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Abstract-  
Intrusion detection systems (IDS) are besides other protective measures such as virtual private networks, 
authentication mechanisms, or encryption techniques very important to guarantee information security. They 
help to defend against the various threats to which networks and hosts are exposed to by detecting the actions of 
attackers or attack tools in a network or host-based manner with misuse or anomaly detection techniques 
Basically, it can be regarded as a datastream version of a maximum likelihood approach for the estimation of the 
model parameters. With three benchmark data sets, we demonstrate that it is possible to achieve reduction rates 
of up to 99.96 percent while the number of missing meta-alerts is extremely low. In addition, meta-alerts are 
generated with a delay of typically only a few seconds after observing the first alert belonging to a new attack 
instance.. 
 
Index Terms—Intrusion detection, alert aggregation, generative modeling, data stream algorithm. 
 
 
1. INTRODUCTION 
 
INTRUSION protective measures such as virtual 
private networks, detection systems (IDS) are besides 
other authentication mechanisms, or encryption 
techniques very important to guarantee information 
security. They help to defend against the various 
threats to which networks and hosts are exposed to by 
detecting the actions of attackers or attack tools in a 
network or host-based manner with misuse or anomaly 
detection techniques [1]. At present, most IDS are 
quite reliable in detecting suspicious actions by 
evaluating TCP/IP connections or log files, for 
instance. Once an IDS finds a suspicious action, it 
immediately creates an alert which contains 
information about the source, target, and estimated 
type of the attack (e.g., SQL injection, buffer 
overflow, or denial of service). As the intrusive 
actions caused by a single attack instance— which is 
the occurrence of an attack of a particular type that has 
been launched by a specific attacker at a certain point 
in time—are often spread over many network 
connections or log file entries, a single attack instance 
often results in hundreds or even thousands of alerts. 
IDS usually focus on detecting attack types, but not on 
distinguishing between different attack instances. In 
addition, even low rates of false alerts could easily 
result in a high total number of false alerts if 
thousands of network packets or log file entries are 
inspected. As a consequence, the IDS creates many 
alerts at a low level of abstraction. It is extremely 
difficult for a human security expert to inspect this 
flood of alerts, and decisions that follow from single 
alerts might be wrong with a relatively high 

 
 
probability. In our opinion, a “perfect” IDS should be 
situation-aware [2] in the sense that at any point in 
time it should “know” what is going on in its 
environment regarding attack instances (of various 
types) and attackers. In this paper, we make an 
important step toward this goal by introducing and 
evaluating a new technique for alert aggregation. 
Alerts may originate from low-level IDS such as those 
mentioned above, from firewalls (FW), etc. Alerts that 
belong to one attack instance must be clustered 
together and meta-alerts must be generated for these 
clusters. The main goal is to reduce the amount of 
alerts substantially without losing any important 
information which is necessary to identify ongoing 
attack instances. We want to have no missing 
metaalerts, but in turn we accept false or redundant 
meta-alerts to a certain degree. This problem is not 
new, but current solutions are typically based on a 
quite simple sorting of alerts, e.g., according to their 
source, destination, and attack type. Under real 
conditions such as the presence of classification errors 
of the low-level IDS (e.g., false alerts), uncertainty 
with respect to the source of the attack due to spoofed 
IP addresses, or wrongly adjusted time windows, for 
instance, such an approach fails quite often.  
Our approach has the following distinct properties:  

• It is a generative modeling approach [3] 
using probabilistic methods. Assuming that 
attack instancescan be regarded as random 
processes “producing” alerts, we aim at  
modelingtheseprocessesusing  
approximative maximum likelihood 
parameter estimation techniques. Thus, the 
beginning as well as the completion of attack 
instances can be detected. 
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• It is a data stream approach, i.e., each 

observed alert is processed only a few times 
[4]. Thus, it can be applied online and under  
harsh timing constraints.  

The remainder of this paper is organized as follows: In 
Section 2 some related work is presented. Section 3 
describes the proposed alert aggregation approach, and 
Section 4 provides experimental results for the alert 
aggregation using various data sets. Finally, Section 5 
summarizes the major findings. 
 
2. LITERATURE REVIEW 
 
Most existing IDS are optimized to detect attacks with 
high accuracy. However, they still have various 
disadvantages that have been outlined in a number of 
publications and a lot of work has been done to 
analyze IDS in order to direct future research [5], for 
instance). Besides others, one drawback is the large 
amount of alerts produced. Recent research focuses on 
the correlation of alerts from (possibly multiple) IDS. 
If not stated otherwise, all approaches  
outlined in the following present either online 
algorithms or as we see it can easily be extended to an 
online version. Probably, the most comprehensive 
approach to alert correlation is introduced in [6]. One 
step in the presented correlation approach is attack 
thread reconstruction, which can be seen as a kind of 
attack instance recognition. No clustering algorithm is 
used, but a strict sorting of alerts within a temporal 
window of fixed length according to the source, 
destination, and attack classification (attack type). In 
[7], a similar approach is used to eliminate duplicates, 
i.e., alerts that share the same quadruple of source and 
destination address as well as source and destination 
port. In addition, alerts are aggregated (online) into 
predefined clusters (so-called situations) in order to 
provide a more condensed view of the current attack 
situation. The definition of such situations is also used 
in [8] to cluster alerts. In [9], alert clustering is used to 
group alerts that belong to the same attack occurrence. 
Even though called clustering, there is no clustering 
algorithm in a classic sense. The alerts from one (or 
possibly several) IDS are stored in a relational 
database and a similarity relation which is based on 
expert rules is used to group similar alerts together. 
Two alerts are defined to be similar, for instance, if 
both occur within a fixed time window and their 
source and target match exactly. As already 
mentioned, these approaches are likely to fail under 
real-life conditions with imperfect classifiers (i.e., 
low-level IDS) with false alerts or wrongly adjusted 

  
time windows. Another approach to alert correlation is 
presented in [10]. A weighted, attribute-wise similarity 
operator is used to decide whether to fuse two alerts or 
not. However, as already stated in [11] and [12], this 
approach suffers from the high number of parameters 
that need to be set. The similarity operator presented 
in [13] has the same disadvantage—there are lots of 
parameters that must be set by the user and there is no 
or only little guidance in order to find good values. In 
[14], another clustering algorithm that is based on 
attribute-wise similarity measures with user defined 
parameters is presented. However, a closer look at the 
parameter setting reveals that the similarity measure, 
in fact, degenerates to a strict sorting according to the 
source and destination IP addresses and ports of the 
alerts. The drawbacks that arise thereof are the same 
as those mentioned above. In [15], three different 
approaches are presented to fuse alerts. The first, quite 
simple one groups alerts according to their source IP 
address only. The other two approaches are based on 
different supervised learning techniques. Besides a 
basic least-squares error approach, multilayer 
perceptrons, radial basis function networks, and 
decision trees are used to decide whether to fuse a new 
alert with an already existing meta-alert (called 
scenario) or not. Due to the supervised nature, labeled 
training data need to be generated which could be 
quite difficult in case of various attack instances. The 
same or quite similar techniques as described so far 
are also applied in many other approaches to alert 
correlation, especially in the field of intrusion scenario 
detection. Prominent research in scenario detection is 
described in [8],[9], [10], for example. More details 
can be found in [8]. In [8], an offline clustering 
solution based on the CURE algorithm is presented. 
The solution is restricted to numerical attributes. In 
addition, the number of clusters must be set manually. 
This is problematic, as in fact it assumes that the 
security expert has knowledge about the actual 
number of ongoing attack instances. The alert 
clustering solution described in [11] is more related to 
ours. A link-based clustering approach is used to 
repeatedly fuse alerts into more generalized ones. The 
intention is to discover thereasons for the existence of 
the majority of alerts, the socalled root causes, and to 
eliminate them subsequently. An attack instance in our 
sense can also be seen as a kind of root cause, but in 
[10] root causes are regarded as “generally persistent” 
that does not hold for attack instances that occur only 
within a limited time window. Furthermore, only root 
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causes that are responsible for a majority of alerts are 
of interest and the attribute-oriented induction 
algorithm is forced “to find large clusters” as the alert 
load can thus be reduced at most. Attack instances that 
result in a small number of alerts (such as PHF or 
FFB) are likely to be ignored completely. The main 
difference to our approach is that the algorithm can 
only be used in an offline setting and is intended to 
analyze historical alert logs. In contrast, we use an 
online approach to model the current attack situation. 
The alert clustering approach described in [12] is 
based on [11] but aims at reducing the false positive 
rate. The created cluster structure is used as a filter to 
reduce the amount of created alerts. Those alerts that 
are similar to already known false positives are kept 
back, whereas alerts that are considered to be 
legitimate (i.e., dissimilar to all known false positives) 
are reported and not further aggregated. The same 
idea—but based on a different offline clustering 
algorithm—is presented in [10].  
A completely different clustering approach is 
presented in [09]. There, the reconstruction error of an 
autoassociator neural network (AA-NN) is used to 
distinguish different types of alerts. Alerts that yield 
the same (or a similar) reconstruction error are put into 
the same cluster. The approach can be applied online, 
but an offline training phase and training data are 
needed to train the AA-NN and also to manually 
adjust intervals for the reconstruction error that 
determine which alerts are clustered together. In 
addition, it turned out that due to the dimensionality 
reduction by the AA-NN, alerts of different types can 
have the same reconstruction error which leads to 
erroneous clustering. In our prior work, we applied the 
well-known c-means clustering algorithm in order to 
identify attack instances [23]. However, this algorithm 
also works in a purely offline manner. 
3. A NOVEL ONLINE ALERT AGGREGATION 
TECHNIQUE 
 
In this section, we describe our new alert aggregation 
approach which is—at each point in time—based on a 
probabilistic model of the current situation. To outline 
the preconditions and objectives of alert aggregation, 
we start with a short sketch of our intrusion 
framework. Then, we briefly describe the generation 
of alerts and the alert format. We continue with a new 
clustering algorithm for offline alert aggregation 
which is basically a parameter estimation technique 
for the probabilistic model. After that, we extend this 
offline method to an algorithm for data stream 

  
clustering which can be applied to online alert 
aggregation. Finally, we make some remarks on the 
generation of meta-alerts. 
 
3.1.  Collaborating Intrusion Detection Agents 
 
In our work, we focus on a system of structurally very 
similar so-called intrusion detection (ID) agents. 
Through self-organized collaboration, these ID agents 
form adistributed intrusion detection system (DIDS). 
Fig. 1 outlines the layered architecture of an ID agent: 
The sensor layer provides the interface to the network 
and the host on which the agent resides. Sensors 
acquire raw data from both the network and the host, 
filter incoming data, and extract interesting and  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1. Architecture of an intrusion detection agent. 

 
potentially valuable (e.g.,statistical) information 
which is needed to construct an appropriate event. At 
the detection layer, different detectors, e.g., classifiers  
trained with machine learning techniques such as 
support vector machines (SVM) or conventional rule-
based systems such as Snort, assess these events and 
search for known attack signatures (misuse detection) 
and suspicious behavior (anomaly detection). In case 
of attack suspicion, they create alerts which are then 
forwarded to the alert processing layer. Alerts may 
also be produced by FW or the like. At the alert 
processing layer, the alert aggregation module has to 
combine alerts that are assumed to belong to a specific 
attack instance. Thus, so called meta-alerts are 
generated. Meta-alerts are used orenhanced in various 
ways, e.g., scenario detection or decentralized alert 
correlation. An important task of 
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the reaction layer is reporting. The overall architecture 
of the distributed intrusion detection system and a 
framework for large-scale simulations are described in 
in more detail. 
 
In our layered ID agent architecture, each layer 
assesses, filters, and/or aggregates information 
produced by a lower layer. Thus, relevant information 
gets more and more condensed and certain, and, 
therefore, also more valuable. We aim at realizing 
each layer in a way such that the recall of the applied 
techniques is very high, possibly at the cost of a 
slightly poorer precision [12]. In other words, with the 
alert aggregation module on which we focus in this 
paper we want to have a minimal number of missing 
meta-alerts (false negatives) and we accept some false 
metaalerts (false positives) and redundant meta-alerts 
in turn. 
 
3.2. Alert Generation and Format 
 
In this section, we make some comments on the 
information contained in alerts, the objects that must 
be aggregated, and on their format. As the concrete 
content and format depend on a specific task and on 
certain realizations of the sensors and detectors, 
together with the experimental conditions. At the 
sensor layer, sensors determine the values of attributes 
that are used as input for the detectors as well as for 
the alert clustering module. Attributes in an event that 
are independent of a particular attack instance can be 
used for classification at the detection layer. Attributes 
that are  
(or might be) dependent on the attack instance can be 
used in an alert aggregation process to distinguish 
different attack instances. A perfect partition into 
dependent and independent attributes, however, 
cannot be made. Some are clearly dependent (such as 
the source IP address which can identify the attacker), 
some are clearly independent such as the destination 
port which usually is 80 in case of webbased attacks), 
and lots are both (such as the destination port which 
can be a hint to the attacker’s actual target service as 
well as an attack tool specifically designed to target a 
particular service only). In addition to the attributes 
produced by the sensors, alert aggregation is based on 
additional attributes generated by the detectors. 
Examples are the estimated type of the attack instance 
that led to the generation of the alert (e.g., SQL 
injection, buffer overflow, or denial of service), and 
the degree of uncertainty associated with that estimate. 

  
3.3. Offline Alert Aggregation 
 
In this section, we introduce an offline algorithm for 
alert aggregation which will be extended to a data 
stream algorithm for online aggregation .Assume that 
a host with an ID agent is exposed to a certain 
intrusion situation as sketched in algorithm shown in 
Fig. 2: One or several attackers launch several attack 
instances belonging to various attack types. The attack 
instances each cause a number of alerts with various 
attribute values. Only two of the attributes are shown 
and the correspondence of alerts and (true or 
estimated) attack instances is indicated by different 
symbols. Fig.2. shows a view on the “ideal world” 
which an ID agent does not have. The agent only has 
observations of the detectors (alerts) in the attribute 
space without attack instance labels as outlined in Fig. 
2. The task of the alert aggregation module is now to 
estimate the assignment to instances by using the 
unlabeled observations only and by analyzing the 
cluster structure in the attribute space. That is, it has to 
reconstruct the attack situation. Then, meta-alerts can 
be generated that are basically an abstract description 
of the cluster of alerts assumed to originate from one 
attack instance. Thus, the amount of data is reduced 
substantially without losing important information. 
Fig. 2 shows the result of a reconstruction of the 
situation. There may be different potentially 
problematic situations: 
 
1. False alerts are not recognized as such 
andwrongly assigned to clusters: This situation is 
acceptable as long as the number of false alerts is 
comparably low.  
2. True alerts are wrongly assigned to clusters: 
Thissituation is not really problematic as long as the 
majority of alerts belonging to that cluster is correctly 
assigned. Then, no attack instance is missed. 

 
3. Clusters are wrongly split: This situation 
isundesired but clearly unproblematic as it leads to 
redundant meta-alerts only. Only the data reduction  
rate is lower, no attack instance is missed.  
4. Several clusters are wrongly combined into one: 
This situation is definitely problematic as attack 
instances may be missed. 
 
According to our objectives (cf. Section 3.1) we must 
try to avoid the latter situation but we may accept the 
former three situations to a certain degree. How can 
the set of samples be clustered (i.e., 
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aggregated) to generate meta-alerts? Here, the answer 
to this question is identical to the answer to the 
following: How can an attack situation be modeled 
with a parameterized probabilistic model and how can 
the parameters be estimated from the observations? 

 
3.4.  Data Stream Alert Aggregation 
 
In this section, we describe to an online approach 
working for dynamic attack situations. Assume that in 
the environment observed by an ID agent attackers 
initiate new attack instances that cause alerts for a 
certain time interval until this attack instance is 
completed. Thus, at any point in time the ID agent 
which is assumed to have a model of the current 
situation shown in Fig. 2 has several tasks, Fig. 3:  
1. Component adaption: Alerts associated with already 
recognized attack instances must be which has several 
tasks. Identified as such and assigned to already 
existing clusters while adapting the respective 
component parameters.  
2. Component creation (novelty detection): The 
occurrence of new attack instances must be stated. 
New components must be parameterized accordingly.  
3. Component deletion (obsoleteness detection): The 
completion of attack instances must be detected and 
the respective components must be deleted from the 
model.  
A Public Cloud Server is an element of the 
infrastructure provided by a cloud service supplier, 
like Amazon S31, for storing and rendering of 
volumes. It stores (encrypted) volumes and access 
policies accustomed regulate access to the degree and 
the rendered image. It performs most of the rendering 
on keep volumes and produces the partially rendered 
information. 
 
3.5.  Meta-Alert Generation and Format 
 
With the creation of a new component, an appropriate 
met alert that represents the information about the 
component in an abstract way is created. Every time a 
new alert is added to a component, the corresponding 
meta-alert is updated incrementally, too. That is, the 
meta-alert “evolves” with the component. Meta-alerts 
may be the basis for a whole set further tasks.  
Meta-alerts could be used at various points in time 
from the initial creation until the deletion of the 
corresponding component (or even later). For instance, 
reports could be created immediately after the creation 
of the component or which could be more preferable 
in some cases a sequence of updated reports could be 
created in regular time intervals. Another example is 
the exchange of met alerts between ID agents: Due to 
high communication costs,meta-alerts could be 
exchanged based on the evaluation of their 
interestingness. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2. Algorithm for expectation Maximization.  
 
 
CONCLUSION 
 
The experiments demonstrated the broad applicability 
of the proposed online alert aggregation approach. We 
analyzed three different data sets and showed that  
machine-learning-based detectors, conventional signature 
based detectors, and even firewalls can be used as alert 
generators. In all cases, the amount of data could be 
reduced substantially. Although there are situations as 
described in Section 3.3—especially clusters that are 
wrongly split—the instance detection rate is very high: 
None or only very few attack instances were missed. 
Runtime and component creation delay are well suited 
for an online application. 
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