Intrusion Detection System (IDS) Techniques: A Review

Priyanka A. Motekar, Dr. Pradip M. Jawandhiya

M.E (C.S.E.) Scholar, Pankaj Laddhad Institute of Technology and Management Studies, Buldhana-443001, Maharashtra, Sant Gadge Baba Amravati University, Amravati. Email: priyaa.motekar@gmail.com Principal, Pankaj Laddhad Institute of Technology and Management Studies, Buldhana-443001, Maharashtra. Email: pmjawandhiya@rediffmail.com

Abstract- With the speedy enlargement of net in recent years, laptop systems face multiplied variety of security threats. Despite various technological innovations for data assurance, it's still terribly tough to safeguard laptop systems. Therefore, unwanted intrusions happen once the particular computer code systems area unit running. totally different soft computing based mostly approaches are projected to sight electronic network attacks. This paper presents a varied approaches to network intrusion detection like genetic algorithmic program (GA), associate increased higher cognitive process by rule-list i.e. fuzzy classifier and artificial neural network classifier based mostly approach to network intrusion detection. The project conjointly shows the potency of algorithms in terms of your time for classification. These classification rules area unit accustomed notice networking attacks or intrusions. The projected system is applied on KDDCup99 Dataset to yield additional economical and effective classification rules.

Keywords: Genetic Algorithm (GA), Intrusion Detection System (IDS), artificial neural network (ANN), KDD Cup 1999 Dataset, fuzzy classification, computer and network security.

1. INTRODUCTION

The number of intrusions into laptop systems is growing as a result of new automatic hacking tools area unit showing each day, and these tools in conjunction with numerous system vulnerability data area unit simply obtainable on the online. the matter of intrusion detection has been studied extensively in laptop security and has received plenty of attention in machine learning and data processing. Despite increasing awareness of network security, the prevailing solutions stay incapable of totally protective net applications and laptop networks against the threats from ever-advancing cyber-attack techniques like DoS attack and laptop malware. Developing effective and adaptational security approaches, therefore, has become a lot of vital than ever before. the standard security techniques, because the 1st line of security defense, like user authentication, firewall and encryption, area unit short to completely cowl the complete landscape of network security whereas facing challenges from ever-evolving intrusion skills and techniques thence, another line of security defense is very counseled, like Intrusion Detection System(IDS)

Sr.	Paper Name	Authors	Publish	Description	Advantag	Disadvantages
No			ed Year		es	
1	Three Approaches to	Pedro	2010	One of the most	improves	Risk
	Intrusion Detection.	A.		important	the	associated
	Analysis and	Diaz-		responsibilities of	security	with
	Enhancements	Gomez		every company is to	of	maintenance
		and		preserve the integrity,	informatio	
		Dean F.		confidentiality	n systems	
		Hougen		and availability of its		
				data. Many efforts have		
				been made to		
				accomplish this goal:		
				security policies,		
				firewalls, intrusion		

2. LITERATURE SURVEY

-						
				detection systems, anti-		
				standards to		
				configure services in		
				operating systems and		
				networks.		
2			2012		Efficient	Not simple to
	Fitness Function for	FirasAl		Computer network	results	use
	Genetic Algorithm	absi,		usage increased rapidly		
	used in Intrusion	Reyadh		at the last decades, the		
	Detection System	Naoum		their needs by many		
				types of attack		
				depending on the		
				intruder objectives, this		
				encourage the		
				researchers to find more		
				and more solutions to		
				detect those attacks.		
				Intrusion Detection		
				System used to detect		
				Algorithm used to		
				support IDS. Fitness		
				Function is helpful in		
				chromosome evaluation		
				which is a Genetic		
				Algorithm part. The		
				problem is to find a		
				suitable Fitness		
				Function for a		
				to get a solution for		
				Intrusion Detection.		
3	Review On	Saravan	2014	A neural network	The	Costly
	Classification Based	an		model which is the	important	
	On Artificial	Kand S.		branch of artificial	aspects is	
	Neural Networks	Sasithra		intelligence is generally	solving	
				referred to as	classificati	
				artificial neural	on	
				ANN teaches the	are	
				system to execute task	discussed	
				instead of		
				programming		
				computational system		
				to do definite tasks. To		
				perform such tasks,		
				Artificial Intelligence		
				(AI) is generated		
4	Building an intrusion	Moham	2014	In this namer we	reduce the	Unimproved
-	detection system using	med A.	2017	propose a mutual	redundanc	search strategy
	a	Ambus		information based	у	
	filter-based feature	aidi,		algorithm that	-	
	selection algorithm	Xiangji		analytically selects the		
		an He*,		optimal feature for		

				1		
		, Priyada		mutual information		
		rsi		based feature selection		
		Nanda		algorithm can handle		
		and		linearly and nonlinearly		
		, and Thinno		dependent data features		
		Ziliyua				
		n ran,		its effectiveness is		
				evaluated in the cases		
				of network intrusion		
				detection. An Intrusion		
				Detection System		
				(IDS), named Least		
				Square		
				Support Vector		
				Machine based IDS		
				(LSSVM-IDS), is built		
				using the features		
				selected by our		
				proposed feature		
				selection algorithm.		
5	A Software	RenHui	2005	The Internet and local	The	proposed
	Implementation of a	Gong,		area networks are	technique	method
	Genetic Algorithm	Moham		expanding	are cost	worked
	Based Approach to	mad		at an amazing rate in	effective	effectively for
	Network Intrusion	Zulkern		recent years. While we	and	the selected
	Detection	ine,		are	adaptive.	datasets
		Purang		benefiting from the		
		Abolma		convenience that the		
		esumi		new		
				technology has brought		
				us, computer systems		
				are		
				exposed to increasing		
				security threats that		
				originate		
				externally or internally.		
				Different but		
				complementary		
				technologies have been		
				developed and deployed		
				to		
				protect organizations'		
				computer systems		
				against		
				network attacks, for		
				example, anti-virus		
				software,		
				firewall, message		
				encryption, secured		
				network protocols password		
				protection and so on		
				Despite		
				different protection		
				mechanisms. it is nearly		
				impossible to have a		
				completely secured		
				system.		

3. EXISTING SYSTEM

Current network traffic data, which are often huge in size, present a major challenge to IDSs. These "big data" slow down the entire detection process and may lead to unsatisfactory classification accuracy due to the computational difficulties in handling such data. Classifying a huge amount of data usually causes many mathematical difficulties which then lead to higher computational complexity. There are approaches such as artificial neural network classifier and fuzzy classifier techniques in the literature.

4. PROPOSED SYSTEM AND ALGORITHM

The key contributions of our proposed system are listed as follows .

This work proposes totally different classification techniques for intrusion detection system (IDS), named genetic formula (GA), Artificial Neural Network (ANN) and symbolic classification technique for network logic intrusion detection. This work that theoretical analysis of mutual info is introduced to guage the dependence between options and output categories. the foremost relevant options ar maintained and accustomed construct classifiers for several categories.

4.1 Genetic Algorithm (GA) based IDS:

Genetic algorithm is optimization technique based on the principle of evolutions and natural selections. The solution to the problem is encoded in chromosome like data structure and GA evolves population using operators like selection, crossover and mutation [4, 5]. Each parameter in a chromosome is called as gene. Genes are selected according to our problem definition [5]. These are encoded on bits, character or numbers. The set of generated chromosome is called a population. The fitness function is used to calculated "goodness" of each chromosome [4]. The algorithm for GA is given below:

4.2 Artificial Neural Network (ANN):

3.1 Problem Statement:

- 1. Redundant and impertinent options in information have caused a long-term drawback in network traffic classification.
- 2. These options not slow down the method of classification however conjointly forestall a classifier from creating correct selections, particularly once managing huge information.
- 3. Low performance.

We conduct complete experiments on wellknown IDS dataset named KDD Cup ninety nine

for classification. this can be important in evaluating the performance of IDS since KDD dataset is out-of-date and doesn't contain most novel attack patterns in it. additionally, these datasets area unit ofttimes employed in the literature to guage the performance of IDS.

Different from the detection framework planned system that styles just for binary classification; we have a tendency to style our planned framework to think about multiclass classification issues. this is often to indicate the effectiveness and also the practicability of the planned technique for various approaches shoes.

Artificial neural networks (ANN) consider classification as one of the most dynamic research and application areas. ANN is the branch of Artificial Intelligence (AI). The neural network was trained by back propagation algorithm. The different combinations of functions and its effect while using ANN as aclassifier is studied and the correctness of these functions are analyzed for various kinds of datasets. Theback propagation neural network (BPNN) can be used as a highly successful tool for dataset classification with suitable combination of training, learning and transfer functions. When the maximum likelihood method was compared with back propagation neural network method, the BPNN was more accurate than maximum likelihood method. A high predictive ability with stable and well-functioning BPNN is possible. Multi

layer feed-forward neural network algorithm is also used for classification.

4.3 Fuzzy Classifier:

The intrusion detection problem (IDP) is a twoclass classification problem: the goal is to classify patterns of the system behavior in two categories (normal and abnormal), using patterns of known attacks, which belongs to the abnormal class, and patterns of normal behavior. With fuzzy rules, the solution to classification problem is based on fuzzy logic concepts. In fuzzy logic, fuzzy sets define the linguisticnotions, and membership functions define the truth-value of such linguistic expressions.

Figure 3.1 Hierarchical Diagram of Technique used

5. CONCLUSION AND FUTURE WORK

In this paper, a system IDS placed at the network egress points to observe malware infections within the network combined network traffic analysis. It projected 3 completely different approaches for network intrusion detection for KDD Cup ninety nine dataset with algorithm(GA), Artificial genetic neural network(ANN) classifier and fuzzy classifier. The experimental results show that this security approach is possible for the property of the system and is nice at sleuthing malware infections attacks. we tend to additionally evaluated the potency of projected algorithms with relevance time needed for classification.

REFERENCES

- [1] ChSatyaKeerthi N.V.L., Prasanna P.I., Priscilla B.M., "Instuction Detection system Using Genetic Algorithm", Int. Journal of P2P Network rends and Technology, vol.1.no. 2.pp 1-7, 2011.
- [2] Goyal A., Kumar C., "GA-NIDS: A Genetic Algorithm based Network Instruction Detection System", 2008

- [3] Mohammad S. H., MukitMd.A.,BikasMd.A. N.," An Implementation of Intrusion Detection System Using Genetic Algorithm", Int.Journal of Network Security and Its Applications, vol.4 no.2.pp 109-119.
- [4] Jiang M., Munavar M., Reidemeister T., Ward P.,"Efficient Fault Detection and Diagnosis in Complex Software Systems with Information- Theoretic Monitoring"IEEETrans.On Dependable and Secure Computing.Issue 99, 2011.
- [5] ChitturA.,""Model Generation for an Intrusion Detection System Using Genetic Algorithms", 2011.
- [6] Lu W., Traore I.," Detecting New Forms of Network Instruction Using Genetic Programming", Computational Intelligence, vol. 20, pp. 3, Blackwell Publishing, Malden, pp. 475-494, 2004.
- [7] Pedro A. Diaz-Gomez and Dean F. Hougen "Three Approaches to Intrusion Detection Analysis And Enhancements", National Computer And Information Security Conference Acis2006.
- [8] Li W. "Using Genetic Algorithm for Network Intrusion Detection", Proceedings of the

United States Department of Energy Cyber Security Group, 2004.

- [9] Gong R. H., Zulkernine M., Abolmaesumi P.,"A Software Implementation of a Genetic Algorithm Based Approach to Network Intrusion Detection", 2005.
- [10]Alabsi,F., Naoum,R., "Fitness Function for Genetic Algorithm used in Intrusion Detection System", International Journal of Applied Science And Technology. Vol. 2.no 4, 2012.
- [11]Kandeeban,S.S., Rajesh R.S.,"A Mutual Construction For IDS Using GA", Int. Journal of Advance Science And Technology,vol.29, 2011.
- [12]Uppalaiah B., Anand K., Narsimha B., warajS., BharatT., "Genetic Algorithm

Approach to Intrusion Detection System", IJCST vol.3.1,2012.

[13]Owais S.S.J., Kromer P., Snasel V., "Implementing GP on optimizing Boolean and Extended Boolean Queries in IRs withRespectto Users Profiles", Proc. IEEE ICCES'06 Egypt. pp412-417.2006