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Abstract: In this paper, we define different types of triangular graphs and tridi graphs. We prove the relation 
between the number of vertices and the number of rectangular regions in the geometric duals of greatest 
triangular graphs and some related results. We give a direct formula for the number of triangular and rectangular 
regions in the geometric dual of Triangular Graph. This paper defines the * outerplanar graph and prove the 
necessary and sufficient condition for * outerplanarity of graphs” 

 
Index Terms: Triangular Graph, *outerplanar graph, tridi graph. 
 
1.   INTRODUCTION 
 It is no coincidence that different mathematicians 
have been discovered graph theory many times 
independently. It may quite properly be regarded as an 
important area of applied mathematics. Euler became 
a father of graph theory, when in 1936 he solved a 
famous unsolved problem of his day, called the 
Konigsberg Bridge Problem. In 1847, Kirchhoff 
developed the theory of trees which helps to solve 
problems of an electrical network. In 1936 the 
psychologist Lewin proposed that the life space of an 
individual represented by a planar graph. There are 
several other criteria for identifying planarity that 
have been discovered in the original work of 
Kuratowski. Tutte developed an important algorithm 
for drawing a graph in a plane. Whitney expressed 
planarity in terms of the existence of dual graphs. We 
find some interesting properties of Triangular graphs 
which will play very significant role in the further 
development of applications of graph theory. 
Covering every aspect of graphs would take hundreds 
of pages. This article provides a quick overview of 
graphs, Triangular graphs and outerplanar graphs. It 
introduces a few techniques for dealing with graphs, 
and explores some interesting problems. This article 
will hopefully shed some light on the beauty of  
Triangular graphs and related aspects. 

In this section, we present a brief survey of 
those results of graph theory, which we shall need 
later. The reader is referred to [4, 5, 6, 7] for a fuller 
treatment of the subject. 
1.1.   Graphs  
A graph G is an ordered pair (V (G), E (G) ) where i) 
V(G) is a non empty finite set of elements , known as 
vertices. V (G) is known as vertex set. ii) E(G) is a 
family of unordered pairs (not necessarily distinct) of 
elements of V, known as edges of G. 
A walk of a graph is defined as a finite 
alternating sequence of vertices and edges, beginning 
and ending with vertices, such that each edge is 
incident with the vertices preceding and following it.  

 
 
Vertices of graph with which a walk begins and ends, 
are called its terminal vertices. A walk, in which 
terminal vertices are same, is called as the closed walk 
.Otherwise open walk. A graph G is said to be the 
connected graph if there exists at least one walk 
between every pair of vertices in G .Otherwise graph 
G is disconnected. The vertex connectivity of a 
connected graph G is defined as the minimum number 
of vertices whose removal from G leaves the 
remaining graph disconnected. A connected graph is 
said to be 2- connected if its vertex connectivity is 
two. [5]   
1.2.   Planar graph 
A graph G is a planar graph if it is possible to 
represent it in the plane such that no two edges of the 
graph intersect except possibly at a vertex to which 
they are both incident. Any such drawing of planar 
graph G in a plane is a planar embedding of G. The 
degree of the region is the number of edges in a closed 
walk that encloses it. The region formed by three 
edges is known as triangular region. The region 
formed by four edges is known as rectangular region. 
[5, 6] 
 
Theorem 1.1: If a connected planar graph G with n 
vertices, m edges has f regions or faces, then  n - m 
+ f = 2 . 

1.3.   Triangular graph:                                    
A graph is said to be a Maximal Planar Graph if the 
graph becomes non-planar when any two nonadjacent 
vertices in it are joined by an edge. A maximal planar 
graph is necessarily a connected graph. Every graph is 
a spanning subgraph of a maximal planar graph. A 
planar graph is a maximal planar graph if and only if 
the rank of every region of that graph is three. 
Therefore every maximal planar graph has a straight 
line representation. The maximal planar graph is also 
known as triangular graph. [6] 
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1.4.   Outerplanar graph 
A planar graph is said to be an Outerplanar graph if it 
can be embedded in the plane so that all its vertices lie 
on the same region or face, that region or face may be 
exterior or interior region. It is first named and studied 
by Chartrand and Harary in 1967. [1] 
1.5.   Maximal outerplanar graph 
An Outerplanar graph is said to be Maximal 
Outerplanar graph if  it loses its outerplanarity when 
any two non adjacent vertices are joined by an edge. 
[2]       
        
Theorem 1.2: Every maximal Outerplanar graph 
G with n vertices has (i) 2n-3 edges, (ii) At least two 
vertices of degree 2. [5]   
1.6.   Geometric dual 
 Let G be a plane graph with n Regions or faces say 
R1, R2, R3, . . .Rn . Let us place points (say vertices 
) V1, V2, V3, . . .  Vn , one in each of the regions. Let 
us join these vertices Vi according to the 
following procedure. 
i) If two regions Ri and Rj are adjacent then draw a 
line joining vertices Vi and Vj that intersect the 
common edge between  Ri and Rj exactly once. 
ii) If there are two or more edges common between Ri 

and Rj , then draw one line between vertices Vi and 
V j for each of the common edges. 
iii) For an edge ‘e’ lying entirely in one region say Ri, 

draw a self loop at pendant vertex Vi intersecting e 
exactly once. 
 By this procedure, we obtain a new graph G* 
consisting of V1, V2, V3, . . .  Vn vertices and  edges 
joining these vertices. Such a graph G* is called a 
geometric dual of G (a dual of G). [5] 
1.7. * isomorphic graphs 
Two graphs G1 and G2, said to be * isomorphic graphs 
if their duals are isomorphic. Every graph is * 
isomorphic to itself. [3] 
1.8.   HB graph 
A region or face R of a planar graph is said to be a 
pivot region of graph if all other regions of graph are 
adjacent to R. A planar graph is said to be HB graph if 
it has a pivot region. [4]  
 
2.   TYPES OF TRIANGULAR GRAPHS  
Depending upon the nature of degree sequence of 
triangular, there are three different types of triangular 
graphs as given below. 
2.1.   Greatest triangular graph 
A triangular graph G on n ≥ 4 vertices is said to be the 
greatest triangular graph if the degree sequence of 
graph G is n – 1, n – 1, 4, 4 . . . 4, 4, 3, 3. The greatest 
triangular graph on n vertices is denoted by GTn. In 
the greatest triangular graph, there must be at least 
two vertices of degree 4 and exactly two vertices of 
degree three. The degree sequence of the greatest 
triangular graph on six vertices (GT6) is 5, 5, 4, 4, 3, 
3. 
 

2.2.   Top triangular graph 
A triangular graph G on n ≥ 6 vertices is said to be the 
top triangular graph if the degree sequence of graph G 
is n – 2, n – 2, 4, 4 . . . 4, 4. The top triangular graph 
on n vertices is denoted by TTn. Every TTn has at least 
five vertices of degree 4. The degree sequence of the 
top triangular graph on 8 vertices (TT8) is 6, 6, 4, 4, 4, 
4, 4, 4. 
2.3.   Regular triangular graph 
A triangular graph, in which degree of each vertex is 
same, is called regular triangular graph. Alternately, a 
graph which is regular as well as triangular is called 
regular triangular graph. The regular triangular graph 
on n vertices is denoted by RTn. The degree sequence 
of a regular triangular graph on 6 vertices (RT6) is 4, 
4, 4, 4, 4, 4. 
 
Theorem 2.1: The geometric dual of a Triangular 
graph on n ≥ 4 vertices is a simple graph.   
Proof: Let G be a Triangular graph on n ≥ 4 vertices. 
The degree of every region interior as well as exterior 
of G is 3. Every triangular region of graph G is 
adjacent to three different triangular regions and there 
is no any pendent vertex. So there are no any parallel 
edges or loops in the geometric dual of G. Hence the 
geometric dual of G is a simple graph. 
 
Theorem 2.2: The geometric dual of the greatest 
Triangular graph on n vertices, where n ≥ 6, has n-
4 rectangular regions. 
Proof: Here we use the principal of mathematical 
induction to prove this result. We assume that the 
result is true for n=k vertices. That is, the geometric 
dual of the greatest triangular graph G on k vertices, 
where k ≥ 6, has k-4 rectangular regions. Let G1 be 
the triangular graph with k+1 vertices. If we add one 
vertex to graph G, then we get two more triangular 
regions in G. Therefore G1

* has one more rectangular 
region than G*. So G1

* has (k-4) +1 =(k+1) – 4  
rectangular regions. Thus by the principal of 
mathematical induction, we get the required result. 
 
Theorem 2.3: If G is a Triangular graph on n 
vertices, where n ≥ 5, then G has 2(n-2) regions.        
 Proof: By Euler’s Formula for Plane Graphs, we get 
n - m + f = 2 . We know that a triangular graph on n 
vertices has 3n – 6 numbers of edges. So m=3n-6. 
Therefore we have n – (3n-6)+ f  = 2  ⇒    f = 2(n-2). 
Thus G has 2(n-2) regions. 
   
Theorem 2.4:  If G is the greatest triangular graph 
on n vertices, where n ≥ 5, then f =  n  + s, where f 
= Number of regions or faces in G,  s = Number of 
rectangular regions in G*.                                             
Proof: Let G be a triangular graph on n ≥ 5 vertices 
with m edges and f faces or regions. By theorem      f 
= 2n-4 ,  m=3n-6 and s = n-4. By Euler’s theorem, we 
have   

n - m + f  = 2  
⇒ f = 2 –n + m      
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⇒ f =2-n + 3n-6     

⇒ f =  2 n - 4 =  n + ( n - 4)  =  n +  s            

⇒ f  =  n + s. 
 

Theorem 2.5: If T is the top triangular graph on n 
vertices, e edges, m regions, d total degree and 
graph T* has s number of rectangular regions, 
then e = 3s,       m = 2s and d = 6s. 
Proof: Let T be the triangular graph on n vertices, e 
edges and m regions. The total degree of graph T is d. 
The graph T* has s rectangular regions. T* has    n – 2 
rectangular regions. Therefore s = n – 2. We know 
that the triangular graph on n vertices has     3n – 6 
edges. So e = 3n - 6 = 3 (n - 2) = 3s.  
As triangular graph has 2n – 4 rectangular regions. 
Hence m = 2n – 4 = 2 (n - 2) = 2s. 
As every region of T is triangular, the rank of each 
region of T is 3. Therefore the total degree of T is    d 
= 3 (2n - 4) = 6 ( n - 2) = 6s. Hence the proof.   
 
Theorem 2.6: Every triangular graph on n ≥ 5 
vertices is not HB graph.    
Proof: Let G be a triangular graph on n ≥ 5 vertices. 
By theorem 2.3, G has 2 (n-2) triangular regions. 
Graph G has at least 6 Triangular regions. So there 
exists one triangular region, say T1, which is adjacent 
to three triangular regions T2, T3, T4.Therefore 
remaining triangular regions are not adjacent to T1. So 
the triangular graph G has no pivot region. Hence G is 
not HB graph.         

    
Theorem 2.7: There are exactly four regular 
triangular graphs. 
Proof: Let G be a regular triangular graph on n 
vertices. Graph G has 3n – 6 edges and total degree of 
G is 2 (3n - 6). As graph G is regular, so n divides 6n -
12. This implies 6n – 12 = n k, where k is any non 
negative integer. 
⇒      6n – nk =12    ⇒   n (6 - k) = 12    
⇒      n = 12/ (6-k)  ⇒    k = 0, 2, 3, 4 and 5. 
For k = 0, 2, 3, 4 and 5 the values of n are 2, 3, 4, 6 
and 12 respectively. The triangular graph on two 
vertices does not exist. Thus there are exactly four 
regular triangular graphs. The regular triangular graph 
on three vertices is called cycle graph, four vertices is 
tetrahedron (The complete graph on four vertices), six 
vertices is octahedron and twelve vertices is called 
icosahedrons. 
 
Theorem 2.8: Every regular triangular graph is a 
regular rank graph. Converse is not true. 
Proof: Let G be a regular triangular graph. Every 
region of G is bounded by three edges, so rank of each 
region of G is same. All vertices of G are of the same 
degree. Thus graph G is regular rank graph. 
Let Cn be a cycle graph on four or more vertices. 
Graph Cn is regular rank graph. Graph Cn has only 
two regions and rank of each region is n, which is 
different from three. Therefore Cn is not triangular 

graph. Hence a regular rank graph may or may not be 
regular triangular graph. 
Cube graph and Dodecahedron graph are regular rank 
graphs but not regular triangular graphs. 
 
3.   *TRIANGULAR GRAPH 
A planar graph G is said to be *triangular graph if it’s 
geometric dual (G*) is a triangular graph. The 
complete graph on four vertices is a triangular graph 
and it’s geometric dual is also triangular graph So K4 
is *triangular graph. Moreover the complete graph on 
three vertices is triangular graph but not *triangular 
graph. 
 
Theorem 3.1: In the geometric dual of maximal 
Outerplanar graph on n ≥ 4 vertices, there are at 
least two pairs of multiple edges. 
Proof: Every maximal Outerplanar graph has at least 
two vertices of degree 2. So there are at least two 
triangular regions which have two common edges 
with an exterior region. If two regions have two 
boundary edges common, then these edges form 
parallel edges in its geometric dual. Hence it is proved 
. 
 
Corollary 3.1.1: The geometric dual of maximal 
Outerplanar graph is not simple graph. 
Proof: By theorem 3.1, there are at least two pairs of 
multiple edges in the geometric dual of maximal 
Outerplanar graph. Hence geometric dual is not 
simple.  
 
4.   * OUTERPLANAR GRAPH 
A planar graph G is said to be * Outerplanar graph if 
its geometric dual is an Outerplanar graph.A planar 
graph G is called Absolute * Outerplanar graph if 
graphs G and G*  are an Outerplanar graphs. A planar 
graph G is called conditional * Outerplanar graph if 
G* is an Outerplanar graph but G is not an Outerplanar 
graph. 
 
Theorem 4.1: A graph is * Outerplanar graph if 
and only if it has no subgraph homeomorphic to K4 
or H, where H is the regular connected multigraph 
on 3 vertices and 6 edges.                                  
Proof: Let G be * outerplanar graph. Therefore G*

 is 
outerplanar graph. Graph G*

 has no subgraph that is 
homeomorphic to K4 and K2, 3. The geometric duals of 
K4 and K2,3 are K4 and graph H respectively, where H 
is the regular connected multigraph on 3 vertices with 
6 edges. So graph G has no subgraph homeomorphic 
to K4 and H. Conversely, if graph G has no subgraph 
homeomorphic to K4 and H, then G* has no subgraph 
homeomorphic to K4 and K2,3. So G* is outerplanar 
graph. Hence G is * outerplanar graph. 

5.   TRIDI GRAPH 
A cycle of length one is called improper cycle. All 
loops are improper cycles. A connected graph G is 
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said to be Tridi graph if it has improper cycles only 
and each vertex is adjacent to at most two vertices. 
The adjacency matrix of this graph is tri-diagonal 
matrix. So the graph is known as tri-diagonal graph 
and the name Tri-di graph comes from tri-diagonal 
graph. For convenience we use Tridi graph. Tridi 
graph having n number of vertices and m loops is 
denoted by Tn,m or T (n, m). Therefore, Tn,0   
represents a chain graph on n vertices. T1,m   
represents a Rose  graph on m loops. T2,1 represents a 
tridi graph with two vertices and one loop. 
 
Theorem 5.1 : The geometric dual of Tridi graph 
Tn,0 is a T1,n-1. 
Proof:  Let G be a Tridi graph Tn,0. By definition of 
Tridi graph, G is a connected graph with n vertices 
and n-1 edges. So G is a chain graph with n vertices. 
G has only one region with rank n-1. Therefore the 
geometric dual of G has one vertex and n-1 loops. 
Such type of graph is denoted by T1,n-1. Thus the 
geometric dual of Tridi graph Tn,0 is a   T1,n-1. 
5.1.   Complete tridi graph 
A Tridi graph having equal number of vertices and 
loops is called Complete Tridi graph. A Tridi graph 
may be regular graph.   
5.2.   Regular tridi graph 
A Tridi graph, in which degree of each vertex is same, 
is called regular tridi graph. It is denoted by Tn,n. T3,3 
represents a regular tridi graph with 3 vertices and 3 
loops. 
5.3.   L* graph 
A connected graph G is said to be L* graph if there 
exists a vertex v such that d (v) ≥ 3 with at least one 
loop is incident at v and remaining all vertices are 
pendent vertices. A L*graph with n number of 
vertices and m loops is denoted by L*n,m or        L* (n, 
m). A L* graph L*n,0 is a star graph. L* (3, 2) 
represents a L* graph with 3 vertices and 2 loops. 
5.4.   Complete L* graph 
A L*  graph having equal number of vertices and 
loops, is called Complete L*  graph. It is denoted by           
L* (n, n). 
 
Theorem 5.2 : The geometric dual of L* (n, m) 
graph if no loop present inside of other loops, is a      
L* (m+1, n-1) graph. 
Proof: Let G be a L* graph with n vertices and m 
loops such that no loop present inside of other loops. 
G has m + 1 regions and m+ n–1 edges. Out of total 
number of edges, G has n–1 bridges only. Therefore 
the geometric dual of G say G*, has m+1 vertices and 
n-1 loops. G* has m pendent vertices and one vertex 
is of degree (2n + m – 2) ≥ 3. Thus graph G* is L* 
(m+1, n-1) graph. 
Theorem 5.3 : The geometric dual of T (n, m) 
graph if no loop present inside of other loops, is a        
L* (m+1, n-1) graph. 
Proof: Let G be a Tridi graph with n vertices and m 
loops such that no loop present inside of other loops. 
The geometric dual of G say G* has m+1 vertices and 

m+n-1 edges. So G* has n-1 loops. G* has m pendent 
vertices and one vertex is of degree (2n + m – 2) ≥ 3. 
Thus graph G* is L* (m+1, n-1) graph.  
           
6.   LB GRAPH 
 A connected graph having only improper cycles is 
called LB graph. Thus LB graph has only loops and/ 
or bridges. LB graph with n vertices and l loops is 
denoted by Ln,l  . Every Ln,l  graph has n-1+l edges. 
6.1.   Complete LB graph 
A LB graph having equal number of vertices and 
loops is called Complete LB graph. 
6.2.   Purely LB graph 
A LB graph which is neither Tridi graph nor L* graph 
is called purely LB graph. 
Every Tridi graph is a LB graph but converse is not 
true. Every L* graph is a LB graph but converse of 
this statement is not true. 
 
Theorem 6.1 : The geometric dual of LB graph if 
no loop present inside of other loops, is a L* graph. 
Proof: Let G be a LB graph with n vertices and m 
loops such that no loop present inside of other loops. 
The geometric dual of G say G* has m+1 vertices and  
m+n-1 edges. So G* has n-1 loops. G* has m pendent 
vertices and one vertex is of degree (2n + m – 2) ≥ 3. 
Thus graph G* is         L* (m+1, n-1) graph.     
 
REFERENCES 

[1] Bhose Prosenjit, “On embedding an outerplanar 
graph in a point set”, Computational Geometry, 
23 (2002) 303-312. 

[2] David Coudert, Florian Huc, “ Pathwidth of 
outerplanar graphs”, MASCOTTE, 13S-CNRS-
INRIA-UNSA, 2004. 

[3] H. R. Bhapkar and J. N. Salunke, “*isomorphism 
of graphs”, in International Journal of 
Mathematical Sciences and Engineering 
Applications, Vol. 8, No. II, 0973-9424, March 
14. 

[4] H. R. Bhapkar and J. N. Salunke, The Geometric 
Dual of HB Graph, *outerplanar Graph and 
Related Aspects, in Bulletin of Mathematical 
Sciences and Applications, ISSN 2278-9634, 
Volume 3, No. 3, pp 114-119, August 2014. 

[5] Harary, F., Graph Theory, Reading, MA: Addison-
Wesley, pp. 113-115, 1994. 

[6] Narsingh Deo, Graph Theory with Applications To 
Engineering and Computer Science, Prentice –
Hall of India, 2003. 

[7] Robin J. Wilson, Introduction to Graph Theory, 
Pearson, 978-81-317-0698-5, 2011 

[8] V. K. Balakrishnan, Schaum’s outline of theory 
and problems of graph theory, 198-243, 2008 

 
 



 
International Journal of Research in Advent Technology (E-ISSN: 2321-9637) Special Issue 

National Conference “ACGT 2015”, 13-14 February 2015 
 

78 

 

 


