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ABSTRACT 
Frequency response analysis is commonly used in the engineering industry to determine the structural 

integrity against harmonically varying loads. For simple structures, hand calculations can be used but with 

an increase in complexity, the hand calculations become infeasible and recourse is made to solution using 

numerical methods typically with the help of commercially available software. But even the most famous 

of the softwares is a black box whose internal working algorithms cannot be verified by the user for 

complicated problems. Hence it is necessary to verify the result, if possible, by some approximate hand 

calculations that provide a sanity check. In this paper, a mathematical model is derived to validate the 

results of the frequency response analysis of the actuator. The analytical model developed, apart from 

validating the frequency response analysis also provides a means for developing the design of the actuator. 

Further, the mathematical case study provided gives some interesting insights into the vibratory behavior of 

the structure. 
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I. INTRODUCTION 

Many structures like aerospace actuators, aircrafts, rotating machinery, etc are required to be resistant to 

harmonic vibratory excitation. Resonance of the structure is usually not accepted, and the structures 

enduring resonance are usually condemned to be redesigned. The resonant frequencies are found by modal 

analysis of the structure and these frequencies are generally required to be avoided in the harmonic loading. 

It must be noted that not all modes are considered but all modes within a band of frequencies. The usual 

approach is to avoid the natural frequencies of all the modes with in this range of frequencies. But it must 

be noted that the bodes plot does not show peaks at all resonant frequencies leading to questioning of the 

correctness of the results obtained. 

The equation of motion for 1-DOF vibration problems is [1] 

 𝑚𝑥 +𝐶𝑥  +𝐾𝑥=𝑓(𝑡) (1) 

Real life structures are continuous systems, but most structures are approximated as multi-DOF semi 

discrete systems which can be evaluated by finite element analysis using computers. For multi-degree of 

freedom systems,  the governing equation of motion becomes 

  [𝑚]{𝑥  +[𝐶]{𝑥  +[𝐾]{𝑥}={𝑓(𝑡)} (2) 
The solution for equation (2) is [2] x = CF(t)+PI(t) 

 x = CF(t)+PI(t) 

the complimentary function (CF) represents the transient response and the particular integral (PI) represents 

the steady state solution. In engineering problems often, only the steady state vibration is considered for 

evaluation of the structural integrity. For a system under harmonic loading the (2) becomes: 

 [𝑚]{𝑥  +[𝐶]{𝑥  +[𝐾]{𝑥}={𝑓}𝑠𝑖𝑛𝜔𝑡 (3) 

For these type of problems, which are often encountered in the industry, it is useful to approximate the 

problem by dividing it into modal responses. Modes are those values of {x} which satisfy the homogeneous 

part of the equation (3): 

 [𝑚]{𝑥  +[𝐶]{𝑥  +[𝐾]{𝑥}=0 (4) 
 

It is found that for the range of values of [c] found in most industrial problems, the solution to (4) is almost 

independent of the [C]. Thus, a solution of acceptable accuracy can be obtained by simplifying the equation 

to: 
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 [𝑚]{𝑥  +[𝐾]{𝑥}=0 (5) 
 

Equation (5) can be solved as an Eigen value problem [2]. The Eigen values are called the natural 

frequencies and the eigen vectors obtained are called the mode-shapes [3]. Each of the modes behaves as an 

independent oscillator and the response of the system is the superposition of responses of all the modes. As 

many modes as the number of independent DOF’s can be found but only a few modes are usually of 

interest in the vibration problems. 

The particular integral for equation (2) can be expressed as [4]: 

{𝑥} = {𝑋0sin(𝜔𝑡 − 𝑝)} (6)  

Where p is the phase difference between the applied force and the resultant displacement. Expressing 

equation (2) in modal coordinates we get, [5] 

𝑀0𝑖 𝜀  + 𝐶𝑜𝑖 𝜀  + 𝐾0𝑖 𝜀 = {𝜑𝑖𝑇 }{𝑓}𝑠𝑖𝑛𝜔𝑡 
Where is the ith mode shape vector and the response of the ith mode is 

 {𝑥𝑖 } = {𝜑𝑖 }𝜀𝑖 
The response of the structure can be split into the individual modal responses. The structural responses can 

be expressed as [5]: 

 
Where, 

 

𝜑1  is the ith mode shape vector and is the ith modal response magnitude. N is the number of significant 

modes. The value of is obtained from the relation: 

 
Where,  

𝑟𝑖 = 𝜔 /𝜔𝑖 is the frequency ratio of the ith mode  

𝜏𝑖 = 𝐶𝑖 /𝐶� 晦𝑖 is the frequency ratio of the ith mode  

𝑐𝑖 is the normalized damping constant for the ith mode  
𝑐𝑐𝑖 is the critical damping coefficient for the ith mode = 2𝑚𝑖𝜔𝑖  

𝜔𝑖 is the natural frequency of the ith mode  
𝜔 is the frequency of excitation  
𝑚𝑖 is the normalized modal mass of the ith mode  
𝑃𝑖 is the phase angle lag of the ith mode  
f is the load vector  

𝑘𝑖 is the normalized modal stiffness of the ith mode  
In case constant damping ratio τ is assumed, 𝜏𝑖 = 𝜏 

 

It must be noted that any load of any orientation at any location and at any frequency excites all the modes 

but different loads excite different modes to varying extents leading to different deformed shapes. 

 

II. INCLINED CANTILEVER WITH 3 DEGREES OF FREEDOM 

The cantilever considered for calculation is inclined at an angle to the direction of the load as shown in 

figure2. The load Fx is along the x-axis with zero y and z components but since the beam is inclined to the 

coordinate system, the loads are transformed to a new coordinate system with x-axis along the axis of the 

beam. 
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Figure 1 Beam with end load 

 

 

 

 

 

 

 

 

 

Figure 2 beam with a coordinate system 

Loads in the transformed co ordinates 

 

 

 

 

 

 

 

 

Figure 3 forces on the beam 

The loads in the new coordinate system are found by transformation and are as follows: Taking top view, 

 
Modal Analysis: 

The stiffness of the system in the three directions of the transformed coordinate system are found from 

beam theory [6]: 

 
The mass at the end of the beam is m. Hence the natural frequencies of the system are: 
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The response of an individual mode can be represented as 𝜑1. 𝜀𝑖 . If the mode shape vector is scaled by a 

factor n, then the new mode-shape vector is n𝜑1. The new modal response can be written as 
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Thus, the modal responses are not affected by the scaling of the mode shape vector. Hence although the 

modal vector gets scaled from one software to another, the dynamic response of the modes and that of the 

structure itself remains unaffected by the scaling. 

The cantilever beam considered is made of steel and has a length of 40 mm, depth 20 mm, width 10 mm 

having a mass of 40 Kg at its free end. An acceleration load of 0.5 G is applied to the structure in the x-

direction. 

 

III. RESULTS 
The displacement and the maximum principal stress were tracked against the exciting frequency and the 

following bode plots were obtained: 

 

Figure 4 Displacement vector sum Vs frequency 

 
Figure 5 Maximum Principal Stress Vs frequency 

The natural frequencies obtained were 140.67 Hz, 175.84 Hz and 562.7 Hz. 



International Journal of Research in Advent Technology, Special Issue, August 2018 

E-ISSN: 2321-9637 

International Conference on “Topical Transcends in Science, Technology and Management” 

(ICTTSTM-2018) 

Available online at www.ijrat.org 

 

24 

 

 
Figure 6 Dynamic magnification factor vs damping ratio 

 
 Figure 7 Maximum Principal Stress Vs frequency for different damping ratios 

 
Figure 8 Maximum displacement Vs frequency for different damping ratios 
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 It can also be noted that that with an increase in the damping ratio, the peak displacement shifts 

further and further away from the resonant frequency. 

 

IV. DISCUSSION 
 It must be noted that the bode plot does not exhibit peaks at all resonant frequencies as shown in 

fig.4. The response of some of the modes is weak leading to no peaks or weak peaks at the resonant 

frequency of the mode. This behaviour becomes more prominent at higher levels of damping as shown in 

fig8. 

 For 1-dof system, from the normalized bode plot is shown in fig.6, it can be seen that for damping 

ratio more than 0.5, the response at the resonant frequency is less than the static displacement and for 

damping ratio more than √2, there are no peaks in the bode plot and the dynamic displacement is always 

lesser than static displacement. The modes also follow the same behaviour.The induced stress is less than 

the yield stress.With an increasing damping ratio the smaller peaks in the bode plot begin to disappear and 

in fact, for damping ratio more than 0.707, there are no peaks in the bode plot and the maximum 

displacement occurs for the zero frequency and is equal to the static displacement. The peak for the second 

resonant frequency is present in the maximum principal stress vs frequency plot but not in the displacement 

vs frequency plot. 

 

V.  DISCUSSION 
 The structural performance of a 3-DOF beam with mass was modelled analytically and the 

structural performance was studied parametrically. It was proven that the scaling of the mode shape vector 

at the time of the mode extraction does not affect the evaluation of the structural performance of the 

system. It was also found that the bode plot for stress can have more peaks than the bode plot for 

displacement. Also, the bode plot does not exhibit peaks at all the resonant frequencies. The matching of 

the natural frequency with the exciting frequency does not cause failure of the system and it is also found 

that the damping causes some of the peaks in the bode plot to disappear and beyond a damping ratio of 

0.707, no peaks are seen in the bode plot. 
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