International Journal of Research in Advent Tecbggl(E-ISSN: 2321-9637) Special Issue
National Conference “IAEISDISE 2014”, 12-13 Septemp014

Achieving Fault Tolerance and Recovery in
Computational Grid

Ravinder Mandhan Vikas Yada®, Nisha Thakut
Department of Computer Science & Enginee'rfriy

Manav Bharti University, Solan (H.P.), India®
ravimadhan@gmail.comvikas8.yadav@gmail.comthakurnisha71@gmail.com

Abstract-Grid computing, most simply stated, is distribumammputing taken to the next evolutionary leveleTh
goal is to create the illusion of a simple yet &aand powerful self managing virtual computer ofitadarge
collection of connected heterogeneous systemsrghagdrious combinations of resources. Howevettha grid
computing environment there are certain aspectslwhéduce efficiency of the system, job schedulifighe
resources and fault tolerance are the key aspeotpgmove the efficiency and exploit the capabittief emergent
computational systems. Because of dynamic andilolistdd nature of grid, the traditional methodolsgief
scheduling are inefficient for the effective utiltion of the resource available. The fault toleeasitategy proposed
will improve the performance of the overall compiaiaal grid environment. In this paper we proporeefficient
job scheduling algorithm to improve the efficieraiythe grid environment. The simulation resultastrate that the
proposed strategy effectively schedules the gtid gnd reduce the execution time.

Keywords Middleware, Checkpoint recovery, Wide area regilam

1. INTRODUCTION different administrative domains worldwide. Also in
large-scale grids, the probability of a failurenmich
1.1 Grid computing is a term referring to the greater than in traditional parallel systems. Sigad
combination of computer resources from multiple applications run in a very heterogeneous computing
administrative domains to reach a common goal. Theenvironment, fault tolerance is important in order
grid can be thought of as a distributed system with- ensure their correct behavior. The development of
interactive workloads that involve a large numbér o correct grid applications is difficult with traditnal
files. What distinguishes grid computing from software development methods. Hence, formal
conventional high performance computing systemsmethods can be beneficial in order to ensure their
such as cluster computing is that grids tend tonbee correctness and structure their development from
loosely coupled, heterogeneous, and geographicallyspecification to implementation. One of the most
dispersed. Although a grid can be dedicated to adifficult tasks in the design of a fault tolerantids
specialized application, it is more common as glsin environment is to verify that it will meet its rability
grid will be used for a variety of different purgss requirements. Performance models for two fault
Grids are often constructed with the aid of general tolerance methods, checkpoint-recovery (CR) and
purpose grid software libraries known as middleware wide-area replication (WR), have been considered.
The standardization of communications betweenApplication checkpoint-restart is the ability toveathe
heterogeneous systems creates the Internet explosiostate of a running application to secondary storsge
The emerging standardization for sharing resourcesthat it can later resume its execution from theetiat
along with the availability of higher bandwidth,ear which it was last stored. Checkpoint-restart cavioe
driving a possibly equally large evolutionary step many potential benefits, including Fault recovery b
grid computing. rolling back an application to a previous checkpoin
Better application response time by restarting
12 Computational grids have become a popularapplications from checkpoints instead of from stat
approach to handle vast amounts of availableand improved system utilization by stopping long
information and to manage computational resourcesrunning computationally intensive jobs during
Examples of areas where grids have been succgssfullexecution and restarting them when load decreases.
used for solving problems include biology, nuclear application can be migrated by check pointing iboe
physics and engineering. A Grid enables the sharingmachine and restarting it on another providingHert
selection, and aggregation of a wide variety of benefits, including fault resilience by migragi
geographically distributed resources. Stand-aloneapplications from the faulty hosts, dynamic load
system is prone to crash. These individual compisnen balancing by migrating applications to less loaded
in a distributed computing system may fail without hosts, and improved service availability and
stopping the entire computing system. So fault administration by migrating applications before thos
tolerance is an important property in Grid compgt®8 maintenance so that applications can continue to ru
grid resources are geographically distributed in with minimal downtime. Many important applications

21

International Journal of Research in Advent Tecbggl(E-ISSN: 2321-9637) Special Issue
National Conference “IAEISDISE 2014”, 12-13 Septemp014

-
¥

consist of multiple cooperating processes. To Deadline & .
chec_kpqmt-restart thes_e appl_lcat|0ns, not only tmus ’ ',_,y-‘f-(/
application state associated with each processeds Performance ‘

and restored, but the state saved and restored baust Modde .. |

globally consistent and preserve process depergenci ‘
Furthermore, for checkpoint restart to be useful in ¥
practice, it is crucial that it transparently suppihe

provide many useful benefits including fault recgye
advanced resources sharing, dynamic load balancing

and improved service availability. However,
. . . . L Network Latency
applications often involve multiple processes which and Bandwidth

have dependencies through the operating system. /

- . . . f Resource Workflow ‘
large existing installed base of applications ragnbn Reliability - Fault Tolerance/ (> Step
commodity operating systems. The ability to Models Recovery Service (AW“Cam”)\‘

Batch Queue
common method of ensuring the progress of a long Wl e

checkpoint a running application and restart gdatan
Service
Statistics

running application is to take a checkpoint i.ayesits

state on stable storage periodically. A checkpisirgtn Fig. 1: Fault Tolerance and recovery service
insurance policy against failures—in the event of a

failurt_a, the applicatio.n can be rolled baqk andamrsd 2.1.1 Over-provisioning

from its last checkpoint—thereby bounding the antoun oL o

of lost work to be recomputed. The state of a Over-provisioning or replication is a fault-tolecan

distributed application consists of the instantaseo Mechanism where multiple copies of an application

snapshot of the local state of processes andWith the same input data-set) are executed inlipara

communication channels. However in an The idea is to maximize the probability of succtss

asynchronous distributed system with no globalkdoc the application so that if one copy fails then aeot

or shared memory, we can only devise algorithms to€OPY may succeed. This is particularly importanthie.

approximate this global state [7]. A snapshot isded ~ Presence of unrghable resources and where missing

consistent if it could have occurred during the déadline may incur a high penalty. The over-

execution of an application [7, 4]. To yield a cistent provisioning aIgQr|thm deterr_nlngs the best set of

snapshot, or checkpoint, an algorithm must enae t résources to replicate the application.

all messages received by a process are recorded 351 2 Migration

having been sent. L L .
In migration, an application is progressively restd

2 FAULT TOLERANGE AND RECOVERY OF g 1F 20 000 e of filures, The migmmti
SCIENTIFIC WORKFLOWS algorithm determines the best migration path. ThR F

21 Large parallel computations, distributed data service uses the following application and resasirce
transfer and management and soft real-time constrai estimates and finds the best set of resourcesver o
characterize complex scientific workflows. However, provisioning or migration.
the computational grids on which these workflows/ma o
run, have distributed systems and software, virtual2-1-3 Application Performance Models
organizations and few guarantees of quality andApplication performance models are estimates of
availability of service. This necessitates the némd execution times of applications on different resest
new approaches to scheduling complex scientific Since grid resources are heterogeneous (in artlnigec
workflows on computational grids in order to mdet CPU speed and other system characteristics), the sa
soft real-time constraints of deadline and religpil application may have significantly different exdont
Figure 1 shows our fault tolerance and recoveryRFT times on different resources. Hence, we take into
service. It uses application performance models,account the performance models of the applications
network models, resource reliability models anccbat the workflow to estimate the computational portiahn
gueue wait time predictions to decide what fault the total expected completion time for the appiarat
tolerance strategy viz. over-provisioning or migrat -
to be adopted for each workflow step/task in a 2.1.4 Batch Queue Wait Times
workflow. Then the FTR service either runs copiés o Batch-queue systems like PBS and LSF, manage job
the workflow step on multiple resources (over- prioritization and execution on most grid resourcdes
provisioning) or migrates the workflow step to drest ~ application may have to wait for a significant ambu
resource in case of a failure (migration) to maetgoft ~ of time on a queue before it starts execution. ldgaa
real-time constraints of deadline and reliability estimate of the batch-queue wait times is an esgent
(success probability). component of the total expected completion timeafor
application. We use the methodology and software
described in [15] for estimates of batch-queue wait
times.

22

International Journal of Research in Advent Tecbggl(E-ISSN: 2321-9637) Special Issue
National Conference “IAEISDISE 2014”, 12-13 Septemp014

) occur in the future inside a system that has been
2.1.5 Network Latency and Bandwidth working well so far. Therefore, reliability must be
Workflow execution may also involve moving large regarded as a ratio expressed in terms of unitgnef.
amounts of data between workflow steps, which takeslf a system is well designed and carefully confegir
significant amount of time. Hence, we also constler and thus homogeneously reliable, the accumulated
data transfer time while calculating the total estpd failure rate of the system, F(t), is proportionalthe
completion time for an application. To estimate the time period of acceptable life to job assigned tie t
data-transfer time, we use the Network Weathernode, including on and off time[5]
Service (NWS) [16] to obtain estimates of network F(t)=1-R(t)=1-eAtZ At
latency and bandwidth values between resources pairwhere R is reliability function) is failure rate, and t is
on the grid. We also find out the size of the dathe time requirement of the job. By using the above
moved from the inputs to the application. Combining formula we can calculate the number of spare nodes
data-size with NWS estimates gives us an estimatedased on the Failure Rate.
data-transfer time.

2.1.6 Deadline and Success Probability 4. CONCLUSIONS

Apart from these, the fault-tolerance algorithmsoal The study has surveyed the progress in making grid
take into account the specified deadline for the Systems more reliable. It has been found that,ytoda
application. This is important for workflows thaawe efforts for making grid systems more reliable have
real-time constraints. Another input to the alduritis centered on developing methods for fault tolerance.
the required success probability, which is the etge ~ Owing to the complexity of computational grids,
success probability from the scientist's perspeciivis ~ €xecuting complex workflows reliably is a challenge
the probability with which the scientist wants the We have developed a fault tolerance and recovery
workflow to run to completion. With applicaton (FTR) service that uses over-provisioning and
failures becoming more of a norm than exception Onmigration for reliable execution of workflows on
the grid, an expected success probability of 1ds n computational grids.

realistic. There is a trade-off between the valde o

required success probability and finding a fault- REFERENCES

tolerance mechanism that can satisfy that valuleigh [1] Oren Laadan Jason Nieh, Transparent Checkpoin

value may result in the algorithms failing to fired Restart of Multiple Processes on Commodity
resource set that can be used to run the applicatia Operating Systems, USENIX Annual Technical
fault-tolerant way. Conference [2007].

2.1.7 Resour ce Reliability M odels [2] J. H. Abawajy, Fault-Tolerant Scheduling Rgli
We use a simple model for modeling resource for Grid Computing Systems, IEEE [2004].
reliability. We assume that resource failures are[3] Babar Nazir, Taimoor Khan, Fault Tolerant Job
independent over time, implying that resource fatu Scheduling in Computational Grid, IEEE, pp

in the current time interval are independent of the 708-713, [2006].
failures in the previous time interval. Hence, wanc
assume resource failures to follow a binomial [4]
distribution.

Mattern, F., Efficient Algorithms for Distrilied
Snapshots and Global Virtual Time
Approximation, Journal of Parallel and

3. PROPOSED WORK Distributed Computing, pp. 423-434, 1993.

. . [5] D. Ryu, lity, product lity, and kébiase
We present a transparent mechanism for commodlt)l] incr)él;sgualt}\/] %rg”;g: s;; |2y (ggof)n?;) D. 163

operating systems that can checkpoint multiple 174182
processes in a consistent state so that they can be T)
restarted correctly at a later time. We introduce a [6] Paul Stelling, lan Foster, Carl Kesselman, Grai

efficient algorithm for recording process relatibips Lee, Gregor von Laszewski , A Fault Detection
at system-level with checkpoint/restart implementat Service for Wide Area Distributed Computations
for Linux clusters that targets typical High [7]Chandy, K. M., Lamport, L., Distributed Snaps$o
Performance Computing applications, including MPI. Determining Global States of Distributed
Application process state including shared resaurce Systems, ACM Transactions on Computer
and various identifiers that define process refesiips Systems, pp. 63-75, February [1985].

such as group and session identifiers are saved an
restored correctly. The process will be migratexifra
failed node to a spare node instead of restartimg t
application using

ﬂ}] I. Foster, C. Kesselman and S. Tuecke. The
Anatomy of the Grid: Enabling Scalable Virtual
Organizations. The International Journal of
Supercomputer Applications,15(3), [2001].

checkpoint policy. We try to achieve the maximum [9] |. Foster, C. Kesselman, J. Nick and S. Teeck
fault tolerance by using Reliability consideration. The Physiology of the Grid: An Open Grid
Reliability defects generally are failures that htig Services Architecture for Distributed Systems

23

International Journal of Research in Advent Tecbggl(E-ISSN: 2321-9637) Special Issue
National Conference “IAEISDISE 2014”, 12-13 Septemp014

Integration. Open Grid Service Infrastructure
WG, Global Grid Forum, [2002].

[10]JURL:http://www.globus.org/alliance/publicatians
papers/ogsa.pdf

[11] Jin Liang, Tong WeiQin, Tang JianQuan, Wang
Bo, A Fault Tolerance Mechanism in Grid, O-
7803, IEEE pp. 457-461,[2003].

[12] J. H. Abawajy and S. P. Dandamudi. Paratiél
scheduling on multi-cluster computing systems.
In Proceedings of the IEEE International
Conference on Cluster Computing (Cluster 2003),
Hong Kong, China, December 1-4 [2003].

[13] A. Avizienis, “The N-version Approach to H&u
Tolerant Software” - IEEE Transactions on
Software Engineering - vol. 11 [1985].

[14] T. Thanalapati and S. Dandamudi. An efficient
adaptive scheduling scheme for distributed
memory multicomputer. IEEE Transactions on
Parallel and Distributed Systems, 12(7):758-768,
July [2001].

[15] J. Brevik, D. Nurmi, and R. Wolski, “Prediag
Bounds on Queuing Delay for Batch-scheduled
Parallel Machines,” Proceedings of the Eleventh
ACM SIGPLAN Symposium on Principle and
Practice of Parallel Programming, [2006].

[16] G. E. Fagg, E. Gaberiel, G, Bosilca, T. SgriA.
Angskun, and J. Hayes, “The Network Weather
Service: A Distributed Resource Performance
Forecasting Service for Metacomputing,” Future
Generation Computer Systems, vol. 15(5-6), pp.
757-768, [1999].

24

