
International Journal of Research in Advent Technology (IJRAT) (E-ISSN: 2321-9637)
Special Issue

National Conference “CONVERGENCE 2016”, 06th-07th April 2016

73

Design and Implementation of load balancing in grid
using min-min algorithm

Ashutosh V Kale, Gopal U Tangade, Yogesh J Jadhao, Prof.V.P.Narkhede, Prof. S. M. Dandage

Computer science and engineering.
Ashutoshkale.kale@gmail.com,yjadhao493@gmail.com,jayeshtangade@gmail.com

Abstract-
Grid computing is become as real

alternative to traditional supercomputing
environments for developing parallel
applications that harness massive computational
resources. However, the complexity incurred in
building such parallel Grid-aware applications is
higher than the traditional parallel computing
environments. It addresses issues such as
resource discovery, heterogeneity, fault tolerance
and task scheduling. Load balanced task
scheduling is very important problem in complex
grid environment. So task scheduling which is
one of the NP-Complete problems becomes a
focus of research scholars in grid computing
area. The traditional Min-Min algorithm is a
simple algorithm that produces a schedule that
minimizes the make-span than the other
traditional algorithms in the literature. But it fails
to produce a load balanced schedule. In this
paper a Load Balanced Min-Min (LBMM)
algorithm is proposed that reduces the make span
and increases the resource utilization. The
proposed method has two-phases. In the first

phase the traditional Min-Min algorithm is
executed and in the second phase the tasks are
rescheduled to use the unutilized resources
effectively. Grid computing is a kind of
distributed computing that involve the integrated
and collaborative use of distributed resources. It
involves huge amounts of computational task
which require reliable resource sharing across
computing domains. Load balancing in grid is a
technique which distributes the workloads across
multiple computing nodes to get optimal
resource utilization, minimum time delay,
maximize throughput and avoid overload. It is a
challenging problem that has been studied
extensively is the past several years. The design
of load balancing algorithm requires completed
understanding of the grid system and the
scheduling strategies used, the heterogeneity
between available nodes, the challenges and
issues, and their limitations within the grid
Architecture.

Index Terms- Grid Computing, Load Balancing, Min-Min Algorithm

1. INTRODUCTION

Load balancing is deviding the amount of work that a
computer has to do between two or more computer so
that more work get done in same amount of time
and,in ganeral, all user get served faster ,load
balancing can be implementing with hardware,
software or communication of both.
 Mixed-machine heterogeneous computing
environments [2] are a group of heterogeneous high -
performance machines interconnected with high -
speed links. They are used to solve a variety of
computationally intensive applications that require
different computing environments.[1] The Min-Min
algorithm first finds the minimum execution time of
all tasks. Then it chooses the task with the least

execution time among all the tasks. The algorithm
proceeds by assigning the task to the resource that
produces the minimum completion time. The same
procedure is repeated by Min-Min until all tasks
are scheduled[1]. The algorithm proposed in this paper
outperforms all those algorithms both in terms of
make span and load balancing. Thus a better load
balancing is achieved and the total response time of
the grid system is improved. The proposed algorithm
applies the Min-Min strategy in the first phase and
then reschedules by considering the maximum
execution time that is less than the makespan obtained
from the first phase[1].

2. LOAD BALANCING :

International Journal of Research in Advent Technology (IJRAT) (E-ISSN: 2321-9637)
Special Issue

National Conference “CONVERGENCE 2016”, 06th-07th April 2016

74

Load balancing refers to efficiently distributing
incoming network traffic across a group of backend
servers, also known as a server farm or server pool.

Modern high-traffic websites must serve hundreds of
thousands, if not millions, of concurrent requests from
users or clients and return the correct text, images,
video, or application data, all in a fast and reliable
manner. To cost-effectively scale to meet these high
volumes, modern computing best practice generally
requires adding more servers.

A load balancer acts as the “traffic cop” sitting in
front of your servers and routing client requests across
all servers capable of fulfilling those requests in a
manner that maximizes speed and capacity utilization
and ensures that no one server is overworked, which
could degrade performance. If a single server goes
down, the load balancer redirects traffic to the
remaining online servers. When a new server is added
to the server group, the load balancer automatically
starts to send requests to it.

In this manner, a load balancer performs the following
functions:

• Distributes client requests or network load
efficiently across multiple servers

• Ensures high availability and reliability by
sending requests only to servers that are
online

• Provides the flexibility to add or subtract
servers as demand dictates

3 .RELATED WORK :

A load balancing algorithm aims to increase the
utilization of resources with light load or idle
resources thereby freeing the resources with heavy
load. The algorithm tries to distribute the load among
all the available resources. At the same time, it aims to
minimize the makespan with the effective utilization
of resources.[1] Braun et al [2] have studied the
relative performance of eleven heuristic algorithms for
task scheduling in grid computing. They have also
provided a simulation basis for researchers to test the
algorithms. Their results show that Genetic Algorithm
(GA) performs well in most of the scenarios and the
relatively simple Min-Min algorithm performs next to
GA and the rate of improvement is also very small.
The simple algorithms proposed by Braun are
Opportunistic Load Balancing (OLB), Minimum
Execution Time(MET), Minimum Completion
Time(MCT), Min-Min, Max-min.

Opportunistic Load Balancing (OLB) assigns the jobs
in a random order in the next available resource
without considering the execution time of the jobs on
those resources. Thus it provides a load balanced
schedule but it produces a very poor makespan.
Minimum Execution Time (MET) assigns jobs to the
resources based on their minimum expected execution
time without considering the availability of the
resource and its current load.
This algorithm improves the makespan to some extent
but it causes a severe load imbalance.
Minimum Completion Time (MCT) assigns jobs to the
resources based on their minimum completion time.
The completion time is calculated by adding the
expected execution time of a job on that resource with
the resource’s ready time. The machine with the
minimum completion time for that particular job is
selected. But this algorithm considers the job only one
at a time. Min-Min algorithm starts with a set of all
unmapped tasks. The machine that has the minimum
completion time for all jobs is selected. Then the job
with the overall minimum completion time is selected
and mapped to that resource. The ready time of the
resource is updated. This process is repeated until all
the unmapped tasks are assigned. Compared to MCT
this algorithm considers all jobs at a time. So it
produces a better makespan. Max-Min is similar to
Min-Min algorithm. The machine that has the
minimum completion time for all jobs is selected.
Then the job with the overall maximum completion
time is selected and mapped to that resource. The
ready time of the resource is updated. This process is
repeated until all the unmapped tasks are assigned.
The idea of this algorithm is to reduce the wait time of
the large jobs.[1]

LOAD BALANCED MIN-MIN ALGORITHM :

 .

the load balanced min-min algorithm as shown in fig
1. The algorithm starts by executing the steps in Min-
Min strategy first. It first identifies the task having
minimum execution time and the resource producing
it. Thus the task with minimum execution time is
scheduled first in Min-Min. After that it considers the
minimum completion time since some resources are
scheduled with some tasks. Since Min-Min chooses
the smallest tasks first it loads the fast executing
resource more which leaves the other resources idle.
But it is simple and produces a good make-span
compared to other algorithms.[1]

International Journal of Research in Advent Technology (IJRAT) (E-ISSN: 2321-9637)
Special Issue

National Conference “CONVERGENCE 2016”, 06th-07th April 2016

75

for all tasks Ti
for all resources
Cij=Eij+rj
do until all tasks are mapped
for each task find the earliest completion time and
the
resource that obtains it
find the task Tk with the minimum earliest
completion time
assign task Tk to the resource Rl that gives the
earliest
completion time
delete task Tk from list
update ready time of resource Rl
update Cil for all i
end do
// rescheduling to balance the load
sort the resources in the order of completion time
for all resources R
Compute makespan = max(CT(R))
End for
for all resources
for all tasks
find the task Ti that has minimum ET in Rj
find the MCT of task Ti
if MCT < makespan
Reschedule the task Ti to the resource that
produces it
Update the ready time of both resources
End if
End for
End for

//Where MCT represents Maximum Completion Time

 Fig 1.lbmm heuristic

So LBMM executes Min-Min in the first round. In the
second round it chooses the resources with heavy load
and reassigns them to the resources with light load.
LBMM identifies the resources with heavy load by
choosing the resource with high makespan in the
schedule produced by Min-Min. It then considers the
tasks assigned in that resource and chooses the task
with minimum execution time on that resource. The
completion time for that task is calculated for all
resources in the current schedule. Then the maximum
completion time of that task is compared with the
makespan produced by Min-Min. if it is less than
makespan then the task is rescheduled in the resource
that produces it, and the ready time of both resources
are updated. Otherwise the next maximum completion
time of that task is selected and the steps are repeated
again. The process stops if all resources and all tasks
assigned in them have been considered for
rescheduling. Thus the possible resources are

rescheduled in the resources which are idle or have
minimum load.[1]

 Fig.2 Rescheduling phase of LBMM

EXAMPLE:

Consider a grid environment with two resources R1
and R2 and a meta-task group Mv with four tasks T1,
T2, T3 and T4. The grid scheduler is supposed to
schedule all the tasks within Mv on the available
resources R1 and R2. Since Min-Min algorithm is
simple and produces a better make-span than the other
algorithms discussed in the literature, the proposed
algorithm executes the Min-Min algorithm in the first
phase to schedule the jobs. But to remove the
limitation of unbalanced load in Min-Min the jobs are
rescheduled in the second phase. In this problem the
execution time of all tasks are known prior. They can
also be calculated if the number of instructions in each
job and the computation rate of each resource is
known. They are represented (in sec) in Expected
Time to Compute (ETC) table. Table 1 represents the
execution time of the tasks on each resources[1]

International Journal of Research in Advent Technology (IJRAT) (E-ISSN: 2321-9637)
Special Issue

National Conference “CONVERGENCE 2016”, 06th-07th April 2016

76

Static mapping of tasks to machines based on Min-
Min is shown in Figure 3. Min-Min choose the
minimum completion time and so all tasks are
scheduled to resource R2 and resource R1 remains
idle. The makespan produced by Min-Min is 10 sec

According to the proposed LBMM task T1’s
maximum completion time is less than makespan
produced by Min-Min. Other task’s maximum
completion time is not less than makespan. So task T1
is rescheduled in resource R1 and the remaining tasks
are scheduled in the same resource R2. The result of
LBMM is shown in Figure 2. Thus the rescheduling of
Min-Min algorithm utilizes the idle resource R1 as
well as reduces the makespan to 8 sec. Mapping of
tasks based on LBMM is shown in figure 4.

CONCLUSIONS :

 Min-Min and Max-Min algorithms are applicable
in small scale distributed systems. When the number
of the small tasks is more than the number of the large
tasks in a meta-task, the Min-Min algorithm cannot
schedule tasks, appropriately, and the makespan of the
system gets relatively large. Furthermore it does
provide a load balanced schedule

International Journal of Research in Advent Technology (IJRAT) (E-ISSN: 2321-9637)
Special Issue

National Conference “CONVERGENCE 2016”, 06th-07th April 2016

77

REFERENCES

[1]T.kokilavani, Dr.D.I.George Amalarethinam,“Load
Balanced Min-Min Algorithm for Static Meta-Task
Scheduling in Grid Computing,” International Journal
of Computer Applications (0975 – 8887) Volume 20–
No.2, April 2011

[2] Braun, T.D., Siegel, H.J., Beck, N., Boloni, L.L.,
Maheswaran, M., Reuther, A.I., Robertson, J.P., et al.
“A comparison of eleven static heuristics for mapping
a class
of independent tasks onto heterogeneous distributed
computing systems”, Journal of Parallel and
Distributed
Computing, Vol. 61, No. 6, pp.810–837, 2001

[3] Chapman. C, Musolesi. M, Emmerich. W,
Mascolo. C, ”Predictive Resource Scheduling in
Computational Grids” in Parallel and Distributed
Processing Symposium, IEEE International Vol. 26,
pp.1 – 10, 2007

[4] Ian Foster, Carl Kesselman, Steven Tuecke, “The
Anatomy
of the Grid Enabling Scalable Virtual Organizations”
International Journal of Supercomputer Applications,
2001.

[5] Mr. V.P.Narkhede,Prof S.T.Khandare,” Dynamic Load
Balancing In Grid Computing Using Fair Scheduling”,
Research Article Issn: 2319-507x V P Narkhede, Ijpret,
2014; Volume 2 (8):623-635

[6] Kokilavani.T and George Amalarethinam.D.I,
Applying Non -Traditional Optimization Technique
s to Task Scheduling in Grid Computing, International
Journal of Research and Reviews in Computer
Science, Vol. 1, No. 4, Dec 2010, pp. 34 - 38

[7] Saeed Parsa, Reza Entezari - Maleki RASA: A
New Grid Task Scheduling Algorithm , International
Journal of DigitalContent Technology and its
Applications Volume 3, Number 4, December 2009

[8] Geoffrey Falzon, Maozhen Li, “Enhancing list
scheduling heuristics for dependent job scheduling in
grid computing environments”, Journal of
Supercomputing, Springer, March 2010.

[9] Do reen Hephzibah Miriam. D and
Easwarakumar. K.S, A Double Min Min Algorithm
for Task Metascheduler on Hypercubic P2P Grid
Systems, IJCSI International Journal of Computer
Science Issues, Vol. 7, Issue 4, No 5, July 2010.

[10] He. X, X- He Sun, and Laszewski. G.V, "QoS
Guided Min- min Heuristic for Grid Task
Scheduling," Journal of Computer Science and
Technology, Vol. 18, pp. 442-451, 2003.

[11] Kamalam.G.K and Muralibhaskaran.V, , A New
Heuristic Approach:Min - Mean Algorithm For
Scheduling Meta - Tasks On Hetero genous
Computing Systems , IJCSNS International Journal of
Computer Science and Network Security, VOL.10
No.1, January 2010.

[12] Sameer Singh Chauhan,R. Joshi. C, QoS Guided
Heuristic Algorithms for Grid Task Scheduling,
International Journal of Computer Applications
(0975 –8887), pp 24-31, Volume 2,No.9, June 2010.

