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Abstract— Task migration between processing elements (nodes) in a multiprocessor system largely affects the overall 
performance of systems. Although number of task scheduling algorithms have been proposed and implemented, selecting 
best algorithm for a particular multiprocessor system always remains a challenging problem. This paper focuses attention 
on reducing the execution time while maintaining the load balance performance by selecting the weight for migration of 
tasks in terms of packets. The mechanism decides the weight of tasks to migrate in terms of packets dynamically based on 
the task structure as well as on the types of multiprocessor system architecture. Thus, an enhancement of packet formation 
in the existing approach is made to obtain optimal results. We consider the well known class of interconnection network 
known as cube based systems for evaluating the performance. The experimental results indicate that the proposed technique 
reduces the overall makespan of execution with an improved performance of the system. 
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1. INTRODUCTION 
 
Efficiency of an Interconnection network depends on 
optimal migration of tasks by finding out the best 
execution sequence. In order to minimize the makespan of 
overall execution, several techniques are applied to find 
the most efficient algorithm. The main objective of these 
algorithms is to find the allocation method that minimizes 
the execution time while satisfying the load balancing 
criterion. 
 
The problem of task scheduling in homogeneous 
computing is deciding how many tasks are to be scheduled 
on given processors (nodes). Node selection primarily 
depends upon the imbalance of load among the system. 
Many scheduling algorithm have been designed and 
proved to be efficient in terms of distributing the load 
uniformly, however, less attention is paid to reduce the 
overall makespan [1,2,3,4]. 
 
Task scheduling is widely classified into two categories: 
Static scheduling and dynamic scheduling. In static 
scheduling all information related to the tasks are available 
beforehand, whereas in dynamic scheduling information is 
made available during runtime. Among different 
scheduling, List scheduling approaches have been proven 
to be most effective [5]. These algorithms incorporate the 
prioritization of tasks, look-ahead attribute for processor 
selection and easy implantation. 
 
Task scheduling algorithms have been well explored by 
the researchers with a focus on finding suboptimal 
solutions. High performance scheduling (HPS) algorithm 
[6] considers these factors i.e level sorting, task 
prioritization and processor selection. A similar approach 

is applied in [7] where cases are categorized according to 
their levels and priorities are set. A three levels of priority 
in the algorithm in which volume of task are also taken in 
to consideration is proposed and implemented by Dai   et 
al. On the other hand task duplication is adopted during 
processor selection to reduce the schedule length [8]. 
 
This paper studies the scheduling of tasks on a network of 
identical processors where the load is divided into 
approximately equal number of packets to achieve load 
balancing in the system. The load balancing is directly 
proportional to the performance of the system. The quick 
is the load balancing, the efficient is the system. 
 
The rest of the paper is organized as follows. Section 1 is 
introduction. Section 2 describes the network model and 
problem formulation. In section 3 the existing algorithm 
and proposed enhancement for improving the algorithm is 
described. The results obtained by implementing the 
proposed algorithm are presented and discussed in section 
4. The last section is written for conclusion.  
 
 
2. NETWORK MODEL AND PROBLEM FORMULATION 
 
This section describes the network models used to address 
the given problem. The study of interconnection networks 
is an emerging research area in the design of high 
performance parallel system, computer networks and also 
in distributed computing environment. To satisfy the 
requirements of modern ICT technologies and to take 
services of massively parallel systems, computer architects 
have always strived to increase the performance of their 
architectures by designing high quality networks. It is 
anticipated that large parallel applications shall be 
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deployed on next generation high performance computing 
systems [9]. Therefore, it is apparent that low cost, 
efficient and scalable architectures design has a deep 
concern while working with parallel applications. 
 
There are several categories of Interconnection networks 
to address the problem of task scheduling. Prime examples 
are found in ring network, hypercube, debruijn network, 
tree networks,star graph and mesh networks [9,10]. Jingxi 
et al. considers an arbitrary connected network comprising 
of n nodes which accept load from the user [11, 12]. Cube 
based networks have all the desirable properties of 
efficient interconnection networks. These networks are 
equipped with good topological characteristics that include 
small diameter, symmetry, high bisection width and better 
connectivity. A recent study conducted by [13] introduced 
the profitability of these interconnection networks. To 
make best utilization of nodes in such networks it is must 
to design efficient scheduling algorithms. In this paper 
effort is made to enhance the benefits of existing 
approaches by reducing overall make span. In particular, 
four cube-based networks namely standard hypercube 
(HC), Linear Cross Cube (LCQ) (Fig. 1), Linearly 
Extensible Network (LEC) (Fig. 2) and debruijn (Fig. 3) 
networks with eight processors have been taken into 
consideration [9], [13], [14].  
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Fig. 1. LCQ Architecture with eight processors 

  
Fig. 2. LEC Architecture with eight processors 

 
Fig. 3. debruijn network with eight processors 
 
 
3. DYNAMIC ALGORITHM AND PROPOSED 

STATEGY 
 
Dynamic algorithms operate to adjust the load by taking 
decisions on fly with undetermined policy and could be 
easily applied to system that supports variable task 
structures. With regard to dynamic allocation, there have 
been significant efforts in characterizing and dividing 
requests locally [15]. The first phase of the algorithm 
decides the selection of processors for task allocation 
randomly. The input to the networks is a set of 
independent tasks that can be executed on any nodes. 
However, to distribute the load among different nodes task 
are migrated between overloaded processors to 
underloaded processors. Such migration could be carried 
out level wise and processors are considered to cover the 
entire network. Like most of the previously proposed 
algorithms the performance is evaluated in terms of load 
imbalance and execution time by implementing on 
considered networks.  
 
Similar approach could be applied on cube-based networks 
as well as Tree based network which have gain attention in 
the recent past. User submits loads to the available nodes 
which is ultimately balanced among the entire network by 
the schedulers. In the present work we considers grouping 
of tasks for migration. Tasks that are independent of each 
other are assigned to different groups forming a packet. It 
is possible to migrate and execute tasks in the same level 
in paralleled. We considered packet formation of four and 
eight tasks at each level.  
 
The algorithm calculates ideal load value and execution 
time for each level, load imbalance is evaluated that helps 
to take load migration decisions. The load imbalance 
factor for kth iteration, denoted as LIFk, is defined as 
 

LIFk = [max{loadk(Pi)}-(ideal_load)k] / (ideal_load)k 
 
where, (ideal_load)k =[loadk(P0)+loadk(P1)+…+loadk(PN--1)] / N, 
and max(loadk(Pi)) denotes the maximum load pertaining 
to iteration k on a processor Pi ,0≤i≤N-1,and Loadk(Pi ) 
stands for the load on processor Pi due to kth level. The 
pseudo code for the proposed strategy is given in Table 1. 
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TABLE 1: Proposed Algorithm  
Input: N  processor network 
output: Balanced network 
I.  Packet Scheduling 
1.  Consider  N as total number of Processors. 
2.  Randomly generate Load at all processors N. 
     /* load is the number of Tasks assigned to a   
     processor  and tasks are divided into packets* / 
3.  Calculate TotalLoad on all processors. 
     TotalLoad=Load(P1) + Load(P2) +_ _ __ _ _  
     +load(PN). 
    /* P1 is Load assigned to processor P1  and so on */ 
4. Compute IdealLoad 
              IdealLoad=TotalLoad/No. of Processors 
              /* Totalload is calculated as in step 4*/ 
 
5.  According to the Load assigned to each processor 
identify AcceptorSet  processors. 
6.  For each processor in AcceptprSet ,perform 
packetization. 
7.  Compute maximum Load for all processor in a network. 
8.  Calculate Load Imbalance Factor(LIF) 
II.packetization  
 1 For each processor in AcceptprSet ,find out 
ConnectedProcessor collection  
2.  For each connectedprocessor   
         if   load(ConnectedProcessor)>=IdealLoad+ 
              packetsize                                                              
     Migrate packets from ConnectedProcessor to  
      AcceptorProcessor 
                      while     
       load(AcceptorProcessor)<=IdealLoad and    
                                  
load(ConnectedProcessor)>=IdealLoad+ packetsize 
                                          load(AcceptorProcessor)= 
load(AcceptorProcessor)+packet 
                                          load(ConnectedProcessor)= 
load(ConnectedProcessor)-packet                       
if, prev = 0, n_donr = 0, n_accr = 0; 
     Let level of connectivity = 1; 
  Identify the donors and set n_donr. 
  Identify the acceptors and set n_accr 
. while (lifac > LIF) 
     { 
       for (i = 0; i < n_donor; i++) 
     {  
       while (donr[i] is overloaded) 
     { 
     { for (j = 0; j < n_accr; j++) 

     {  
        if (donr[i] is connected to accr [j]) 
           migrate load; 
      } 
        donr (i) is exhausted or balanced; 
      }} 
          if desired level of Lif is not achieved then set the 
level of connectivity to 2 and repeat step 4 
       } 
  End of procedure 

4. EXPERIMENTAL RESULTS AND ANALYSIS  
 
In this section, we report the comparative evaluation of the 
proposed strategy with four well known architectures 
using various performance metrics. A dynamic algorithm 
allocate load at runtime based on no or a little priori 
information, which may determine when and whose tasks 
can be migrated. The approach used for task migration has 
already been discussed in section 3. In simulation 
environment, the results obtained by implanting the 
algorithm are presented in the form of curves. Mostly any 
load balancing algorithm considers the overall load at a 
processor. However, the proposed algorithm takes into 
account the active load only for balancing. Donor and 
acceptor nodes are identified and with the scheduling 
policy, with appropriate packet size the migration of load 
balances the overall load of the system.  
 
 

5. COMPARATIVE STUDY  
 
In this section efforts are made to compare the 
performance of cube based networks that have already 
been studied. These networks are similar in terms of their 
topological parameters. All the networks have equal 
number of nodes (eight nodes).  
 
To study the behaviour of the scheduling scheme on the 
considered networks, the different values of LIF are 
evaluated by forming packets of tasks and migrating them 
on different directly connected nodes. In particular packets 
of unit, four and eight tasks are formed to monitor the load 
imbalance. Similarly, the value of execution time is 
evaluated while keeping the same load.  Comparisons are 
made and the curves are plotted for each considered 
networks and shown in Figures 4 to 7. The Figures 
demonstrate that in all the cases similar pattern of 
reduction in LIF is obtained. However, the value of highest 
LIF varies in each case. If we consider the standard 
hypercube no significant improvement is obtained after 
packet formation (Fig. 4) and network performs better with 
unit migration.  On the other hand lesser value of initial 
LIF is obtained when packet of eight tasks is considered 
for migration (Fig. 5). Similar results are obtained for LCQ 
network (Fig. 6). In case of debruijn network the algorithm 
produces similar results as that in hypercube architecture 
(Fig. 7).  
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Performance of HYPERCUBE with 

different Packet size
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Fig. 4. Performance of Hypercube with different packet 
sizes.  
 

Performance of LEC with different 

Packet size

0

5

10

15

20

25

30

4
22

8
43

1
68
6

3
37
2

6
74
3

1
34
85

2
69
70

5
39
40

1
07
87
9

2
15
75
7

NO. OF  TASKS

LIF (%)
UNIT

QUAD

OCTET

 
Fig. 5. Performance of LEC with different packet sizes.  
 

Performance of LCQ with different 

Packet size
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 Fig. 6. Performance of LCQ with different packet sizes. 

Performance of DE-BRUJIN with 

different Packet size
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Fig. 7. Performance of de bruijn with different packet sizes. 
 
Another parameter to compare the performance is the 
execution time. The balancing time reduces significantly if 
the block sizes of the tasks are increase. Considering the 
value obtained for hypercube network the execution time 
is reduced from 50% and 40%. All other considered 
networks take smaller time to attain the optimum value of 
LIF with packet formation. The results obtained for 
hypercube network is depicted in Fig. 8. If the packet size 
is increased continuously then the variance in the 
balancing time will appear, however, the larger load 
imbalance may results.  
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Fig. 8. Performance of Hypercube with different packet 
sizes in terms of execution time. 
 
 
6. CONCLUSION  
 
The work presented in this paper is based on the 
implementation of a new dynamic scheduling algorithm 
that operates on different block sizes known as packets. 
For our study we implanted the proposed techniques on 
cube based networks. The curves obtained from the 
simulation studies indicate the average behaviour LIF 
obtained at different levels and time taken for execution. 
The simulation results show that the proposed algorithm 
improves overall makespan by grouping independent tasks 
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while maintaining the load balance errors. The graphical 
representation demonstrates that the value of LIF in almost 
all cases is lesser than that obtained by applying standard 
scheduling algorithm and further reduced when greater 
numbers of tasks are applied on the systems.  
 
The proposed technique is especially beneficial to 
schedule the load on cube based or mesh type 
interconnection networks. We have evaluated and 
presented the results to monitor the performance of these 
networks with eight nodes, however, the proposed 
technique is equally good for networks having more than 
eight processors. It may be concluded that with the 
proposed algorithm the system with mesh topology or 
having cubic architecture may constitute a class of high-
performance interconnection networks.  
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