
International Journal of Research in Advent Technology (E-ISSN: 2321-9637) Special Issue
National Conference “IAEISDISE 2014”, 12-13 September 2014

21

Achieving Fault Tolerance and Recovery in
Computational Grid

Ravinder Mandhan1, Vikas Yadav2, Nisha Thakur3

 Department of Computer Science & Engineering1,2,3

Manav Bharti University, Solan (H.P.), India1,2,3

 ravimadhan@gmail.com1 vikas8.yadav@gmail.com2 thakurnisha71@gmail.com3

Abstract-Grid computing, most simply stated, is distributed computing taken to the next evolutionary level. The
goal is to create the illusion of a simple yet large and powerful self managing virtual computer out of a large
collection of connected heterogeneous systems sharing various combinations of resources. However, in the grid
computing environment there are certain aspects which reduce efficiency of the system, job scheduling of the
resources and fault tolerance are the key aspect to improve the efficiency and exploit the capabilities of emergent
computational systems. Because of dynamic and distributed nature of grid, the traditional methodologies of
scheduling are inefficient for the effective utilization of the resource available. The fault tolerance strategy proposed
will improve the performance of the overall computational grid environment. In this paper we propose an efficient
job scheduling algorithm to improve the efficiency of the grid environment. The simulation results illustrate that the
proposed strategy effectively schedules the grid jobs and reduce the execution time.

Keywords: Middleware, Checkpoint recovery, Wide area replication

1. INTRODUCTION

1.1 Grid computing is a term referring to the
combination of computer resources from multiple
administrative domains to reach a common goal. The
grid can be thought of as a distributed system with non-
interactive workloads that involve a large number of
files. What distinguishes grid computing from
conventional high performance computing systems
such as cluster computing is that grids tend to be more
loosely coupled, heterogeneous, and geographically
dispersed. Although a grid can be dedicated to a
specialized application, it is more common as a single
grid will be used for a variety of different purposes.
Grids are often constructed with the aid of general-
purpose grid software libraries known as middleware.
The standardization of communications between
heterogeneous systems creates the Internet explosion.
The emerging standardization for sharing resources,
along with the availability of higher bandwidth, are
driving a possibly equally large evolutionary step in
grid computing.

1.2 Computational grids have become a popular
approach to handle vast amounts of available
information and to manage computational resources.
Examples of areas where grids have been successfully
used for solving problems include biology, nuclear
physics and engineering. A Grid enables the sharing,
selection, and aggregation of a wide variety of
geographically distributed resources. Stand-alone
system is prone to crash. These individual components
in a distributed computing system may fail without
stopping the entire computing system. So fault
tolerance is an important property in Grid computing as
grid resources are geographically distributed in

different administrative domains worldwide. Also in
large-scale grids, the probability of a failure is much
greater than in traditional parallel systems. Since grid
applications run in a very heterogeneous computing
environment, fault tolerance is important in order to
ensure their correct behavior. The development of
correct grid applications is difficult with traditional
software development methods. Hence, formal
methods can be beneficial in order to ensure their
correctness and structure their development from
specification to implementation. One of the most
difficult tasks in the design of a fault tolerant Grid
environment is to verify that it will meet its reliability
requirements. Performance models for two fault
tolerance methods, checkpoint-recovery (CR) and
wide-area replication (WR), have been considered.
Application checkpoint-restart is the ability to save the
state of a running application to secondary storage so
that it can later resume its execution from the time at
which it was last stored. Checkpoint-restart can provide
many potential benefits, including Fault recovery by
rolling back an application to a previous checkpoint,
Better application response time by restarting
applications from checkpoints instead of from scratch,
and improved system utilization by stopping long
running computationally intensive jobs during
execution and restarting them when load decreases. An
application can be migrated by check pointing it on one
machine and restarting it on another providing further
benefits, including fault resilience by migrating
applications from the faulty hosts, dynamic load
balancing by migrating applications to less loaded
hosts, and improved service availability and
administration by migrating applications before host
maintenance so that applications can continue to run
with minimal downtime. Many important applications

International Journal of Research in Advent Technology (E-ISSN: 2321-9637) Special Issue
National Conference “IAEISDISE 2014”, 12-13 September 2014

 22

consist of multiple cooperating processes. To
checkpoint-restart these applications, not only must
application state associated with each process be saved
and restored, but the state saved and restored must be
globally consistent and preserve process dependencies.
Furthermore, for checkpoint restart to be useful in
practice, it is crucial that it transparently support the
large existing installed base of applications running on
commodity operating systems. The ability to
checkpoint a running application and restart it later can
provide many useful benefits including fault recovery,
advanced resources sharing, dynamic load balancing
and improved service availability. However,
applications often involve multiple processes which
have dependencies through the operating system. A
common method of ensuring the progress of a long
running application is to take a checkpoint i.e., save its
state on stable storage periodically. A checkpoint is an
insurance policy against failures—in the event of a
failure, the application can be rolled back and restarted
from its last checkpoint—thereby bounding the amount
of lost work to be recomputed. The state of a
distributed application consists of the instantaneous
snapshot of the local state of processes and
communication channels. However, in an
asynchronous distributed system with no global clocks
or shared memory, we can only devise algorithms to
approximate this global state [7]. A snapshot is deemed
consistent if it could have occurred during the
execution of an application [7, 4]. To yield a consistent
snapshot, or checkpoint, an algorithm must ensure that
all messages received by a process are recorded as
having been sent.

2. FAULT TOLERANCE AND RECOVERY OF
SCIENTIFIC WORKFLOWS

2.1 Large parallel computations, distributed data
transfer and management and soft real-time constraints
characterize complex scientific workflows. However,
the computational grids on which these workflows may
run, have distributed systems and software, virtual
organizations and few guarantees of quality and
availability of service. This necessitates the need for
new approaches to scheduling complex scientific
workflows on computational grids in order to meet the
soft real-time constraints of deadline and reliability.
Figure 1 shows our fault tolerance and recovery (FTR)
service. It uses application performance models,
network models, resource reliability models and batch-
queue wait time predictions to decide what fault
tolerance strategy viz. over-provisioning or migration
to be adopted for each workflow step/task in a
workflow. Then the FTR service either runs copies of
the workflow step on multiple resources (over-
provisioning) or migrates the workflow step to another
resource in case of a failure (migration) to meet the soft
real-time constraints of deadline and reliability
(success probability).

Fig. 1: Fault Tolerance and recovery service

2.1.1 Over-provisioning

Over-provisioning or replication is a fault-tolerance
mechanism where multiple copies of an application
(with the same input data-set) are executed in parallel.
The idea is to maximize the probability of success for
the application so that if one copy fails then another
copy may succeed. This is particularly important in the
presence of unreliable resources and where missing a
deadline may incur a high penalty. The over-
provisioning algorithm determines the best set of
resources to replicate the application.

2.1.2 Migration

In migration, an application is progressively restarted
from the last good checkpoint (if available) on a
different resource in case of failures. The migration
algorithm determines the best migration path. The FTR
service uses the following application and resources
estimates and finds the best set of resources for over
provisioning or migration.

2.1.3 Application Performance Models

Application performance models are estimates of
execution times of applications on different resources.
Since grid resources are heterogeneous (in architecture,
CPU speed and other system characteristics), the same
application may have significantly different execution
times on different resources. Hence, we take into
account the performance models of the applications in
the workflow to estimate the computational portion of
the total expected completion time for the application.

2.1.4 Batch Queue Wait Times

Batch-queue systems like PBS and LSF, manage job
prioritization and execution on most grid resources. An
application may have to wait for a significant amount
of time on a queue before it starts execution. Hence, an
estimate of the batch-queue wait times is an essential
component of the total expected completion time for an
application. We use the methodology and software
described in [15] for estimates of batch-queue wait
times.

International Journal of Research in Advent Technology (E-ISSN: 2321-9637) Special Issue
National Conference “IAEISDISE 2014”, 12-13 September 2014

 23

2.1.5 Network Latency and Bandwidth

Workflow execution may also involve moving large
amounts of data between workflow steps, which takes
significant amount of time. Hence, we also consider the
data transfer time while calculating the total expected
completion time for an application. To estimate the
data-transfer time, we use the Network Weather
Service (NWS) [16] to obtain estimates of network
latency and bandwidth values between resources pairs
on the grid. We also find out the size of the data to be
moved from the inputs to the application. Combining
data-size with NWS estimates gives us an estimated
data-transfer time.

2.1.6 Deadline and Success Probability

Apart from these, the fault-tolerance algorithms also
take into account the specified deadline for the
application. This is important for workflows that have
real-time constraints. Another input to the algorithm is
the required success probability, which is the expected
success probability from the scientist's perspective. It is
the probability with which the scientist wants the
workflow to run to completion. With application
failures becoming more of a norm than exception on
the grid, an expected success probability of 1 is not
realistic. There is a trade-off between the value of
required success probability and finding a fault-
tolerance mechanism that can satisfy that value. A high
value may result in the algorithms failing to find a
resource set that can be used to run the application in a
fault-tolerant way.

2.1.7 Resource Reliability Models

We use a simple model for modeling resource
reliability. We assume that resource failures are
independent over time, implying that resource failures
in the current time interval are independent of the
failures in the previous time interval. Hence, we can
assume resource failures to follow a binomial
distribution.

3. PROPOSED WORK

We present a transparent mechanism for commodity
operating systems that can checkpoint multiple
processes in a consistent state so that they can be
restarted correctly at a later time. We introduce an
efficient algorithm for recording process relationships
at system-level with checkpoint/restart implementation
for Linux clusters that targets typical High
Performance Computing applications, including MPI.
Application process state including shared resources
and various identifiers that define process relationships
such as group and session identifiers are saved and
restored correctly. The process will be migrated from a
failed node to a spare node instead of restarting the
application using

checkpoint policy. We try to achieve the maximum
fault tolerance by using Reliability consideration.
Reliability defects generally are failures that might

occur in the future inside a system that has been
working well so far. Therefore, reliability must be
regarded as a ratio expressed in terms of units of time.
If a system is well designed and carefully configured,
and thus homogeneously reliable, the accumulated
failure rate of the system, F(t), is proportional to the
time period of acceptable life to job assigned to the
node, including on and off time[5]
F(t)=1-R(t)=1-e- λ t Ξ λ t
where R is reliability function, λ is failure rate, and t is
time requirement of the job. By using the above
formula we can calculate the number of spare nodes
based on the Failure Rate.

4. CONCLUSIONS

The study has surveyed the progress in making grid
systems more reliable. It has been found that, today,
efforts for making grid systems more reliable have
centered on developing methods for fault tolerance.
Owing to the complexity of computational grids,
executing complex workflows reliably is a challenge.
We have developed a fault tolerance and recovery
(FTR) service that uses over-provisioning and
migration for reliable execution of workflows on
computational grids.

REFERENCES

[1] Oren Laadan Jason Nieh, Transparent Checkpoint-
Restart of Multiple Processes on Commodity
Operating Systems, USENIX Annual Technical
Conference [2007].

[2] J. H. Abawajy, Fault-Tolerant Scheduling Policy
for Grid Computing Systems, IEEE [2004].

[3] Babar Nazir, Taimoor Khan, Fault Tolerant Job
Scheduling in Computational Grid, IEEE, pp
708-713, [2006].

[4] Mattern, F., Efficient Algorithms for Distributed
Snapshots and Global Virtual Time
Approximation, Journal of Parallel and
Distributed Computing, pp. 423-434, 1993.

[5] D. Ryu, Quality, product quality, and market share
increase, Int J Reliab Appl 2 (2001) (3), p. 163
174,182.

[6] Paul Stelling, Ian Foster, Carl Kesselman, Craig
Lee, Gregor von Laszewski , A Fault Detection
Service for Wide Area Distributed Computations

[7] Chandy, K. M., Lamport, L., Distributed Snapshots:
Determining Global States of Distributed
Systems, ACM Transactions on Computer
Systems, pp. 63-75, February [1985].

[8] I. Foster, C. Kesselman and S. Tuecke. The
Anatomy of the Grid: Enabling Scalable Virtual
Organizations. The International Journal of
Supercomputer Applications,15(3), [2001].

[9] I. Foster, C. Kesselman, J. Nick and S. Tuecke.
The Physiology of the Grid: An Open Grid
Services Architecture for Distributed Systems

International Journal of Research in Advent Technology (E-ISSN: 2321-9637) Special Issue
National Conference “IAEISDISE 2014”, 12-13 September 2014

 24

Integration. Open Grid Service Infrastructure
WG, Global Grid Forum, [2002].

[10]URL:http://www.globus.org/alliance/publications/
papers/ogsa.pdf

[11] Jin Liang, Tong WeiQin, Tang JianQuan, Wang
Bo, A Fault Tolerance Mechanism in Grid, 0-
7803, IEEE pp. 457-461,[2003].

[12] J. H. Abawajy and S. P. Dandamudi. Parallel job
scheduling on multi-cluster computing systems.
In Proceedings of the IEEE International
Conference on Cluster Computing (Cluster 2003),
Hong Kong, China, December 1-4 [2003].

[13] A. Avizienis, “The N-version Approach to Fault-
Tolerant Software” - IEEE Transactions on
Software Engineering - vol. 11 [1985].

[14] T. Thanalapati and S. Dandamudi. An efficient
adaptive scheduling scheme for distributed
memory multicomputer. IEEE Transactions on
Parallel and Distributed Systems, 12(7):758–768,
July [2001].

[15] J. Brevik, D. Nurmi, and R. Wolski, “Predicting
Bounds on Queuing Delay for Batch-scheduled
Parallel Machines,” Proceedings of the Eleventh
ACM SIGPLAN Symposium on Principle and
Practice of Parallel Programming, [2006].

[16] G. E. Fagg, E. Gaberiel, G, Bosilca, T. Spring, Z.
Angskun, and J. Hayes, “The Network Weather
Service: A Distributed Resource Performance
Forecasting Service for Metacomputing,” Future
Generation Computer Systems, vol. 15(5-6), pp.
757-768, [1999].

