International Journal of Research in Advent Technology, Special Issue, August 2018 E-ISSN: 2321-9637 International Conference on "Topical Transcends in Science, Technology and Management" (ICTTSTM-2018) Available online at www.ijrat.org

A Study on Classification of Soils for Preparation of Soil Blends to Obtain Maximum Dry Density and Optimum Moisture Content

H.C.M. SWAMY** and Dr. G. PRINCE ARUL RAJ***

*Part time research scholar at "Karunya University" Coimbatore, Tamil Nadu. Sr. Assistant Professor at Alva Institute of Engineering and Technology, Moodbidri, D.K. Swamy8695@gmail.com ** Dean and Professor at Karunya University, Coimbatore, Tamil Nadu.

ABSTRACT

Foundation Design is a necessary evil, because without foundation, without proper sub grade soil no structure exists. The geological formation of earth in the world is very diversified and one place is not matching with the other place. Here we are introducing a concept of soil blends, which replaces the existing unwanted loose and less bearing capacity soils with soil blends. This gives good sub base to support the structure. The availability of soils with good safe bearing capacity and less settlement property is very less. The use of soil stabilization methods like use of cement, chemicals and by using fly ash are costly and not justifiable. So here an attempt is made to obtain a mixture of soils commonly known as soil blends, which replaces unwanted, loose un stabilized soil. The method is safe and cheap compared to any other method, avoiding any environmental effect to the soil strata which is existing. Here four different soils of varying origin and type are taken and blends are prepared and tested for optimum moisture content and dry density. These vales are compared with the places where soils of required density and optimum moisture Content, Dry Density

INTRODUCTION AND METHODOLOGY

Soil is a composite material, as we know it contains three phase. It contains solid particles, water and air. Voids are containing with air or water. In our discussion we are interested to obtain a Soil Blend (mixture of different soils) to obtain a maximum density. This can be done by designing aggregate and a binder. First we take four soil samples A, B, C and D. we define the preliminary properties which are required for soil classification. This can be done by taking the soil individually, Two combinations (70:30) & (30:70), and three combinations ABC (20:20:60) by altering the proportions and four combinations ABCD (25:25:25:25) (See Table 12)The soil is classified based on liquid and plastic limit by using plasticity chart(Table 12). **Results and Tabulations:**

Table 1: Specific Gravity (G)		
Soil Type	Mean Value	
Individual Soil	2.3007	
Two Combination Soil	2.3259	
Three Combination Soil	2.3474	
Four Combination Soil	2.2990	
Average	2.3182	
Table 2: Water Content (w)		
Soil Type	Mean Value	
Individual Soil	2.2529	
Two Combination Soil	2.8595	
Three Combination Soil	2.7473	
Four combination Soil	2.4450	
Average	2.5762	
Table 3: Coefficient of Uniformity (Cu)		
Soil Type	Mean Value	
Individual Soil	3.0913	
Two Combination Soil	2.7650	

International Journal of Research in Advent Technology, Special Issue, August 2018 E-ISSN: 2321-9637 International Conference on "Topical Transcends in Science, Technology and Management" (ICTTSTM-2018)

Available	online	at	www iirat or
Available	omme	uı	<i>www.ijrui.0rg</i>

Three Combination Soil	2.8011
Four combination Soil	2.8
Average	2.864

Table4: Coefficient of Curvature (Cc)		
Soil Type	Mean Value	
Individual Soil	1.2107	
Two Combination Soil	1.3710	
Three Combination Soil	1.2716	
Four combination Soil	1.4286	
Average	1.3205	
Table 5: Plastic	: Limit (WL)	
Soil Type	Mean Value	
Individual Soil	18.0120	
Two Combination Soil	15.0865	
Three Combination Soil	17.3953	
Four combination Soil	17.77	
Average	17.0650	
Table 6: Liquid Limit (LL)		
Soil Type	Mean Value	
Individual Soil	23.7089	
Two Combination Soil	24.9262	
Three Combination Soil	25.6217	
Four combination Soil	22.3833	
Average	24.1593	
Table 7: Flow Index (I _F)		
Soil Type	Mean Value	
Individual Soil	15.5041	
Two Combination Soil	17.1483	
Three Combination Soil	15.2682	
Four combination Soil	18.933	
Average	16.7134	
Table 8: Plastici	ty Index (I _P)	
Soil Type	Mean Value	
Individual Soil	4.2734	
Two Combination Soil	7.3808	
Three Combination Soil	5.9740	
Four combination Soil	4.6133	
Average	5.5595	
Table 9: Toughn	ess Index (I _T)	
Soil Type	Mean Value	
Individual Soil	0.2627	

Soil Type	Mean Value
Individual Soil	0.2627
Two Combination Soil	0.3672
Three Combination Soil	0.4186
Four combination Soil	0.2437
Average	0.3230

Table 10:	Consistency	Index	(CI)	
				-

Soil Type	Mean Value
Individual Soil	4.0854
Two Combination Soil	2.5793
Three Combination Soil	3.2749
Four combination Soil	4.3219

International Journal of Research in Advent Technology, Special Issue, August 2018 E-ISSN: 2321-9637 International Conference on "Topical Transcends in Science, Technology and Management" (ICTTSTM-2018) Available online at www.ijrat.org

Average	3.5654	
Table 11: Liquidity Index (LI)		
Soil Type	Mean Value	
Individual Soil	-2.8679	
Two Combination Soil	-2.0146	
Three Combination Soil	-2.2329	
Four combination Soil	-3.3219	
Average	-2.6093	

	v 6	
Soil	Classification	Name of soil
Α	ML	Low Compressible Silt
В	CL	Low Compressible Soil
С	MI & OI	Medium compressible silt with
		organic matter
D	CL & ML	Low compressible clay and silt
AB(70:30)	CL & ML	Low compressible clay and silt
AB(30:70)	CL	Low compressible Clay
AC (70:30)	CL	Low compressible Clay
AC(30:70)	CL	Low compressible Clay
AD(70:30)	CL	Low compressible Clay
AD(30:70)	CL	Low compressible Clay
BC(70:30)	CL	Low compressible Clay
BC(30:70)	CI	Medium compressible clay
BD(70:30)	ML	Medium compressible silt
BD(30:70)	CL	Low Compressible clay
CD(70:30)	CI	Medium compressible clay
CD(30:70)	CL	Low compressible clay
ABC(20:20:60)	CL	Low compressible clay
ABC(20:60:20)	CL	Low compressible clay
ABC(60:20:20)	ML & OL	Low compressible silt with organic
		matter
ABD(20:20:60)	CL	Low compressible clay
ABD(20:60:20)	CL & ML	Low compressible clay and silt
ABD(60:20:20)	CL	Low compressible clay
BCD(20:20:60)	CL	Low compressible clay
BCD(20:60:20)	ML & OL	Low compressible silt with organic
		matter
BCD(60:20:20)	ML & OL	Low compressible silt with organic
		matter
ACD(20:20:60)	CL	Low compressible clay
ACD(20:60:20)	CL	Low compressible clay
ACD(60:20:20)	CL	Low compressible clay
ABCD(25:25:25:25)	CL & ML	Low compressible clay and silt

Table 12: Classification by using Plasticity Chart

C Represents clay: M Represents silt: O Represents organic matter: L Represents soil with low compressibility: I Represents soil with medium compressibility.

	Fable	13:	Dry	Density	(Yd)
--	--------------	-----	-----	---------	------

Soil Type	Mean Value
Individual Soil	1.8644
Two Combination Soil	1.8452
Three Combination Soil	1.8548
Four combination Soil	1.8925
Average	1.8642

International Journal of Research in Advent Technology, Special Issue, August 2018 E-ISSN: 2321-9637

International Conference on "Topical Transcends in Science, Technology and Management" (ICTTSTM-2018) Available online at www.ijrat.org

Test	Dry Density $(Y_d) g/cm^3$	
Compaction (Experimental)	1.8925	
Core Cutter(Natural Ground)	1.8078	
Sand Replacement (Natural Ground)	1.7706	

Table 14: RESULTS OF DRY DENSITY

DISCUSSION

Soil A is low compressible silt, soil B is low compressible clay, soil C is Medium compressible silt with organic matter and soil D is low compressible clay and silt. When we have two combinations Low compressible clay property is dominated and in three combinations also low compressible clay property is dominating and when we take four combination low compressible clay and silt property, the combination is exhibiting. So from this we come to a conclusion that usually the clay content dominates in the soil property. When the dry density is tested for the individual and combination and its mean value is evaluated and we get 1.8925g/cm³. When we test the required density from good natural ground and also required maximum dry

density from the lab experiments for earthen embankments, pavement sub grades and for other applications it is almost same as we obtain. For natural ground we obtain the maximum dry density as 1.8078 and 1.7706 g/cm³ which is almost same as we obtain from the Blended Soil approach.

CONCLUSION

From the above tables and the results we can come to a conclusion that by using more than two types of different soil origin and combine them in a proper proportion according to the soil classification we can achieve a required density of soil which can be used for a particular task.

This method can be demonstrated by considering more different types of soil so that the available soil at site can be taken as ingredients and a soil blend can be designed for our requirement. This method is economical and it requires no further money to use at the site. The design soil can be used as sub grade or as foundation soil or as earthen embankment soil material.

REFERENCES

- [1] Dr.B.C. Punmia on "Soil Mechanics and Foundations"
- [2] Alam Singh on "Modern Geotechnical Engineering"
- [3] Arora on "Soil Mechanics and Foundation Engineering"
- [4] ARPN Journal of Earth Science
- [5] Das B.M. and Singh G 1999. Soil Stabilization with Sodium chloride. National Research Council, Washington DC., USA
- [6] Gulati S.K. 1978"Engineering Properties of Soil" McGraw Hill Publishing Co., New Delhi , India.
- [7] Josep Bowles on "Foundation Analysis and Design"
- [8] V.N.S. Murthy on "Soil Mechanics and Foundation Engineering" Geotechnical Engineering series.