
International Journal of Research in Advent Technology, Special Issue, March 2019
E-ISSN: 2321-9637

Available online at www.ijrat.org

152

Packet based Scheduling Algorithm for Massively Parallel
Systems

Savita Gautam1, Abdus Samad2
*University Women’s Polytechnic

Aligarh Muslim University, Aligarh
savvin2003@yahoo.co.in1, abdussamadamu@gmail.com2

Abstract— Task migration between processing elements (nodes) in a multiprocessor system largely affects the overall
performance of systems. Although number of task scheduling algorithms have been proposed and implemented, selecting
best algorithm for a particular multiprocessor system always remains a challenging problem. This paper focuses attention
on reducing the execution time while maintaining the load balance performance by selecting the weight for migration of
tasks in terms of packets. The mechanism decides the weight of tasks to migrate in terms of packets dynamically based on
the task structure as well as on the types of multiprocessor system architecture. Thus, an enhancement of packet formation
in the existing approach is made to obtain optimal results. We consider the well known class of interconnection network
known as cube based systems for evaluating the performance. The experimental results indicate that the proposed technique
reduces the overall makespan of execution with an improved performance of the system.

Keywords: Packet Scheduling, Hypercube, Load Imbalance Factor, Execution Time, Task Migration, Cube Architectures.

1. INTRODUCTION

Efficiency of an Interconnection network depends on
optimal migration of tasks by finding out the best
execution sequence. In order to minimize the makespan of
overall execution, several techniques are applied to find
the most efficient algorithm. The main objective of these
algorithms is to find the allocation method that minimizes
the execution time while satisfying the load balancing
criterion.

The problem of task scheduling in homogeneous
computing is deciding how many tasks are to be scheduled
on given processors (nodes). Node selection primarily
depends upon the imbalance of load among the system.
Many scheduling algorithm have been designed and
proved to be efficient in terms of distributing the load
uniformly, however, less attention is paid to reduce the
overall makespan [1,2,3,4].

Task scheduling is widely classified into two categories:
Static scheduling and dynamic scheduling. In static
scheduling all information related to the tasks are available
beforehand, whereas in dynamic scheduling information is
made available during runtime. Among different
scheduling, List scheduling approaches have been proven
to be most effective [5]. These algorithms incorporate the
prioritization of tasks, look-ahead attribute for processor
selection and easy implantation.

Task scheduling algorithms have been well explored by
the researchers with a focus on finding suboptimal
solutions. High performance scheduling (HPS) algorithm
[6] considers these factors i.e level sorting, task
prioritization and processor selection. A similar approach

is applied in [7] where cases are categorized according to
their levels and priorities are set. A three levels of priority
in the algorithm in which volume of task are also taken in
to consideration is proposed and implemented by Dai et
al. On the other hand task duplication is adopted during
processor selection to reduce the schedule length [8].

This paper studies the scheduling of tasks on a network of
identical processors where the load is divided into
approximately equal number of packets to achieve load
balancing in the system. The load balancing is directly
proportional to the performance of the system. The quick
is the load balancing, the efficient is the system.

The rest of the paper is organized as follows. Section 1 is
introduction. Section 2 describes the network model and
problem formulation. In section 3 the existing algorithm
and proposed enhancement for improving the algorithm is
described. The results obtained by implementing the
proposed algorithm are presented and discussed in section
4. The last section is written for conclusion.

2. NETWORK MODEL AND PROBLEM FORMULATION

This section describes the network models used to address
the given problem. The study of interconnection networks
is an emerging research area in the design of high
performance parallel system, computer networks and also
in distributed computing environment. To satisfy the
requirements of modern ICT technologies and to take
services of massively parallel systems, computer architects
have always strived to increase the performance of their
architectures by designing high quality networks. It is
anticipated that large parallel applications shall be

International Journal of Research in Advent Technology, Special Issue, March 2019
E-ISSN: 2321-9637

Available online at www.ijrat.org

153

deployed on next generation high performance computing
systems [9]. Therefore, it is apparent that low cost,
efficient and scalable architectures design has a deep
concern while working with parallel applications.

There are several categories of Interconnection networks
to address the problem of task scheduling. Prime examples
are found in ring network, hypercube, debruijn network,
tree networks,star graph and mesh networks [9,10]. Jingxi
et al. considers an arbitrary connected network comprising
of n nodes which accept load from the user [11, 12]. Cube
based networks have all the desirable properties of
efficient interconnection networks. These networks are
equipped with good topological characteristics that include
small diameter, symmetry, high bisection width and better
connectivity. A recent study conducted by [13] introduced
the profitability of these interconnection networks. To
make best utilization of nodes in such networks it is must
to design efficient scheduling algorithms. In this paper
effort is made to enhance the benefits of existing
approaches by reducing overall make span. In particular,
four cube-based networks namely standard hypercube
(HC), Linear Cross Cube (LCQ) (Fig. 1), Linearly
Extensible Network (LEC) (Fig. 2) and debruijn (Fig. 3)
networks with eight processors have been taken into
consideration [9], [13], [14].

P0

P2 P3

P4 P5

P6 P7

P1

Fig. 1. LCQ Architecture with eight processors

Fig. 2. LEC Architecture with eight processors

Fig. 3. debruijn network with eight processors

3. DYNAMIC ALGORITHM AND PROPOSED

STATEGY

Dynamic algorithms operate to adjust the load by taking
decisions on fly with undetermined policy and could be
easily applied to system that supports variable task
structures. With regard to dynamic allocation, there have
been significant efforts in characterizing and dividing
requests locally [15]. The first phase of the algorithm
decides the selection of processors for task allocation
randomly. The input to the networks is a set of
independent tasks that can be executed on any nodes.
However, to distribute the load among different nodes task
are migrated between overloaded processors to
underloaded processors. Such migration could be carried
out level wise and processors are considered to cover the
entire network. Like most of the previously proposed
algorithms the performance is evaluated in terms of load
imbalance and execution time by implementing on
considered networks.

Similar approach could be applied on cube-based networks
as well as Tree based network which have gain attention in
the recent past. User submits loads to the available nodes
which is ultimately balanced among the entire network by
the schedulers. In the present work we considers grouping
of tasks for migration. Tasks that are independent of each
other are assigned to different groups forming a packet. It
is possible to migrate and execute tasks in the same level
in paralleled. We considered packet formation of four and
eight tasks at each level.

The algorithm calculates ideal load value and execution
time for each level, load imbalance is evaluated that helps
to take load migration decisions. The load imbalance
factor for kth iteration, denoted as LIFk, is defined as

LIFk = [max{loadk(Pi)}-(ideal_load)k] / (ideal_load)k

where, (ideal_load)k =[loadk(P0)+loadk(P1)+…+loadk(PN--1)] / N,
and max(loadk(Pi)) denotes the maximum load pertaining
to iteration k on a processor Pi ,0≤i≤N-1,and Loadk(Pi)
stands for the load on processor Pi due to kth level. The
pseudo code for the proposed strategy is given in Table 1.

P0 P1

P2 P3

P4 P5

P6 P7

International Journal of Research in Advent Technology, Special Issue, March 2019
E-ISSN: 2321-9637

Available online at www.ijrat.org

154

TABLE 1: Proposed Algorithm
Input: N processor network
output: Balanced network
I. Packet Scheduling
1. Consider N as total number of Processors.
2. Randomly generate Load at all processors N.
 /* load is the number of Tasks assigned to a
 processor and tasks are divided into packets* /
3. Calculate TotalLoad on all processors.
 TotalLoad=Load(P1) + Load(P2) +_ _ __ _ _
 +load(PN).
 /* P1 is Load assigned to processor P1 and so on */
4. Compute IdealLoad
 IdealLoad=TotalLoad/No. of Processors
 /* Totalload is calculated as in step 4*/

5. According to the Load assigned to each processor
identify AcceptorSet processors.
6. For each processor in AcceptprSet ,perform
packetization.
7. Compute maximum Load for all processor in a network.
8. Calculate Load Imbalance Factor(LIF)
II.packetization
 1 For each processor in AcceptprSet ,find out
ConnectedProcessor collection
2. For each connectedprocessor
 if load(ConnectedProcessor)>=IdealLoad+
 packetsize
 Migrate packets from ConnectedProcessor to
 AcceptorProcessor
 while
 load(AcceptorProcessor)<=IdealLoad and

load(ConnectedProcessor)>=IdealLoad+ packetsize
 load(AcceptorProcessor)=
load(AcceptorProcessor)+packet
 load(ConnectedProcessor)=
load(ConnectedProcessor)-packet
if, prev = 0, n_donr = 0, n_accr = 0;
 Let level of connectivity = 1;
 Identify the donors and set n_donr.
 Identify the acceptors and set n_accr
. while (lifac > LIF)
 {
 for (i = 0; i < n_donor; i++)
 {
 while (donr[i] is overloaded)
 {
 { for (j = 0; j < n_accr; j++)

 {
 if (donr[i] is connected to accr [j])
 migrate load;
 }
 donr (i) is exhausted or balanced;
 }}
 if desired level of Lif is not achieved then set the
level of connectivity to 2 and repeat step 4
 }
 End of procedure

4. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we report the comparative evaluation of the
proposed strategy with four well known architectures
using various performance metrics. A dynamic algorithm
allocate load at runtime based on no or a little priori
information, which may determine when and whose tasks
can be migrated. The approach used for task migration has
already been discussed in section 3. In simulation
environment, the results obtained by implanting the
algorithm are presented in the form of curves. Mostly any
load balancing algorithm considers the overall load at a
processor. However, the proposed algorithm takes into
account the active load only for balancing. Donor and
acceptor nodes are identified and with the scheduling
policy, with appropriate packet size the migration of load
balances the overall load of the system.

5. COMPARATIVE STUDY

In this section efforts are made to compare the
performance of cube based networks that have already
been studied. These networks are similar in terms of their
topological parameters. All the networks have equal
number of nodes (eight nodes).

To study the behaviour of the scheduling scheme on the
considered networks, the different values of LIF are
evaluated by forming packets of tasks and migrating them
on different directly connected nodes. In particular packets
of unit, four and eight tasks are formed to monitor the load
imbalance. Similarly, the value of execution time is
evaluated while keeping the same load. Comparisons are
made and the curves are plotted for each considered
networks and shown in Figures 4 to 7. The Figures
demonstrate that in all the cases similar pattern of
reduction in LIF is obtained. However, the value of highest
LIF varies in each case. If we consider the standard
hypercube no significant improvement is obtained after
packet formation (Fig. 4) and network performs better with
unit migration. On the other hand lesser value of initial
LIF is obtained when packet of eight tasks is considered
for migration (Fig. 5). Similar results are obtained for LCQ
network (Fig. 6). In case of debruijn network the algorithm
produces similar results as that in hypercube architecture
(Fig. 7).

International Journal of Research in Advent Technology, Special Issue, March 2019
E-ISSN: 2321-9637

Available online at www.ijrat.org

155

Performance of HYPERCUBE with

different Packet size

0

5

10

15

20

25

30

35

40

45

50

3
44

6
88

1
37
5

2
74
9

5
49
8

1
09
96

2
19
91

4
39
81

8
79
62

1
75
92
4

NO. OF TASKS

LIF (%)
UNIT

QUAD

OCTET

Fig. 4. Performance of Hypercube with different packet
sizes.

Performance of LEC with different

Packet size

0

5

10

15

20

25

30

4
22

8
43

1
68
6

3
37
2

6
74
3

1
34
85

2
69
70

5
39
40

1
07
87
9

2
15
75
7

NO. OF TASKS

LIF (%)
UNIT

QUAD

OCTET

Fig. 5. Performance of LEC with different packet sizes.

Performance of LCQ with different

Packet size

0

5

10

15

20

25

30

35

40

3
50

7
00

1
40
0

2
79
9

5
59
7

1
11
94

2
23
88

4
47
75

8
95
49

1
79
09
8

NO. OF TASKS

LIF (%)
UNIT

QUAD

OCTET

 Fig. 6. Performance of LCQ with different packet sizes.

Performance of DE-BRUJIN with

different Packet size

0

5

10

15

20

25

30

35

40

45

50

4
02

8
04

1
60
8

3
21
6

6
43
2

1
28
64

2
57
28

5
14
56

1
02
91
2

2
05
82
4

NO. OF TASKS

LIF (%)

UNIT

QUAD

OCTET

Fig. 7. Performance of de bruijn with different packet sizes.

Another parameter to compare the performance is the
execution time. The balancing time reduces significantly if
the block sizes of the tasks are increase. Considering the
value obtained for hypercube network the execution time
is reduced from 50% and 40%. All other considered
networks take smaller time to attain the optimum value of
LIF with packet formation. The results obtained for
hypercube network is depicted in Fig. 8. If the packet size
is increased continuously then the variance in the
balancing time will appear, however, the larger load
imbalance may results.

Performance (msec.) of Hypercube

with different packet size

0

100

200

300

400

500

600

700

800

UNIT QUAD OCTET

E
x
e

cu
ti

o
n

 T
im

e
(m

se
c.

)

Fig. 8. Performance of Hypercube with different packet
sizes in terms of execution time.

6. CONCLUSION

The work presented in this paper is based on the
implementation of a new dynamic scheduling algorithm
that operates on different block sizes known as packets.
For our study we implanted the proposed techniques on
cube based networks. The curves obtained from the
simulation studies indicate the average behaviour LIF
obtained at different levels and time taken for execution.
The simulation results show that the proposed algorithm
improves overall makespan by grouping independent tasks

International Journal of Research in Advent Technology, Special Issue, March 2019
E-ISSN: 2321-9637

Available online at www.ijrat.org

156

while maintaining the load balance errors. The graphical
representation demonstrates that the value of LIF in almost
all cases is lesser than that obtained by applying standard
scheduling algorithm and further reduced when greater
numbers of tasks are applied on the systems.

The proposed technique is especially beneficial to
schedule the load on cube based or mesh type
interconnection networks. We have evaluated and
presented the results to monitor the performance of these
networks with eight nodes, however, the proposed
technique is equally good for networks having more than
eight processors. It may be concluded that with the
proposed algorithm the system with mesh topology or
having cubic architecture may constitute a class of high-
performance interconnection networks.

REFERENCES

[1] C. H. Yang, P. Lee and Y. C. Chung, “Improving
static task scheduling in heterogeneous and
homogeneous computing system.” IEEE Parallel
Processing,, pp. 45-50, 2007.

[2] L. C. Canon, E. Jeannot, R. Sakellarious, and W.
Jheng, “Comparative evaluation of the robustness of
dag scheduling heuristics, Springer US in Grid
Computing, pp. 73-84, 2008.

[3] S.Venugopalan and O. Sinnen, “Optimal linear
programming solutions for multiprocessor
scheduling with communication delays,” Springer
Berlin Heidelberg, pp. 129-138, 2012.

[4] S. Su., K. Li., H. Chen and K. Li, “Cost-efficient
task scheduling for execution large programs in the
cloud,” Parallel Computing, Vol. 39. No. 4, pp. 177-
188, 2013.

[5] H. Arabnejad, “List based task scheduling
algorithms on heterogeneous systems-an overview,
2003.

[6] E. Havarasan, P. Thambidurai and R.
Mahilmannan, ’High performance task scheduling
algorithm for heterogeneous computing system,”
Springer Berlin Heidelberg in Distrubited and
Parallel Computing, pp. 193-203, 2005.

[7] E. Ilavarasan, P. Thambidurai and R. Mahilmannan,
“Low complexity performance effective task
scheduling algorithm for heterogeneous computing
environment,” Journal of Computer Science, Vol. 3,
No. 2, pp. 94-103, 2007.

[8] Y. Dai and X. Zhang, “A synthesized heuristic task
scheduling algorithm,” The Scientific World Journal,
pp. 1-9, 2014.

[9] N. Parasad, P. Mukkherjee, S. Chattopadhyay and I.
Chakrabarti, “Design and evaluation of ZMesh
topology for on-chip interconnection networks,”
Journal of Parallel Distributing Computing, pp. 17-
36, 2008.

[10] B. Parhami, “Challenges in interconnection network
design in the era of multiprocessor and massively

parallel Microchips,” Proc. Int’l Conf. in
Computing.” pp. 241-246, June 2000.

[11] D.M Kwai and B. Parhami, “Incomplete K-ary n-
cube and its Derivatives,” Journal of Parallel and
Distributed Computing, Vol.16, No. 2, pp.183-190,
Feb.2004.

[12] D. Zou., H. Liu, L. Gao and S. Li, “An improved
differential evolution algorithm for task assignment
problem,” Journal of Engineering Applications of AI,
Vol. 24, pp. 616-624, 2011.

[13] Z. A. Khan, J. Siddiqui and A. Samad, “Properties
and Performance of Cube-based Mutiprocessor
Architectures,” Int. Journal of applied evolutionary
computation (IJCNIS). Vol. 7, No. 1pp. 67-82, 2016.

[14] Z. A. Khan, J. Siddiqui and A. Samad, “Linear
Crossed Cube (LCQ): A new Interconnection
Network Topology for Massively Parallel
Architectures,” Int. J. of Computer Network and
Information Science (IJCNIS), ISSN/ISBN NO:
2074-9090, Vol. 7, No. 3, pp. 18-25, 2015.

[15] Z. Zeng and B. Veeravalli, “Design and Performance
Evaluation of Queue-and-Rate-Adjustment Dynamic
Load Balancing Policies for Distributed Networks,”
IEEE Trans. on Computers, Vol. 55, No. 11, pp.
1410-1422, Nov. 2006.

