
International Journal of Research in Advent Technology (E-ISSN: 2321-9637) Special Issue
National Conference “IAEISDISE 2014”, 12-13 September 2014

77

Exploiting the Systematic Optimization
Techniques for the present Heterogeneous

Multi-core and Many-core Computing
Systems

Chetna Dabas1

Department of Computer Science and Engineering 1,
Jaypee Institute of Information Technology1

Email: cherry.dabas@gmail.com1

Abstract- Stagnancy has been noticed in the Moore’s Law era for CPU computing across the timeline. CPU’s
are not getting any noticeable faster due to a saturation point in the underlying hardware. It is due to some
crucial constraints like power consumption in computation or design constraints. The focus is shifting towards
the hardware to the software optimizations to handle the future prototyping or simulations which may be of
hundreds of times faster in computing than the present multi-core and many-core systems. To an extent, even
the capabilities of the present multi-core or many-core systems are not fully exploited to extract the maximum
performance. This research paper aims to focus on the exploiting and presenting some of such parallel and
systematic optimization techniques to the existing multi-core and many core systems in the heterogeneous
computing environment and proposing their extensions to the future heterogeneous multi-core and many-core
systems. This research paper also presents the implementation of the proposed techniques in form of a small run
able application.

Index Terms- Multi-core; Optimization; Hetrogenous Computing; Many-core.

1. INTRODUCTION

The term heterogeneous computing refers to specific
systems that are incorporated with more than one type
of processor. These types of systems may be multi-
core or many core systems in which the performance
boost is achieved by inculcating multiple numbers of
cores. These systems work in accordance with the
design of co-processor model and allow handling of
specific complex tasks by providing expertise
capabilities in order to handle various tasks. As far as
research is concerned, the heterogeneous computing
has not only proven its capability in enabling us
imagine the N-body simulation which is an NP hard
problem but it caters its strength in affecting human
lives in an impressive positive way. It takes lots of the
most interesting applications on such kind of systems,
such as, simulation of grid, fluid flow problems or ray
tracers etc.

A commendable example application of
heterogeneous computing is in Computerized
Tomography Scanners (CT) for the reduction of X-
rays in CT Scans which literally has affected lives.
The Computerized Tomography can be considered as
one of the computerized images techniques which

hold its take off long back and still being used as one
the prime useful techniques. The CT scanner performs
the job of rotating around the body of the patient and
taking a series of X-ray pictures. These images are
then integrated and reduced to develop an image of
the cross-section of the body. These slices then further
may be used by the machine to produce a 3D model
of affected section of the body. The X-Ray radiations
generated as a part of this process are very harmful to
the body. By the use of supercomputing, the amount
of harmful X-ray radiations have been lowered by an
impressive factor of 20x with much clearer picture
generated. More importantly, the Cone Beam CT
plays an important part in the IGRT (Image-Guided
radiation Therapy) which is used in cancer treatment.
In IGRT, during radiation therapy, iterative scans are
conducted in order to target the tumors precisely,
and minimize radiation damage in the surrounding
tissue is highly crucial there. In such applications, the
supercomputing technology has played a thankful role
where it not only has raised the procedure as safer,
faster and clearer but also has affected lives in a big
affirmative way [1, 3].

Apart from the lucrative constructs and designs
that the supercomputing technology provides in
connection with the present heterogeneous Multi-core
and Many-core computing systems, the fact that still
persists is that still there exist a lot of scope in making

International Journal of Research in Advent Technology (E-ISSN: 2321-9637) Special Issue
National Conference “IAEISDISE 2014”, 12-13 September 2014

78

the computing systems still more faster. This may be
achieved with the help of a proper sequence of
systematic optimization techniques.

2. EVOLUTION OF COMPUTING

First, the world witnessed the evolution of the Central
Processing Unit (CPU) which has crossed various
milestones across the yester years. The multi-cycle
operation in the simplest Central processing Unit was
composed up of the well known sequence of the fetch,
decode and execute phases. Here, the first phase was
loading the instruction to be executed, the second
phase was decoding the instruction or register read
operation. The third phase was the execution operation
and formally the last one was writing the results back
or in other terms finishing off the execution process.
The next evolution of CPU’s consisted up of
pipelining where multiple instructions were allowed
in-flight at once. Modern CPU’s used longer pipelines.
The major problems related with pipelining process
were mainly the branch delay and memory latency.

3. BACKGROUND AND WORK

Systematic optimization techniques refer to
systematically optimizing the parallel problems on
multi-core and many-core computing platforms. It
specifically refers to the repeated and feedback
sequence of analyzing, parallelizing, optimizing and
then deploying the application in a circular fashion.
The precise goal while optimizing the multi-core or
many core parallel programs is to blend the problem
faster or solve a bigger problem or solve a complex
problem.

There are certain characterizations of optimizations

in the supercomputing scenario. The characterizations
include choosing good algorithms, in other words it
means choosing an algorithm which is fundamentally
parallel. As an example if a heap sort algorithm is
taken under consideration; it works better on the
Central Processing Unit rather than the Graphics
Processing Unit since it keeps updating sharable data
structure called heap. The next characterization may be
the architecture specific detailed optimizations. There
may be yet another characterization called the micro
optimization at the instruction level. Apart from
keeping these optimizations in the mind, the prime
idea is to perform the optimizations in a systematic
manner. In the systematic optimization process for the
multi-core and many-core systems, the analysis part
points to profiling the entire application in order to
extract the important information like by what factor it
can benefit or how it can benefit?. It specifically
means the understanding of the hotspots in the

application under consideration and understanding
weak and strong scaling of the problem under
consideration. The parallelize part crucially depicts the
choice of an approach like libraries, directives or
programming languages and the choice of an
algorithm. The optimize part in sequence specifically
refers to the profile driven optimization. The deploy
phase incorporated the multi-core accelerated code.
All these phases happen in a cyclic manner and need to
be implemented in real for performance enhancement
on multi-cores and many core systems [2, 5, 6, 7].

The prime idea of the work presented here is to

apply such systematic optimization techniques to an
application. The application taken under consideration
is the process of converting the Data Matrix code
stored in row major order on a computer system to
column major order. A Data Matrix code is
specifically a matrix barcode consisting up of black
and white cells arranged in square or rectangular
pattern. The application under consideration uses a
square pattern and dark cell and white cell corresponds
to 0 and 1 values respectively. Data matrix codes are
normally verified by hardware equipment and
software. For this purpose, some computer processing
is required. After the completion of this process on
computer, which in between, requires a translation of
the data matrix data to be stored in column major order
on the system for processing (which has to be fast
enough for good performance), the data matrix code is
send to a reader camera which decodes the data for
various purposes like stock verification etc.

The next section presents the detailed specifications

of the work environment, system specifications,
working of the application with its implementation
snapshots, performance analysis and systematic
optimization with analysis and results.

3.1. Work Environment and System
Specifications

The work presented as a part of this research paper
is carried out using CUDA version 5.0 [5], Visual
Studio 2010 and on the system with the following
specifications:

• Operating system: Microsoft Windows XP,

32-bit (service pack)
• DirectX runtime Version: 9.0
• Graphics Card Information:
• Driver Version - 306.94
• DirectX Support – 10
• CUDA Cores – 16

• Core Clock – 500 MHz
• Shader Clock – 1026 MHz
• Memory Data Rate – 666 MHz

International Journal of Research in Advent Technology (E-ISSN: 2321-9637) Special Issue
National Conference “IAEISDISE 2014”, 12-13 September 2014

79

• Memory Interface – 128 bit
• Memory – 512 MB
• Memory Type – DDR2
• Video Bios Version - 60.86.34.10.96
• IRQ – 16
• Bus – PCI Express X16

In the presented work, GeForce 8500 GT graphics

card was used for the experimentation.

It has 2 MP(s) x 8 (Cores 1MP) =16 cores. The
compute performance scaling factor associated with
the same was 12.0.

3.2. Working and Implementation Snapshots

This small application namely Data Matrix
Application is primarily responsible for collecting data
from the Data Matrix Data which is assumed to be
stored in the row major order then converting it into
column major order and storing it back. This
application has two major versions. One version is the
basic serial and sequential version. The other one is the
parallel version which has further optimized versions
depending upon the levels of systematic optimizations
being incorporated. During all the parallel versions of
the Data Matrix application, there is one common
pattern of data communication that was followed. This
incorporates a heterogeneous computing environment
which involves the computation by both the CPU and
the GPU. The GPU under consideration further has 16
cores. The data here in the presented scenario, is
initially stored on the in the memory having direct
interaction with the CPU. The CPU then initiates the
process of sending the entire data to the GPU, the GPU
then performs the computation and return backs the
results. All this data communication amongst the CPU
and the GPU having 16 CUDA cores happens via the
PCI Express X16 bus.

Fig. 1 corresponds to a typical snapshot of the

visual studio 2010 project containing proposed Data
Matrix application namely Chetna7 containing trace
application running in Visual Studio 2010 with CUDA
and NVIDIA Visual Profiler running in the Task
Manager. Fig. 2 is a snapshot of the CPU usage of the
system, it also depicts the status of physical memory in
terms of total memory, available memory and the
system cache information associated with the system
used for the experimentation of the presented work.
Fig. 3 shows the CUDA 5.0 correctly installed and
running on the system of experimentation. CUDA 5.0
is a parallel language in which the proposed Data
matrix application is designed.

The details of various optimized versions of the
Data Matrix parallel application are explained in the
up next paragraph.

3.3. Analysis and Results

Fig. 4 represents a snapshot of the zoomed view of the
timeline of the Data Matrix application with its
detailed graph description. It depicts global load
efficiency, global store efficiency, duration and
throughput etc. The global load efficiency which
bears a value of 1 here represents that how efficient
the global loads actually were or in other words, how
many bytes were actually useful of all the bytes that
were retrieved with each memory transaction from the
Data Matrix. Fig. 5, projects one of the snapshots of
the parallel versions of the running Data Matrix
application with the compute kernel details.

As a prime and base part of the Data Matrix
application, a serial version of the process of picking
up of the Data Matrix data and conversion of its data
elements from a row major order to column major
order was performed. It took a total time duration of
157.7ms which was quite high.

Then after analyzing the execution time of the serial
version, the application was refined to its first parallel
version which included the process of launching 1
thread corresponding to each row in the Data Matrix.
After this version was executed, the execution time
retrieved came out to be 5.8ms. Here the problem was
low DRAM utilization. Then second parallel version
was designed where one thread was associated with
each element in the data matrix and the goal was to
keep coalesced reads and writes. But again it was
observed that the DRAM utilization parameter was
bearing a low value, a little raised than the previous
version. It gave an execution time of 0.75ms which
was quite better if compared with its serial counter.
Hence the performance in multi-core systems may be
enhanced by incorporating systematic optimization
techniques on heterogeneous computing systems.

The results obtained are listed in the Table 1 below.

Table 1. Results

S.No. Systematic Optimization of Data Matrix
Application on 16 core System

Version Time
taken

DRAM
Utilization

1 Serial 157.7ms 0.05%
2 Parallel 5.8ms 3.8%
3 Parallel per

Element
0.75ms 24.1%

International Journal of Research in Advent Technology (E-ISSN: 2321-9637) Special Issue
National Conference “IAEISDISE 2014”, 12-13 September 2014

80

Fig. 1. A snapshot of the Project containing the proposed Data Matrix Application
namely Chetna7 running in Visual Studio 2010 with CUDA and NVIDIA Visual

Profiler running in the Task Manager

Fig. 2. A Snapshot of the CPU Usage of the System along with the status of

Physical Memory

International Journal of Research in Advent Technology (E-ISSN: 2321-9637) Special Issue
National Conference “IAEISDISE 2014”, 12-13 September 2014

81

Fig. 3. A Snapshot of CUDA v5.0 correctly installed and running on the system

Fig. 4. A Snapshot of the zoomed view of the timeline of the Data Matrix

application with detailed graph

International Journal of Research in Advent Technology (E-ISSN: 2321-9637) Special Issue
National Conference “IAEISDISE 2014”, 12-13 September 2014

82

Fig. 5. A Snapshot of the Data Matrix application with its associated properties View

4. CONCLUSIONS AND LIMITATIONS

If the optimizing strategies are applied in a

systematic manner and analysis and monitoring of
bottlenecks is carried out at each stage, the
performance of applications on the present multi-core
systems may be enhanced by a significant level. It was
a small enhancement across various stages for the
heterogeneous system under consideration with 16
cores; this enhancement may be quite higher on
systems with 32 cores or even higher on many core
tiled processors. The limitation of the proposed work
is that the results may vary from one computing
platform to another and one application to another.

REFERENCES

[1] Guillem, Pratx and Lei Xing, “GPU computing in
medical physics: A Review,” Medicine Physics,
38 (5), 2685-2697 (2011).

[2] John D. Owens, Mike Houston, David Luebke,
Simon Green, John E. Stone, and James C.
Phillips, “GPU Computing,” In Proceedings of
the IEEE, Vol.26, no. 5, pp. 879-899,May 2008.

[3] Michael D. Mc Cool, “Scalable Programming
Models for Massively Multi-core processor,” In

[4] Proceedings of the IEEE, Vol.96, no. 5, pp. 816-
831, May 2008.

[5] Nvidia,"CUDA".http://www.nvidia.
com/objectlcuda_home_new.html, Mar. 24, 2012.

[6] Rui Yang, Johnson Thomas,”Processing
Dependent Tasks on a Heterogeneous GPU
Resource Architecture,” In 2nd IEEE
International Conference on Parallel, Distributed
and Grid Computing,” pp. 627-632, 2012.

[7] Chuntao Hong, Dehao Chen, Wenguang Chen,
Weimin Zheng, Haibo Lin, "MapCG: writing
parallel program portable between CPU and
GPU", Proceedings of the 19th international
conference on Parallel architectures and
compilation techniques, September 11-15, 20 I 0,
Vienna, Austria.

[8] K. Asanovic, R. Bodik, B. Catanzaro et al., “The
landscape of parallel computing research: A view
from Berkeley,”EECS, University of California,
Berkeley, Tech. Rep.UCB/EECS-2006-183, 2006

