti Gaussian   fR
fHw 525  

and   fR
fHw 525  ). 
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6. CONCLUSION 

 The efficiency of our proposed rule is a good 

agreement with the exact result, which has been drawn 

from Table-1 numerically as well as from FIG-1 

graphically. Error analysis of these methods besides the 

test numerical examples provide a solid foundation to 

compare between  anti Gaussian-anti Gaussian  mixed 

quadrature rule and mixed Gaussian-anti Gaussian 

quadrature rule for numerical estimation of real definite 

integrals. The main advantages of the presented method 

is its simple computational evaluations which is wholly 

competitive in comparison with the Gaussian  methods. 
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