
International Journal of Research in Advent Technology (IJRAT)

(E-ISSN: 2321-9637)

Special Issue National Conference “CONVERGENCE 2017”, 09
th

 April 2017

24

Towards Effective Bug Triage with Software Data Reduction

Techniques

1
Ms.P.S.Kharche,

2
Dr.P.M. Jawandhiya

1
P.G. Student of CSE, PLITMS, Buldana, India

1
kharche.priyanka8@gmail.com

2
Principal,PLITMS, India

Abstract -Bug triage is an important step in the process of bug fixing. The goal of bug triage is to assign a new-coming bug to the

correct potential developer. The existing bug triage approaches are based on machine learning algorithms, which build classifiers

from the training sets of bug reports. As per literature, need to develop a effective model for doing data reduction on bug data set

which will reduce the scale of the data as well as increase the quality of the data., by reducing the time and cost. Many software

companies spend their most of cost in dealing with these bugs. We are using instance selection and feature selection

simultaneously with historical bug data. To decrease the manual and time cost, text classification techniques are applied to

perform the automatic bug triage.

1. INTRODUCTION

A bug repository plays an important role in managing software

bugs. Many open source software projects have an open bug

repository that allows both developers and users to submit

defects or issues in the software, suggest possible

enhancements, and comment on existing bug reports. The

problem is caused by inadequate or invalid logic. A bug can

be an error, mistake, flaw or fault, which may cause collapse

or variation from usual results. Most bugs are due to human

errors in source code or its design. Software companies spend

over 45 percent of cost in fixing bugs .There are two

challenges related to bug data that may affect the effective use

of bug repositories in software development tasks, namely the

large scale and the low quality. In modern software

development, software repositories are large-scale databases

for storing the output of software development, e.g., source

code, bugs, emails, and specifications. By leveraging data

mining techniques, mining software repositories can uncover

interesting information in software repositories and solve real

world software problems. A bug repository (a typical software

repository, for storing details of bugs), plays an important role

in managing software bugs.. In this paper, bug reports in a bug

repository are called bug data. There are two challenges

related to bug data that may affect the effective use of bug

repositories in software development tasks, namely the large

scale and the low quality. On one hand, due to the daily-

reported bugs, a large number of new bugs are stored in bug

repositories. It is a challenge to manually examine such large-

scale bug data in software development. On the other hand,

software techniques suffer from the low quality of bug data.

Two typical characteristics of low-quality bugs are noise and

redundancy. In traditional software development, new bugs

are manually triaged by an expert developer, i.e., a human

triage. Due to the large number of daily bugs and the lack of

expertise of all the bugs, manual bug triage is expensive in

time cost and low in accuracy. To avoid the expensive cost of

manual bug triage, existing work [1] has proposed an

automatic bug triage approach, which applies text

classification techniques to predict developers for bug reports.

Based on the results of text classification, a human triage

assigns new bugs by incorporating his/her expertise. However,

large-scale and low-quality bug data in bug repositories block

the techniques of automatic bug triage. In this paper, we

address the problem of data reduction for bug triage, i.e., how

to reduce the bug data to save the labor cost of developers and

improve the quality to facilitate the process of bug triage.

Figure 1: Bug Data Reduction

Data reduction for bug triage aims to build a small-scale and

high-quality set of bug data by removing bug reports and

words, which are redundant or non-informative. In our work,

we combine existing techniques of instance selection and

feature selection to simultaneously reduce the bug dimension

and the word dimension. The reduced bug data contain fewer

International Journal of Research in Advent Technology (IJRAT)

(E-ISSN: 2321-9637)

Special Issue National Conference “CONVERGENCE 2017”, 09
th

 April 2017

25

bug reports and fewer words than the original bug data and

provide similar information over the original bug data. We

evaluate the reduced bug data according to two criteria: the

scale of a data set and the accuracy of bug triage. To avoid the

bias of a single algorithm, we empirically examine the results

of four instance selection algorithms and four feature selection

algorithms. Given an instance selection algorithm and a

feature selection algorithm, the order of applying these two

algorithms may affect the results of bug triage. In this paper,

we propose a predictive model to determine the order of

applying instance selection and feature selection. We refer to

such determination as prediction for reduction orders. Drawn

on the experiences in software metrics,1 we extract the

attributes from historical bug data sets. Then, we train a binary

classifier on bug data sets with extracted attributes and predict

the order of applying instance selection and feature selection

for a new bug data set. Experimental results show that

applying the instance selection technique to the data set can

reduce bug reports but the accuracy of bug triage may be

decreased; applying the feature selection technique can

reduce words in the bug data and the accuracy can be

increased. A Software bug is an issue causing a program to

collapse or create unacceptable output. Due to huge number of

daily bugs and lack of skill person of all the bugs, manual

triage is an expensive in time cost and labor cost, low in

precision.

2. LITERATURE REVIEW

Sr. No Title of Paper

Publication

Details

Conclusion / Highlights

of Related Paper Point

wise

Limitation

Point wise in

respective

paper

Remark /

Drawbacks /

Future Scope

1. Finding bugs in

Web applications

using dynamic

test generation

and explicit-State

model checking

Author: Adam

ki ezun, Julian

Dolby, Frank

Tip, Danny Dig,

Year: 2010

find two kinds of failures

in web applications:

1. Execution failures

that are manifested

as crashes or

warnings during

program execution.

2. HTML failures that

occur when the

application

generates

malformed HTML

It cannot handle

the dynamically

generated pages

that are

ubiquitous

We perform an

automated

analysis to

minimize the

size of failure-

inducing inputs.

International Journal of Research in Advent Technology (IJRAT)

(E-ISSN: 2321-9637)

Special Issue National Conference “CONVERGENCE 2017”, 09
th

 April 2017

26

2 Assisting Bug

Rep ort Triage

through

Recommendation

Author: John

Karsten Anvik

Year: 2007

1. Investigated four

types of RDO

recommenders: a

recommender for

who to assign a rep

ort to (RA),

recommenders for

which component

(RC) and sub-

component (RS) to

file a report against,

and a recommender

for which other

project members

may want to be

informed about

progress on this

report (RI).

2. Provides a study of

how triage is

accomplished and

the challenges faced

by triagers for the

project team of a

successful open-

source project.

The appropriate

number needs to

be known in

advance.

Different

projects have

different

quantities of

reports

We further

evaluated the

RA, RC, RS,

and RI

recommenders

in a field study

conducted with

four Eclipse

platform triagers

for the UI

component

3. Towards

graphical models

for text

processing

Author: Charu

C. Aggarwal

Peixiang Zhao

Year 2013

I. The goals is to

design a

representation which

retains at least some

of the ordering

information among

the words in the

document without

losing its flexibility

and efficiency for

data processing.

II. The distance graph

representation

maintains

information about

the relative

placement of words

with respect to each

other.

It will not

explore the

undirected

variation too

extensively

This approach

enables

knowledge

discovery from

text which is not

possible with

the use of a pure

vector-space

representation,

because it loses

much less

information

about the

ordering of the

underlying

words.

International Journal of Research in Advent Technology (IJRAT)

(E-ISSN: 2321-9637)

Special Issue National Conference “CONVERGENCE 2017”, 09
th

 April 2017

27

4. Hyper-Quad-

Tree based K-

Means

Clustering

Algorithm

for Fault

Prediction

Author: Swati

Varade,

Madhav Ingle

Year: 2013

This paper illustrates

hyper quad tree based k-

means algorithm for

software fault prediction.

1. This system

overcomes the

weaknesses in

k-means

algorithm using

Hyper Quad

Tree .

2. Hyper quad tree

works in n-

dimensions

hence it finds

better initial

cluster centers

than former

algorithms.

The user has to

initialize the

number of

clusters which

are very not

easy to identify

in the majority

of the cases.

focused on

automatic

initialization of

number of

clusters now

which is

manually

initialized by the

user

3. RELATED WORKS

As our Knowledge, there is no combination of data reduction

methods in turn to decrease the data scale and upgrade the

exactness of bug triage approach in the illustration. Fu.Y,

Zhu.X, and Li.B [4] investigated to obtain the accurate

prediction model with minimum cost by labeling most

informative instances. In contrast to these papers, our paper

aims to employ the information gain algorithm to develop the

software value of bug data prediction. In this paper, we focus

on the issue of bug data reduction and low in precision of bug

data set. Once a software bug is found, a reporter (typically a

developer, a tester, or an end user) records this bug to the bug

repository. In a bug report, the summary and the description are

two key items about the information of the bug, which are

recorded in natural languages. As their names suggest, the

summary denotes a general statement for identifying a bug

while the description gives the details for reproducing the bug.

A developer, who is assigned to a new bug report, starts to fix

the bug based on the knowledge of historical bug fixing [6], [6].

Presented approach is based on a supervised machine learning

algorithm that is applied to information available in the bug

repository. When a new report arrives, the classifier produced

by the supervised machine learning technique offered a small

number of developers suitable to resolve the report. Typically,

the developer pays efforts to understand the new bug report and

to examine historically fixed bugs as a reference (e.g.,

searching for similar bugs [5] and applying existing solutions to

the new bug [8]). An item status of a bug report is changed

according to the current result of handling this bug until the bug

is completely fixed. Changes of a bug report are stored in an

item history. This bug has been assigned to three developers

and only the last developer can handle this bug correctly.

Changing developers lasts for over seven months while fixing

this bug only costs three days.

4. DATA REDUCTION FOR BUG TRIAGE USING

A.INSTANCE SELECTION

In bug triage, a bug data set is converted into a text matrix with

two dimensions, namely the bug dimension and the word

dimension. In our work, we leverage the combination of

instance selection and feature selection to generate a reduced

bug data set. We replace the original data set with the reduced

data set for bug triage. Instance selection and feature selection

are widely used techniques in data processing. For a given data

set in a certain application, instance selection is to obtain a

subset of relevant instances (i.e., bug reports in bug data) [18]

while feature selection aims to obtain a subset of relevant

features (i.e., words in bug data) [19]. In our work, we employ

the combination of instance selection and feature selection. To

distinguish the orders of applying instance selection and feature

selection, we give the following denotation. Given an instance

selection algorithm IS and a feature selection algorithm FS, we

use FS! IS to denote the bug data reduction, which first applies

FS and then IS; on the other hand, IS! FS denotes first applying

IS and then FS.

 Instance selection methods associated with data mining

tasks such as classification and clustering

International Journal of Research in Advent Technology (IJRAT)

(E-ISSN: 2321-9637)

Special Issue National Conference “CONVERGENCE 2017”, 09
th

 April 2017

28

 It’s a nontrivial process of identifying valid, novel,

potentially useful, and ultimately understandable patterns in

data. Choosing a subset of data to achieve the original

purpose of a data mining application as if the whole data is

used.

 The ideal outcome of instance selection is model

independent.

 B.FEATURE SELECTION

 It select a minimum set of features such that the probability

distribution of different classes given the values for those

features is as close as possible to the original distribution

given the values of all features [1].

 Reduce # of patterns in the patterns, easier to understand.

 Create new attributes that can capture the important

information in a data set much more efficiently than the

original attributes.

 Use the smallest representation which is enough to solve the

task.

5. CONCLUSION AND FUTURE WORK

This paper is the first work of combining feature selection with

instance selection to reduce the training set for the bug triage

problem. The motivation of this work is to reduce the large

scale of the training set and to remove the noisy and redundant

bug reports for bug triage.The experimental results show that

the combinations of CHI and ICF can achieve better accuracy

rates than that without the training set reduction. The results

also indicate that the combination, ICF→CHI, is a good choice

for the training set reduction. In the future work, we plan to

propose a unified approach to merge the tasks of feature

selection and instance selection. In this paper, we focus on the

combinations of the existing algorithms for the training set

reduction. Since each algorithm in the combination is limited

by the other one, it is necessary to develop a unified approach

to integrate feature selection and instance selection. Another

future work is to apply the training set reduction of bug triage

to other tasks to improve the software quality. Since machine

learning becomes one of the powerful tools in software

engineering, the training set reduction can be useful for the

work based on machine learning.

REFERENCES

[1] Jifeng Xuan, He Jiang, Yan Hu, Zhilei Ren, Weiqin Zou,

Zhongxuan Luo, and Xindong Wu,” Towards Effective

Bug Triage with Software Data Reduction Techniques”

ieee transactions on knowledge and data engineering, vol.

27, no. 1, january 2015

[2] J. Anvik, “Automating bug report assignment,” Proc. Intl.

Conf.Software Engineering (ICSE 06), ACM, May 2006,

pp. 937-940.

[3] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this

bug?,”Proc. Intl. Conf. Software Engineering (ICSE 06),

ACM, May 2006,pp. 361-370.

[4] C. C. Aggarwal and P. Zhao, “Towards graphical models

for text processing,” Knowl. Inform. Syst., vol. 36, no. 1,

pp. 1–21, 2013.

[5] K. Balog, L. Azzopardi, and M. de Rijke, “Formal models

for expert finding in enterprise corpora,” in Proc. 29th

Annu. Int. ACM SIGIR Conf. Res. Develop. Inform.

Retrieval, Aug. 2006, pp. 43–50.

 [6] P. S. Bishnu and V. Bhattacherjee, “Software fault

prediction using quad tree-based k-means clustering

algorithm,” IEEE Trans. Knowl. Data Eng., vol. 24, no. 6,

pp. 1146–1150, Jun. 2012.

[7] S. Kim, H. Zhang, R. Wu, and L. Gong, “Dealing with

noise in defect prediction,” in Proc. 32nd ACM/IEEE Int.

Conf. Softw. Eng., May 2010, pp. 481–490.

[8] D. Matter, A. Kuhn, and O. Nierstrasz, “Assigning bug

reports using a vocabulary-based expertise model of

developers,” in Proc. 6th Int. Working Conf. Mining

Softw. Repositories, May 2009, pp. 131–140.

[9] S. Artzi, A. Kie_zun, J. Dolby, F. Tip, D. Dig, A. Paradkar,

and M. D. Ernst, “Finding bugs in web applications using

dynamic test generation and explicitstate model checking,”

IEEE Softw., vol. 36, no. 4, pp.474–494, Jul./Aug. 2010.

[10] J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and

Techniques, 3rd ed. Burlington, MA, USA: Morgan

Kaufmann, 2011.

