
[Type text]

International Journal of Research in Advent Technology (IJRAT) Special Issue
E-ISSN: 2321-9637

National Conference “MOMENTUM-17”, 14th& 15th February 2017
Available online at www.ijrat.org

Data Streaming Online Intrusion Alert System
Mrs. Shelake R.M.1, Prof. Sushinder Reddy 2

P.G. Student,ComputerDept, MIT Ishnapure, Patancheru, Hyderabad(India),
Computer Dept, ,MIT Ishnapure, Patancheru, Hyderabad(India)2

shelakerekha@gmail.com1, sushinderreddy1@gmail.com2

Abstract-
Intrusion detection systems (IDS) are besides other protective measures such as virtual private networks,
authentication mechanisms, or encryption techniques very important to guarantee information security. They
help to defend against the various threats to which networks and hosts are exposed to by detecting the actions of
attackers or attack tools in a network or host-based manner with misuse or anomaly detection techniques
Basically, it can be regarded as a datastream version of a maximum likelihood approach for the estimation of the
model parameters. With three benchmark data sets, we demonstrate that it is possible to achieve reduction rates
of up to 99.96 percent while the number of missing meta-alerts is extremely low. In addition, meta-alerts are
generated with a delay of typically only a few seconds after observing the first alert belonging to a new attack
instance..

Index Terms—Intrusion detection, alert aggregation, generative modeling, data stream algorithm.

1. INTRODUCTION

INTRUSION protective measures such as virtual
private networks, detection systems (IDS) are besides
other authentication mechanisms, or encryption
techniques very important to guarantee information
security. They help to defend against the various
threats to which networks and hosts are exposed to by
detecting the actions of attackers or attack tools in a
network or host-based manner with misuse or anomaly
detection techniques [1]. At present, most IDS are
quite reliable in detecting suspicious actions by
evaluating TCP/IP connections or log files, for
instance. Once an IDS finds a suspicious action, it
immediately creates an alert which contains
information about the source, target, and estimated
type of the attack (e.g., SQL injection, buffer
overflow, or denial of service). As the intrusive
actions caused by a single attack instance— which is
the occurrence of an attack of a particular type that has
been launched by a specific attacker at a certain point
in time—are often spread over many network
connections or log file entries, a single attack instance
often results in hundreds or even thousands of alerts.
IDS usually focus on detecting attack types, but not on
distinguishing between different attack instances. In
addition, even low rates of false alerts could easily
result in a high total number of false alerts if
thousands of network packets or log file entries are
inspected. As a consequence, the IDS creates many
alerts at a low level of abstraction. It is extremely
difficult for a human security expert to inspect this
flood of alerts, and decisions that follow from single
alerts might be wrong with a relatively high

probability. In our opinion, a “perfect” IDS should be
situation-aware [2] in the sense that at any point in
time it should “know” what is going on in its
environment regarding attack instances (of various
types) and attackers. In this paper, we make an
important step toward this goal by introducing and
evaluating a new technique for alert aggregation.
Alerts may originate from low-level IDS such as those
mentioned above, from firewalls (FW), etc. Alerts that
belong to one attack instance must be clustered
together and meta-alerts must be generated for these
clusters. The main goal is to reduce the amount of
alerts substantially without losing any important
information which is necessary to identify ongoing
attack instances. We want to have no missing
metaalerts, but in turn we accept false or redundant
meta-alerts to a certain degree. This problem is not
new, but current solutions are typically based on a
quite simple sorting of alerts, e.g., according to their
source, destination, and attack type. Under real
conditions such as the presence of classification errors
of the low-level IDS (e.g., false alerts), uncertainty
with respect to the source of the attack due to spoofed
IP addresses, or wrongly adjusted time windows, for
instance, such an approach fails quite often.
Our approach has the following distinct properties:

• It is a generative modeling approach [3]
using probabilistic methods. Assuming that
attack instancescan be regarded as random
processes “producing” alerts, we aim at
modelingtheseprocessesusing
approximative maximum likelihood
parameter estimation techniques. Thus, the
beginning as well as the completion of attack
instances can be detected.

1

[Type text]

International Journal of Research in Advent Technology (IJRAT) Special Issue
E-ISSN: 2321-9637

National Conference “MOMENTUM-17”, 14th& 15th February 2017
Available online at www.ijrat.org

• It is a data stream approach, i.e., each

observed alert is processed only a few times
[4]. Thus, it can be applied online and under
harsh timing constraints.

The remainder of this paper is organized as follows: In
Section 2 some related work is presented. Section 3
describes the proposed alert aggregation approach, and
Section 4 provides experimental results for the alert
aggregation using various data sets. Finally, Section 5
summarizes the major findings.

2. LITERATURE REVIEW

Most existing IDS are optimized to detect attacks with
high accuracy. However, they still have various
disadvantages that have been outlined in a number of
publications and a lot of work has been done to
analyze IDS in order to direct future research [5], for
instance). Besides others, one drawback is the large
amount of alerts produced. Recent research focuses on
the correlation of alerts from (possibly multiple) IDS.
If not stated otherwise, all approaches
outlined in the following present either online
algorithms or as we see it can easily be extended to an
online version. Probably, the most comprehensive
approach to alert correlation is introduced in [6]. One
step in the presented correlation approach is attack
thread reconstruction, which can be seen as a kind of
attack instance recognition. No clustering algorithm is
used, but a strict sorting of alerts within a temporal
window of fixed length according to the source,
destination, and attack classification (attack type). In
[7], a similar approach is used to eliminate duplicates,
i.e., alerts that share the same quadruple of source and
destination address as well as source and destination
port. In addition, alerts are aggregated (online) into
predefined clusters (so-called situations) in order to
provide a more condensed view of the current attack
situation. The definition of such situations is also used
in [8] to cluster alerts. In [9], alert clustering is used to
group alerts that belong to the same attack occurrence.
Even though called clustering, there is no clustering
algorithm in a classic sense. The alerts from one (or
possibly several) IDS are stored in a relational
database and a similarity relation which is based on
expert rules is used to group similar alerts together.
Two alerts are defined to be similar, for instance, if
both occur within a fixed time window and their
source and target match exactly. As already
mentioned, these approaches are likely to fail under
real-life conditions with imperfect classifiers (i.e.,
low-level IDS) with false alerts or wrongly adjusted

time windows. Another approach to alert correlation is
presented in [10]. A weighted, attribute-wise similarity
operator is used to decide whether to fuse two alerts or
not. However, as already stated in [11] and [12], this
approach suffers from the high number of parameters
that need to be set. The similarity operator presented
in [13] has the same disadvantage—there are lots of
parameters that must be set by the user and there is no
or only little guidance in order to find good values. In
[14], another clustering algorithm that is based on
attribute-wise similarity measures with user defined
parameters is presented. However, a closer look at the
parameter setting reveals that the similarity measure,
in fact, degenerates to a strict sorting according to the
source and destination IP addresses and ports of the
alerts. The drawbacks that arise thereof are the same
as those mentioned above. In [15], three different
approaches are presented to fuse alerts. The first, quite
simple one groups alerts according to their source IP
address only. The other two approaches are based on
different supervised learning techniques. Besides a
basic least-squares error approach, multilayer
perceptrons, radial basis function networks, and
decision trees are used to decide whether to fuse a new
alert with an already existing meta-alert (called
scenario) or not. Due to the supervised nature, labeled
training data need to be generated which could be
quite difficult in case of various attack instances. The
same or quite similar techniques as described so far
are also applied in many other approaches to alert
correlation, especially in the field of intrusion scenario
detection. Prominent research in scenario detection is
described in [8],[9], [10], for example. More details
can be found in [8]. In [8], an offline clustering
solution based on the CURE algorithm is presented.
The solution is restricted to numerical attributes. In
addition, the number of clusters must be set manually.
This is problematic, as in fact it assumes that the
security expert has knowledge about the actual
number of ongoing attack instances. The alert
clustering solution described in [11] is more related to
ours. A link-based clustering approach is used to
repeatedly fuse alerts into more generalized ones. The
intention is to discover thereasons for the existence of
the majority of alerts, the socalled root causes, and to
eliminate them subsequently. An attack instance in our
sense can also be seen as a kind of root cause, but in
[10] root causes are regarded as “generally persistent”
that does not hold for attack instances that occur only
within a limited time window. Furthermore, only root

2

[Type text]

International Journal of Research in Advent Technology (IJRAT) Special Issue
E-ISSN: 2321-9637

National Conference “MOMENTUM-17”, 14th& 15th February 2017
Available online at www.ijrat.org

causes that are responsible for a majority of alerts are
of interest and the attribute-oriented induction
algorithm is forced “to find large clusters” as the alert
load can thus be reduced at most. Attack instances that
result in a small number of alerts (such as PHF or
FFB) are likely to be ignored completely. The main
difference to our approach is that the algorithm can
only be used in an offline setting and is intended to
analyze historical alert logs. In contrast, we use an
online approach to model the current attack situation.
The alert clustering approach described in [12] is
based on [11] but aims at reducing the false positive
rate. The created cluster structure is used as a filter to
reduce the amount of created alerts. Those alerts that
are similar to already known false positives are kept
back, whereas alerts that are considered to be
legitimate (i.e., dissimilar to all known false positives)
are reported and not further aggregated. The same
idea—but based on a different offline clustering
algorithm—is presented in [10].
A completely different clustering approach is
presented in [09]. There, the reconstruction error of an
autoassociator neural network (AA-NN) is used to
distinguish different types of alerts. Alerts that yield
the same (or a similar) reconstruction error are put into
the same cluster. The approach can be applied online,
but an offline training phase and training data are
needed to train the AA-NN and also to manually
adjust intervals for the reconstruction error that
determine which alerts are clustered together. In
addition, it turned out that due to the dimensionality
reduction by the AA-NN, alerts of different types can
have the same reconstruction error which leads to
erroneous clustering. In our prior work, we applied the
well-known c-means clustering algorithm in order to
identify attack instances [23]. However, this algorithm
also works in a purely offline manner.
3. A NOVEL ONLINE ALERT AGGREGATION
TECHNIQUE

In this section, we describe our new alert aggregation
approach which is—at each point in time—based on a
probabilistic model of the current situation. To outline
the preconditions and objectives of alert aggregation,
we start with a short sketch of our intrusion
framework. Then, we briefly describe the generation
of alerts and the alert format. We continue with a new
clustering algorithm for offline alert aggregation
which is basically a parameter estimation technique
for the probabilistic model. After that, we extend this
offline method to an algorithm for data stream

clustering which can be applied to online alert
aggregation. Finally, we make some remarks on the
generation of meta-alerts.

3.1. Collaborating Intrusion Detection Agents

In our work, we focus on a system of structurally very
similar so-called intrusion detection (ID) agents.
Through self-organized collaboration, these ID agents
form adistributed intrusion detection system (DIDS).
Fig. 1 outlines the layered architecture of an ID agent:
The sensor layer provides the interface to the network
and the host on which the agent resides. Sensors
acquire raw data from both the network and the host,
filter incoming data, and extract interesting and

Fig.1. Architecture of an intrusion detection agent.

potentially valuable (e.g.,statistical) information
which is needed to construct an appropriate event. At
the detection layer, different detectors, e.g., classifiers
trained with machine learning techniques such as
support vector machines (SVM) or conventional rule-
based systems such as Snort, assess these events and
search for known attack signatures (misuse detection)
and suspicious behavior (anomaly detection). In case
of attack suspicion, they create alerts which are then
forwarded to the alert processing layer. Alerts may
also be produced by FW or the like. At the alert
processing layer, the alert aggregation module has to
combine alerts that are assumed to belong to a specific
attack instance. Thus, so called meta-alerts are
generated. Meta-alerts are used orenhanced in various
ways, e.g., scenario detection or decentralized alert
correlation. An important task of

3

[Type text]

International Journal of Research in Advent Technology (IJRAT) Special Issue
E-ISSN: 2321-9637

National Conference “MOMENTUM-17”, 14th& 15th February 2017
Available online at www.ijrat.org

the reaction layer is reporting. The overall architecture
of the distributed intrusion detection system and a
framework for large-scale simulations are described in
in more detail.

In our layered ID agent architecture, each layer
assesses, filters, and/or aggregates information
produced by a lower layer. Thus, relevant information
gets more and more condensed and certain, and,
therefore, also more valuable. We aim at realizing
each layer in a way such that the recall of the applied
techniques is very high, possibly at the cost of a
slightly poorer precision [12]. In other words, with the
alert aggregation module on which we focus in this
paper we want to have a minimal number of missing
meta-alerts (false negatives) and we accept some false
metaalerts (false positives) and redundant meta-alerts
in turn.

3.2. Alert Generation and Format

In this section, we make some comments on the
information contained in alerts, the objects that must
be aggregated, and on their format. As the concrete
content and format depend on a specific task and on
certain realizations of the sensors and detectors,
together with the experimental conditions. At the
sensor layer, sensors determine the values of attributes
that are used as input for the detectors as well as for
the alert clustering module. Attributes in an event that
are independent of a particular attack instance can be
used for classification at the detection layer. Attributes
that are
(or might be) dependent on the attack instance can be
used in an alert aggregation process to distinguish
different attack instances. A perfect partition into
dependent and independent attributes, however,
cannot be made. Some are clearly dependent (such as
the source IP address which can identify the attacker),
some are clearly independent such as the destination
port which usually is 80 in case of webbased attacks),
and lots are both (such as the destination port which
can be a hint to the attacker’s actual target service as
well as an attack tool specifically designed to target a
particular service only). In addition to the attributes
produced by the sensors, alert aggregation is based on
additional attributes generated by the detectors.
Examples are the estimated type of the attack instance
that led to the generation of the alert (e.g., SQL
injection, buffer overflow, or denial of service), and
the degree of uncertainty associated with that estimate.

3.3. Offline Alert Aggregation

In this section, we introduce an offline algorithm for
alert aggregation which will be extended to a data
stream algorithm for online aggregation .Assume that
a host with an ID agent is exposed to a certain
intrusion situation as sketched in algorithm shown in
Fig. 2: One or several attackers launch several attack
instances belonging to various attack types. The attack
instances each cause a number of alerts with various
attribute values. Only two of the attributes are shown
and the correspondence of alerts and (true or
estimated) attack instances is indicated by different
symbols. Fig.2. shows a view on the “ideal world”
which an ID agent does not have. The agent only has
observations of the detectors (alerts) in the attribute
space without attack instance labels as outlined in Fig.
2. The task of the alert aggregation module is now to
estimate the assignment to instances by using the
unlabeled observations only and by analyzing the
cluster structure in the attribute space. That is, it has to
reconstruct the attack situation. Then, meta-alerts can
be generated that are basically an abstract description
of the cluster of alerts assumed to originate from one
attack instance. Thus, the amount of data is reduced
substantially without losing important information.
Fig. 2 shows the result of a reconstruction of the
situation. There may be different potentially
problematic situations:

1. False alerts are not recognized as such
andwrongly assigned to clusters: This situation is
acceptable as long as the number of false alerts is
comparably low.
2. True alerts are wrongly assigned to clusters:
Thissituation is not really problematic as long as the
majority of alerts belonging to that cluster is correctly
assigned. Then, no attack instance is missed.

3. Clusters are wrongly split: This situation
isundesired but clearly unproblematic as it leads to
redundant meta-alerts only. Only the data reduction
rate is lower, no attack instance is missed.
4. Several clusters are wrongly combined into one:
This situation is definitely problematic as attack
instances may be missed.

According to our objectives (cf. Section 3.1) we must
try to avoid the latter situation but we may accept the
former three situations to a certain degree. How can
the set of samples be clustered (i.e.,

4

[Type text]

International Journal of Research in Advent Technology (IJRAT) Special Issue
E-ISSN: 2321-9637

National Conference “MOMENTUM-17”, 14th& 15th February 2017
Available online at www.ijrat.org

aggregated) to generate meta-alerts? Here, the answer
to this question is identical to the answer to the
following: How can an attack situation be modeled
with a parameterized probabilistic model and how can
the parameters be estimated from the observations?

3.4. Data Stream Alert Aggregation

In this section, we describe to an online approach
working for dynamic attack situations. Assume that in
the environment observed by an ID agent attackers
initiate new attack instances that cause alerts for a
certain time interval until this attack instance is
completed. Thus, at any point in time the ID agent
which is assumed to have a model of the current
situation shown in Fig. 2 has several tasks, Fig. 3:
1. Component adaption: Alerts associated with already
recognized attack instances must be which has several
tasks. Identified as such and assigned to already
existing clusters while adapting the respective
component parameters.
2. Component creation (novelty detection): The
occurrence of new attack instances must be stated.
New components must be parameterized accordingly.
3. Component deletion (obsoleteness detection): The
completion of attack instances must be detected and
the respective components must be deleted from the
model.
A Public Cloud Server is an element of the
infrastructure provided by a cloud service supplier,
like Amazon S31, for storing and rendering of
volumes. It stores (encrypted) volumes and access
policies accustomed regulate access to the degree and
the rendered image. It performs most of the rendering
on keep volumes and produces the partially rendered
information.

3.5. Meta-Alert Generation and Format

With the creation of a new component, an appropriate
met alert that represents the information about the
component in an abstract way is created. Every time a
new alert is added to a component, the corresponding
meta-alert is updated incrementally, too. That is, the
meta-alert “evolves” with the component. Meta-alerts
may be the basis for a whole set further tasks.
Meta-alerts could be used at various points in time
from the initial creation until the deletion of the
corresponding component (or even later). For instance,
reports could be created immediately after the creation
of the component or which could be more preferable
in some cases a sequence of updated reports could be
created in regular time intervals. Another example is
the exchange of met alerts between ID agents: Due to
high communication costs,meta-alerts could be
exchanged based on the evaluation of their
interestingness.

Fig.2. Algorithm for expectation Maximization.

CONCLUSION

The experiments demonstrated the broad applicability
of the proposed online alert aggregation approach. We
analyzed three different data sets and showed that
machine-learning-based detectors, conventional signature
based detectors, and even firewalls can be used as alert
generators. In all cases, the amount of data could be
reduced substantially. Although there are situations as
described in Section 3.3—especially clusters that are
wrongly split—the instance detection rate is very high:
None or only very few attack instances were missed.
Runtime and component creation delay are well suited
for an online application.

REFERENCES

[1] S. Axelsson, “Intrusion Detection Systems: A

Survey and Taxonomy,” Technical Report 99-15,
Dept. of Computer Eng., Chalmers Univ. of
Technology, 2000.

[2] M.R. Endsley, “Theoretical Underpinnings of
Situation Awareness: A Critical Review,”
Situation Awareness Analysis and Measurement,
M.R. Endsley and D.J. Garland, eds., chapter
1,pp. 3-32, Lawrence Erlbaum Assoc., 2000.

[3] C.M. Bishop, Pattern Recognition and Machine
Learning. Springer, 2006.

[4] M.R. Henzinger, P. Raghavan, and S.
Rajagopalan, Computing on Data Streams. Am.
Math. Soc., 1999.

[5] A. Allen, “Intrusion Detection Systems:
Perspective,” Technical Report DPRO-95367,
Gartner, Inc., 2003.

5

[Type text]

International Journal of Research in Advent Technology (IJRAT) Special Issue
E-ISSN: 2321-9637

National Conference “MOMENTUM-17”, 14th& 15th February 2017
Available online at www.ijrat.org

[6] F. Valeur, G. Vigna, C. Kru ¨gel, and R.A.
Kemmerer, “A Comprehensive Approach to
Intrusion Detection Alert Correlation,” IEEE
Trans. Dependable and Secure Computing, vol.
1, no. 3,pp. 146-169, July-Sept. 2004.

[7] H. Debar and A. Wespi, “Aggregation and
Correlation of Intrusion-Detection Alerts,”
Recent Advances in Intrusion Detection, W. Lee,
L. Me, and A. Wespi, eds., pp. 85-103, Springer,
2001.

[8] D. Li, Z. Li, and J. Ma, “Processing Intrusion
Detection Alerts in Large-Scale Network,” Proc.
Int’l Symp. Electronic Commerce and Security,
pp. 545-548, 2008.

[9] F. Cuppens, “Managing Alerts in a Multi-
Intrusion Detection Environment,” Proc.
17thAnn.ComputerSecurityApplications
Conf.(ACSAC ’01), pp. 22-31, 2001.

[10] A. Valdes and K. Skinner, “Probabilistic Alert
Correlation,” Recent Advances in Intrusion
Detection, W. Lee, L. Me, and A. Wespi, eds. pp.
54-68, Springer, 2001.

[11] K. Julisch, “Using Root Cause Analysis to
Handle Intrusion Detection Alarms,” PhD
dissertation,Universita ¨t Dortmund, 2003.

[12] T. Pietraszek, “Alert Classification to Reduce
alse Positives in Intrusion Detection,” PhD
dissertation, Universita ¨t Freiburg, 2006.

[13] F. Autrel and F. Cuppens, “Using an Intrusion
Detection Alert Similarity Operator to Aggregate
Conf.Security and Network Architectures, pp.
312-322, 2005.

[14] G. Giacinto, R. Perdisci, and F. Roli, “Alarm
Clustering for Intrusion Detection Systems in
Computer Networks,” Machine Learning and
Data Mining in Pattern Recognition, P. Perner
and A. Imiya, eds. pp. 184-193, Springer, 2005.

[15] O. Dain and R. Cunningham, “Fusing a
Heterogeneous Alert Stream into Scenarios,”
Proc. 2001 ACM Workshop Data Mining for
Security Applications, pp. 1-13, 2001.

