International Journal of Research in Advent Technology, Special Issue, March 2019
E-ISSN: 2321-9637
Available online at www.ijrat.org

Packet based Scheduling Algorithm for Massivelyabalr
Systems

Savita Gautam®, Abdus Samad?

"University Women'’s Polytechnic

Aligarh Muslim University, Aligarh
sawin2003@yahoo.co’inabdussamadamu@gmail.com

Abstract— Task migration between processing elements (fodea multiprocessor system largely affects therait
performance of systems. Although number of tasledaling algorithms have been proposed and implezderselecting
best algorithm for a particular multiprocessor sgstalways remains a challenging problem. This péparses attention
on reducing the execution time while maintaining tbad balance performance by selecting the wdahmigration of
tasks in terms of packets. The mechanism decides/éight of tasks to migrate in terms of packetsadyically based on
the task structure as well as on the types of praitiessor system architecture. Thus, an enhanceshpatket formation
in the existing approach is made to obtain optireallts. We consider the well known class of irdarection network
known as cube based systems for evaluating therpeaihce. The experimental results indicate thaptbposed technique
reduces the overall makespan of execution witmgraved performance of the system.

Keywords: Packet Scheduling, Hypercube, Load ImbalancedfgEkecution Time, Task Migration, Cube Architeetst

1. INTRODUCTION is applied in [7] where cases are categorized @tgrto
their levels and priorities are set. A three lexdlpriority

Efficiency of an Interconnection network depends on in the algorithm in which volume of task are ala&en in

optimal migration of tasks by finding out the best to consideration is proposed and implemented by DHi

execution sequence. In order to minimize the make s al. On the other hand task duplication is adoptednd

overall execution, several techniques are appleedind processor selection to reduce the schedule leByth [

the most efficient algorithm. The main objectivetbése

algorithms is to find the allocation method thahmiizes This paper studies the scheduling of tasks on warktof

the execution time while satisfying the load balagc identical processors where the load is divided into

criterion. approximately equal number of packets to achiew lo
balancing in the system. The load balancing isctlye

The problem of task scheduling in homogeneousproportional to the performance of the system. Ghiek

computing is deciding how many tasks are to be cudke is the load balancing, the efficient is the system.

on given processors (nodes). Node selection priynari

depends upon the imbalance of load among the systeniThe rest of the paper is organized as follows. i8ec is

Many scheduling algorithm have been designed andntroduction. Section 2 describes the network maued

proved to be efficient in terms of distributing thead problem formulation. In section 3 the existing aljon

uniformly, however, less attention is paid to rezlube and proposed enhancement for improving the algarith

overall makespan [1,2,3,4]. described. The results obtained by implementing the
proposed algorithm are presented and discussegkttios
Task scheduling is widely classified into two categs: 4. The last section is written for conclusion.

Static scheduling and dynamic scheduling. In static
scheduling all information related to the tasksarailable
beforehand, whereas in dynamic scheduling inforonais 2. NETWORK M ODEL AND PROBLEM FORMULATION
made available during runtime. Among different
scheduling, List scheduling approaches have beevepr This section describes the network models usedidoeas
to be most effective [5]. These algorithms incogterthe the given problem. The study of interconnectionvwoeks
prioritization of tasks, look-ahead attribute faogessor is an emerging research area in the design of high
selection and easy implantation. performance parallel system, computer networks asd

in distributed computing environment. To satisfye th
Task scheduling algorithms have been well expldogd requirements of modern ICT technologies and to take
the researchers with a focus on finding suboptimalservices of massively parallel systems, compuignitacts
solutions. High performance scheduling (HPS) atbani have always strived to increase the performanctheif
[6] considers these factors i.e level sorting, taskarchitectures by designing high quality networks.isl
prioritization and processor selection. A simil@peoach anticipated that large parallel applications shak

152

International Journal of Research in Advent Technology, Special Issue, March 2019
E-1SSN: 2321-9637
Available online at wwv.ijrat.org

deployed on next generation high performance coimgut
systems [9]. Therefore, it is apparent that low tcos y

0001

efficient and scalable architectures design haseapd 4
concern while working with parallel applications. |

0000 \
There are several categories of Interconnectiowaorés

to address the problem of task scheduling. Prinaengies
are found in ring network, hypercube, debruijn rarty
tree networks,star graph and mesh networks [9,]i0¢xi
et al. considers an arbitrary connected networkprsimg
of n nodes which accept load from the user [11, C2pe 3. DYNAMIC ALGORITHM AND PROPOSED
based networks have all the desirable properties of STATEGY

efficient interconnection networks. These netwodd

equipped with good topological characteristics thelude Dynamic algorithms operate to adjust the load ng
small diameter, symmetry, high bisection width &etter gyecisions on fly with undetermined policy and cotie
connectivity. A recent study conducted by [13] acluced easily applied to system that supports variablek tas

the profitability of these interconnection netwarkBo girycrures. With regard to dynamic allocation, ¢hbave
make best utilization of nodes in such networks must peen significant efforts in characterizing and din

to des[gn efficient scheduling algorlthms.. In tmapgr. requests locally [15]. The first phase of the aion
effort is made to enhance the benefits of existinggecides the selection of processors for task almta
approaches by reducing overall make span. In p#8tic randomly. The input to the networks is a set of
four cube-based networks namely standard hypercub,gependent tasks that can be executed on any nodes
(HC), Linear Cross Cube (LCQ) (Fig. 1), Linearly powever, to distribute the load among different emtask
Extensible Network (LEC) (Fig. 2) and debruijn (F® 56 migrated between overloaded processors to
networks with eight processors have been taken intq,ngerioaded processors. Such migration could beedar
consideration [9], [13], [14]. out level wise and processors are considered tercine
entire network. Like most of the previously propbse
algorithms the performance is evaluated in termsoafl
imbalance and execution time by implementing on
considered networks.

Fig. 3. debruijn network with eight processors

Similar approach could be applied on cube-basedarks

as well as Tree based network which have gaintaitem

the recent past. User submits loads to the availabtles
which is ultimately balanced among the entire nekway

the schedulers. In the present work we considersping
of tasks for migration. Tasks that are indepenaérgach
other are assigned to different groups forming ekef It

is possible to migrate and execute tasks in theedanel

in paralleled. We considered packet formation ofr fand
eight tasks at each level.

The algorithm calculates ideal load value and etiecu
time for each level, load imbalance is evaluated tielps
to take load migration decisions. The load imbatanc
factor for K" iteration, denoted as LJFs defined as

LIF = [max{load(P)}-(ideal_load)] / (ideal_load)

where, (ideal_loagdi{load(R)Hoadk(R)+. .. Hoag(Ry)] /N,

and max(loadP,))) denotes the maximum load pertaining
to iteration k on a processor RPxi<N-1l,and LoadP,)
stands for the load on processerdBe to K' level. The
pseudo code for the proposed strategy is giverabierl.

Fig. 2. LEC Architecture with eight processors

153

International Journal of Research in Advent Technology, Special Issue, March 2019
E-1SSN: 2321-9637
Available online at wwv.ijrat.org

TABLE 1: Proposed Algorithm

Input: N processor network

output: Balanced network

I. Packet Scheduling

1. Consider N as total number of Processors.

2. Randomly generate Load at all processors N.
[* load is the number of Tasks assigned to a
processor and tasks are divided into packets*

3. Calculate TotalLoad on all processors.
TotalLoad=Load(P + Load(R) +
+load(R).

[* P, is Load assigned to processgradhd so on */

4. Compute IdealLoad

IdealLoad=TotalLoad/No. of Processors
[* Totalload is calculated as in st&p

5. According to the Load assigned to each processo
identify AcceptorSet processors.
6. For each processor in AcceptprSet ,perform
packetization.
7. Compute maximum Load for all processor in avoek.
8. Calculate Load Imbalance Factor(LIF)
Il.packetization
1 For each processor in AcceptprSet ,find out
ConnectedProcessor collection
2. For each connectedprocessor
if load(ConnectedProcessor)>=IldeallLoad+
packetsize
Migrate packets from ConnectedProcessor to
AcceptorProcessor
while
load(AcceptorProcessor)<=IdealLoad and

load(ConnectedProcessor)>=ldealLoad+ packetsize
load(ApterProcessor)=
load(AcceptorProcessor)+packet
load(CewctedProcessor)=
load(ConnectedProcessor)-packet
if, prev =0, n_donr = 0, n_accr = 0;
Let level of connectivity = 1;
Identify the donors and set n_donr.
Identify the acceptors and set n_accr
. while (lifac > LIF)

for (i=0; i < n_donor; i++)

while (donrfi] is overloaded)

{

{for (j = 0; j < n_accr; j++)

if (donr[i] is connected to accr [j])
migrate load;
}

donr (i) is exhausted or balanced;

1

if desired level of Lif is not achievetlenh set the
level of connectivity to 2 and repeat step 4

}

End of procedure

4. EXPERIMENTAL RESULTSAND ANALYSIS

In this section, we report the comparative evatumtf the
proposed strategy with four well known architecture
using various performance metrics. A dynamic atbaoni
allocate load at runtime based on no or a littleorpr
information, which may determine when and whosé&gas
can be migrated. The approach used for task migrditas
already been discussed in section 3. In simulation
environment, the results obtained by implanting the
algorithm are presented in the form of curves. Noshy
load balancing algorithm considers the overall |@ada
processor. However, the proposed algorithm takés in
account the active load only for balancing. Donad a
acceptor nodes are identified and with the schaduli
policy, with appropriate packet size the migratafnioad
balances the overall load of the system.

5. COMPARATIVE STUDY

In this section efforts are made to compare the
performance of cube based networks that have alread
been studied. These networks are similar in terfribesr
topological parameters. All the networks have equal
number of nodes (eight nodes).

To study the behaviour of the scheduling scheme on the
considered networks, the different values of LIFe ar
evaluated by forming packets of tasks and migrattiregn

on different directly connected nodes. In particpackets

of unit, four and eight tasks are formed to monitw load
imbalance. Similarly, the value of execution timg i
evaluated while keeping the same load. Comparisoas
made and the curves are plotted for each considered
networks and shown in Figures 4 to 7. The Figures
demonstrate that in all the cases similar pattefn o
reduction in LIF is obtained. However, the valuéhimfhest

LIF varies in each case. If we consider the stahdar
hypercube no significant improvement is obtainetéraf
packet formation (Fig. 4) and network performs dxettith

unit migration. On the other hand lesser valuendfal

LIF is obtained when packet of eight tasks is cdergd

for migration (Fig. 5). Similar results are obtairfer LCQ
network (Fig. 6). In case of debruijn network thgoaithm
produces similar results as that in hypercube tachire

(Fig. 7).

154

International Journal of Research in Advent Technology, Special Issue, March 2019
E-1SSN: 2321-9637
Available online at wwv.ijrat.org

Performance of HYPERCUBE with

50 different Packet size
45 -
40
35 -

30 -
LF (%,

20
15 7
10
5
0

6 O b
S A
%
NO.DF TASKS

Performance of DE-BRUJIN with
different Packet size

50
45 -
40
35

LIF (%) 30
25
20 —&— UNIT
15 —=—QuAD
10
A~ OCTET

5 -
0

A S I A S S, S SR AN
Q! gl Vo Qv
™ ko) S et U © !
SR NoPE h@Ks«,\/

&
IR

Fig. 4. Performance of Hypercube with different ketc

sizes.

Performance of LEC with different

Packet size
30

25 ’33
20 -
A

LIF (%) 15 -

—&—UNIT

107 " A4 A A A A —A—A —SQUAD
A— OCTET

5

0

D @ A D o &
R R AL R P R

N
=)

© AP T 9

NO.OF TASKS

Fig. 5. Performance of LEC with different packetes.

Performance of LCQ with different
Packet size

40
35 T m

30
25

+—— —o—UNIT

LIF (%) 20
N ——6——0¢—6—¢ _=—QurD
15 A —h—& A &b —h—A _, o0

10
5
0

—
A

o o> @
D S
N Ay

L S & P
5 A ® P

H o ® >
S N
RN

NO. OF TASKS

Fig. 6. Performance of LCQ with different packiees.

Fig. 7. Performance of de bruijn with different patsizes.

Another parameter to compare the performance is the
execution time. The balancing time reduces sigaifity if

the block sizes of the tasks are increase. Consgi¢he
value obtained for hypercube network the executiore

is reduced from 50% and 40%. All other considered
networks take smaller time to attain the optimuru@aof

LIF with packet formation. The results obtained for
hypercube network is depicted in Fig. 8. If the kmcsize

is increased continuously then the variance in the
balancing time will appear, however, the largerdioa
imbalance may results.

Performance (msec.) of Hypercube
with different packet size

800

700
600 |
500
400
300
200 |
dEN]
0 r r

UNIT QUAD OCTET

Execution Time(msec.)

Fig. 8. Performance of Hypercube with different kgetc
sizes in terms of execution time.

6. CONCLUSION

The work presented in this paper is based on the
implementation of a new dynamic scheduling algaonith
that operates on different block sizes known asketsc
For our study we implanted the proposed techniqures
cube based networks. The curves obtained from the
simulation studies indicate the average behaviolF L
obtained at different levels and time taken foroemen.

The simulation results show that the proposed #lguar
improves overall makespan by grouping independesist

155

International Journal of Research in Advent Technology, Special Issue, March 2019
E-1SSN: 2321-9637
Available online at wwv.ijrat.org

while maintaining the load balance errors. The hiead
representation demonstrates that the value of i drnost
all cases is lesser than that obtained by applgtagdard
scheduling algorithm and further reduced when great
numbers of tasks are applied on the systems.

The proposed technique
schedule the
interconnection

is especially beneficial
load on cube based or mesh
networks. We have evaluated and

presented the results to monitor the performancthede

networks with eight nodes,

however,

technique is equally good for networks having mibran
eight processors. It may be concluded that with the
proposed algorithm the system with mesh topology or
having cubic architecture may constitute a clasfigh-
performance interconnection networks.

REFERENCES

(1]

(2]

(3]

4

(5]

6]

[71

(8]

E)

C. H. Yang, P. Lee and Y. C. Chung, “Improving
static task scheduling in heterogeneous and
homogeneous computing system.” IEEE Parallel
Processing,, pp. 45-50, 2007.

L. C. Canon, E. Jeannot, R. Sakellarious, and W.
Jheng, “Comparative evaluation of the robustness of
dag scheduling heuristics, Springer US in Grid
Computing, pp. 73-84, 2008.

S.Venugopalan and O. Sinnen, “Optimal linear
programming solutions for multiprocessor
scheduling with communication delays,” Springer
Berlin Heidelberg, pp. 129-138, 2012.

S. Su., K. Li.,, H. Chen and K. Li, “Cost-efficient
task scheduling for execution large programs in the
cloud,” Parallel Computing, Vol. 39. No. 4, pp. 177
188, 2013.

H. Arabnejad, “List based task scheduling
algorithms on heterogeneous systems-an overview,
2003.

E. Havarasan, P. Thambidurai and R.
Mahilmannan, 'High performance task scheduling
algorithm for heterogeneous computing system,”
Springer Berlin Heidelberg in Distrubited and
Parallel Computing, pp. 193-203, 2005.

E. llavarasan, P. Thambidurai and R. Mahilmannan,
“Low complexity performance effective task
scheduling algorithm for heterogeneous computing
environment,” Journal of Computer Science, Vol. 3,
No. 2, pp. 94-103, 2007.

Y. Dai and X. Zhang, “A synthesized heuristic task
scheduling algorithm,” The Scientific World Journal
pp. 1-9, 2014.

N. Parasad, P. Mukkherjee, S. Chattopadhyay and I.
Chakrabarti, “Design and evaluation of ZMesh
topology for on-chip interconnection networks,”
Journal of Parallel Distributing Computing, pp. 17-
36, 2008.

[10] B. Parhami, “Challenges in interconnection network

design in the era of multiprocessor and massively

parallel Microchips,” Proc. Int'l Conf. in

Computing.”pp. 241-246, June 2000.

[11] D.M Kwai and B. Parhami, “Incomplete K-ary n-

cube and its Derivatives,” Journal of Parallel and
Distributed ComputingVol.16, No. 2, pp.183-190,
Feb.2004.

to [12] D. Zou., H. Liu, L. Gao and S. Li, “An improved
type

differential evolution algorithm for task assignren
problem,” Journal of Engineering Applications of, Al
Vol. 24, pp. 616-624, 2011.

the proposed [13] Z. A. Khan, J. Siddiqui and A. Samad, “Properties

and Performance of Cube-based Mutiprocessor
Architectures,” Int. Journal of applied evolutiopar
computation (IJCNIS). Vol. 7, No. 1pp. 67-82, 2016.

[14] Z. A. Khan, J. Siddiqui and A. Samad, “Linear

Crossed Cube (LCQ): A new Interconnection
Network Topology for Massively Parallel
Architectures,” Int. J. of Computer Network and
Information Science (IJCNIS), ISSN/ISBN NO:
2074-9090, Vol. 7, No. 3, pp. 18-25, 2015.

[15] Z. Zeng and B. Veeravalli, “Design and Performance

Evaluation of Queue-and-Rate-Adjustment Dynamic
Load Balancing Policies for Distributed Networks,”
IEEE Trans. on Computers, Vol. 55, No. 11, pp.
1410-1422, Nov. 2006.

156

