The Crystal Structure of 4-amino-5-chloro- N -[2(diethylamino)ethyl] - o-anisamide Monohydrochloride Monohydrate

Anjana Chauhan ${ }^{1}$ and Rajendra Kumar Tiwari ${ }^{2}$
Associate Professor,Deptt. of ECE ${ }^{1}$, Faculty of Engineering \& Technology, MBU Solan ${ }^{l}$, Professor,Deptt. of Physics ${ }^{2}$, School of Studies in Physics, Jiwaji University, Gwalior (M.P.), INDIA ${ }^{2}$. Email: anjuswayinn@yahoo.co.in ${ }^{1}$, phy05@rediffmail.com ${ }^{2}$

Abstract

The title compound is also known as Metoclopramide hydrochloride. It is a white, crystalline, odorless substance, freely soluble in water. The crystal structure was determined from single-crystal X-ray diffraction data. It crystallizes in the Monoclinic space group $\mathrm{P} 2_{1} / \mathrm{n}$ with unit cell dimensions $\mathrm{a}=12.105(5) \AA, \mathrm{b}$ $=8.538(5) \AA, c=17.080(5) \AA$ and $\beta=98.063(5)^{\circ}$. The bond angles in the benzene ring range from 106.90(13) to $121.28(13)^{\circ}$. The structure is stabilized by three intra-molecular and three intermolecular hydrogen bonds. One very close hydrogen bond is observed between $\mathrm{O}(3)-\mathrm{O}(2)$ \# 3 of $2.7498(18) \AA$ in which the distance between hydrogen and acceptor is $1.822(11) \AA$.

Index Terms- X-Ray Diffraction, Metoclopramide, Bond Lengths

1. INTRODUCTION

Metoclopramide was first described by Dr.Louis Justin-Besançon and C. Laville in 1964. ${ }^{1}$ It is an antiemetic and gastroprokinetic agent. It is commonly used to treat nausea and vomiting (emesis) associated with conditions including: emetogenic drugs, uraemia, radiation sickness, malignancy, labor, and infection. ${ }^{2,3}$ Metoclopramide hydrochloride is a white, crystalline, odorless substance, freely soluble in water. Chemically, it is 4 -amino-5-chloro- N-[2-(diethylamino)ethyl] -o-anisamide monohydrochloride monohydrate. Its molecular formula is $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{CIN}_{3} \mathrm{O}_{2} \bullet \cdot \mathrm{HCl} \cdot \mathrm{H}_{2} \mathrm{O}$. Its molecular weight is 354.27. Molecular structure of title compound is shown in Figure 1.

Figure 1: Molecular structure of Metoclopramide HCl This compound has wide range biological activity. Herein we report the crystal structure of the title compound using single-crystal X-ray diffraction.

2. EXPERIMENTAL

Thin transparent crystals were obtained by slow evaporation method from a solution of acetone, at 293K. The density of the crystal was determined by floatation method in the mixture of benzene and carbon tetrachloride. The crystal was placed in RD bottle filled with carbon tetrachloride. Benzene was
added to the solution until the crystal floated in the middle of mixture. Thus the crystal and solution were of same density and the density of solution was measured with pyknometer. The measured density is $1.235 \mathrm{mg} / \mathrm{m}^{3}$ and calculated density is $1.346 \mathrm{mg} / \mathrm{m}^{3}$.

X-Ray Data Collection and Structure Refinement

Experimental data are listed in Table 1. The atomic coordinates and equivalent isotropic displacement parameters for non-hydrogen atoms are reported in Table 2. The bond lengths and angles and hydrogenbond geometry are given in Tables 3 and 4, respectively. The three dimensional intensity data were collected on a computerized automatic 4-circle CAD-4 Enraf-Nonious Diffractometer using graphite filtered $\mathrm{CuK} \alpha$ radiations $(\lambda=1.5418 \AA)^{\text {}}$) at $\mathrm{T}=273 \mathrm{~K}$. Absorption correction was applied. The data collection was done by a θ range of 2.22 to 29.19°. The crystal structure was solved using SHELXS-97 ${ }^{4}$ program for crystal structure solution and refined by SHELXL-97 ${ }^{5}$ refinement program.

Table 1. Experimental Data.

Empirical formula	$\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{3}$
Formula weight	354.27
Temperature	$293(2) \mathrm{K}$
Wavelength	$0.71073 \AA$

Crystal system, space group	Monoclinic, P21/n
Unit cell dimensions	$\mathrm{a}=12.105(5) \AA$,
$\alpha=90.000(5){ }^{\circ}$	
$\mathrm{b}=8.538(5) \AA$,	
$\beta=98.063(5)^{\circ}$	
$\mathrm{c}=17.080(5) \AA$,	
$\gamma=90.000(5)^{\circ}$	

Volume	1747.8(14) \AA^{3}
Z, Calculated density	4, $1.346 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.387 \mathrm{~mm}^{-1}$
$\mathrm{F}(000)$	752
Crystal size	$0.30 \times 0.20 \times 0.20 \mathrm{~mm}$
Theta range for data collection	2.22 ${ }^{\circ}$ to 29.19°
Limiting indices	$\begin{gathered} -14<=\mathrm{h}<=16,-11<=\mathrm{k}<=9, \\ -23<=1<=20 \end{gathered}$
Reflections collected / unique	$21894 / 4728[\mathrm{R}(\mathrm{int})=0.0257]$
Completeness to theta $=29.19^{\circ}$	- 99.7 \%
Absorption correction Semi-em	mpirical from equivalents
Max. and min. transmission	0.930 and 0.840
Refinement method F	Full-matrix least-squares on F^{2}
Data / restraints / parameters	4728 / 3 / 227
Goodness-of-fit on F^{2}	1.051
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0368, \mathrm{wR} 2=0.0913$
R indices (all data)	$\mathrm{R} 1=0.0591, \mathrm{wR} 2=0.1024$
Extinction coefficient	$0.0079(10)$
Largest diff. peak and hole	213 and -0.219 e. A^{-3}

Table 2. Atomic coordinates ($\mathrm{x} 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$.

Atom	x	y			U(eq)
C(1)	3645(1)	2175(2)	5889(1)	61(1)	
C(2)	4639(1)	3167(2)	5781(1)	46(1)	
C(3)	5240(1)	3677(2)	7206(1)	49(1)	
C(4)	6204(2)	3985(2)	7839(1)	63(1)	
C(5)	6098(1)	1475(2)	6583(1)	47(1)	
C(6)	6420(1)	681(2)	5860(1)	46(1)	
C(7)	7074(1)	2076(2)	4762(1)	42(1)	
$\mathrm{C}(8)$	$8005(1)$	2812(2)	4419(1)	39(1)	
C(9)	9151(1)	2710(2)	4705(1)	39(1)	
$\mathrm{C}(10)$	9926(1)	3478(2)	4326(1)	43(1)	
$\mathrm{C}(11)$	9609(1)	4410(2)	3659(1)	42(1)	
C(12)	8471(1)	4481(2)	3374(1)	43(1)	
C(13)	7705(1)	3705(2)	3744(1)	42(1)	
C (14)	10603(1)	1634(2)	5654(1)	58(1)	
$\mathrm{N}(1)$	10384(1)	5189(2)	3315(1)	57(1)	
N(2)	7269(1)	1492(2)	5496(1)	45(1)	
N(3)	5582(1)	3059(1)	6452(1)	39(1)	
$\mathrm{O}(1)$	9448(1)	1807(1)	5360(1)	50(1)	
$\mathrm{O}(2)$	6133(1)	2016(2)	4384(1)	64(1)	
$\mathrm{O}(3)$	5389(1)	7643(2)	6960(1)	68(1)	
$\mathrm{Cl}(1)$	8027(1)	5603(1)	2539(1)	63(1)	

$\mathrm{Cl}(2) \quad 7057(1) \quad 5762(1) \quad 6018(1) \quad 57(1)$

Table 3. Selected bond lengths (A) and angles $\left({ }^{\circ}\right)$.

$\mathrm{C}(2)-\mathrm{N}(3)$	$1.5026(18)$
$\mathrm{C}(3)-\mathrm{N}(3)$	$1.5029(19)$
$\mathrm{C}(5)-\mathrm{N}(3)$	$1.4931(19)$
$\mathrm{C}(6)-\mathrm{N}(2)$	$1.4492(19)$
$\mathrm{C}(7)-\mathrm{O}(2)$	$1.2296(17)$
$\mathrm{C}(7)-\mathrm{N}(2)$	$1.3379(19)$
$\mathrm{C}(9)-\mathrm{O}(1)$	$1.3650(17)$
$\mathrm{C}(11)-\mathrm{N}(1)$	$1.350(2)$
$\mathrm{C}(12)-\mathrm{Cl}(1)$	$1.7395(15)$
$\mathrm{C}(14)-\mathrm{O}(1)$	$1.4258(18)$
$\mathrm{O}(2)-\mathrm{C}(7)-\mathrm{N}(2)$	$120.29(13)$
$\mathrm{O}(2)-\mathrm{C}(7)-\mathrm{C}(8)$	$120.65(13)$
$\mathrm{N}(2)-\mathrm{C}(7)-\mathrm{C}(8)$	$119.05(12)$
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(10)$	$122.41(12)$
$\mathrm{O}(1)-\mathrm{C}(9)-\mathrm{C}(8)$	$116.91(12)$
$\mathrm{N}(1)-\mathrm{C}(11)-\mathrm{C}(12)$	$122.62(15)$
$\mathrm{N}(1)-\mathrm{C}(11)-\mathrm{C}(10)$	$120.48(14)$
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{Cl}(1)$	$119.68(11)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{Cl}(1)$	$119.04(11)$
$\mathrm{C}(2)-\mathrm{N}(3)-\mathrm{C}(3)$	$111.13(11)$

Table 4. Hydrogen bond geometry (\AA and ${ }^{\circ}$).

D-H...A	d(D-H)	d(H...A)	d(D...A)	< $\mathrm{DH} \mathrm{A}$)	
$\mathrm{N}(1)-\mathrm{H}(1 \mathrm{D}) \ldots \mathrm{O}(3) \# 1$	0.829(18)	2.170(19)) 2.965(2)	160.4(17)	
$\mathrm{N}(1)-\mathrm{H}(1 \mathrm{E}) \ldots \mathrm{Cl}(2) \# 2$	0.89(2)	2.37(2)	3.250(2)	168.9(19)	
$\mathrm{N}(2)-\mathrm{H}(2 \mathrm{C}) \ldots \mathrm{O}(1)$	0.857(18) 2	2.057(18)	2.6939(19)	130.4(15)	
$\mathrm{O}(3)-\mathrm{H}(3 \mathrm{~A}) \ldots \mathrm{O}(2) \# 3$	0.941(9)	1.822(11)	2.7498(18)	168(2)	
$\mathrm{O}(3)-\mathrm{H}(3 \mathrm{~B}) \ldots \mathrm{Cl}(2)$	0.940(9)	2.259(11)	$3.1865(16)$	168.7(19)	
$\mathrm{N}(3)-\mathrm{H}(3 \mathrm{C}) \ldots \mathrm{Cl}(2)$	0.91	15(17) 2.	2.172(18)	3.0716(17)	167.6(14)
Symmetry codes: \#1 x	,-y+3/2,z-1/2	\#2 -x+2,-y+1,-z+1		\#3-x+1,-y+1,-z+1	

3. RESULTS AND DISCUSSIONS

The ORTEP ${ }^{6}$ view of the molecule with thermal ellipsoids is depicted in Figure. 2. All the bond lengths in the benzene ring vary from 1.364(2) to $1.4071(19) \AA$ A. The distances show good agreement with the standard value of $1.395 \AA$. The deviations of the inner bond angles in the benzene ring from 120° are only very slightly greater than $2 \sigma\left(=0.7^{\circ}\right)$. However the $\mathrm{C}(11)-\mathrm{N}(1)$ bond distance of $1.350(2) \AA$
is significantly shorter than the accepted C-N single bond distance of $1.472 \AA(\Delta>3 \sigma)$. In many other cases wherever nitrogen has trigonal hybridization, the similar shortening of $\mathrm{C}-\mathrm{N}$ bond has been observed. All other C-C bond lengths show normal values ${ }^{7}$ and the $\mathrm{C}-\mathrm{O}$ and $\mathrm{C}=\mathrm{O}$ bond lengths are comparable to those observed in similar structures. ${ }^{8-15}$ The bond angles in the benzene ring range from $106.90(13)$ to $121.28(13)^{\circ}$. The molecular packing of metoclopramide seen down a- axis is shown in Figure. 3. It is seen in Table 4 clearly there are three intramolecular and three intermolecular hydrogen bonds. The $\mathrm{N}(1), \mathrm{N}(2), \mathrm{O}(3)$ and $\mathrm{N}(3)$ are hydrogen bonded to $\mathrm{O}(3)$ \# 1, $\mathrm{O}(1), \mathrm{O}(2)$ \# 3 and $\mathrm{Cl}(2)$ respectively of the symmetry related molecules. The molecules are staged together along both the diagonals of the bc plane and crosslink each other at the center of the cell.

Figure 2: ORTEP view of the title compound with the atom-numbering scheme.

Figure 3: Molecular packing of Metoclopramide seen down a- axis.

Supplementary Material

Crystallographic data for the structure reported in this paper have been deposited at the Cambridge Crystallographic Data Centre. Copies of the data (CCDC745580) can be obtained free of charge upon application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [e-mail: deposit@ccdc.cam.ac.uk].

REFERENCES

[1] Justin-Besançon L, Laville C. (1964) C R Seances Soc Biol Fil 158:723
[2] Valeant Pharmaceuticals (2000) Maxolon (Australian Approved Product Information), Auburn (NSW): Valeant Pharmaceuticals Australasia.
[3] Rossi S (2006) editor; Australian Medicines Handbook, Adelaide: Australian Medicines Handbook.
[4] Sheldrich GM (1997) SHELXS97, program for the solution of crystal structure
[5] Sheldrich GM (1997) SHELXL97, program for crystal structure determination
[6] Johnson CK (1965) ORTEP, Report ORNL3794, Oak Ridge National Laboratory, TANNESSEE.
[7] Allen FH, Kennard O, Watson DG, Brammer L, Orpen AG, Taylor R.J. (1887) Chem Soc Perkin Trans 2:1
[8] Ng S-L, Razak IA, Fun H-K, Boonsri S, Chantrapromma S, Prawat U. (2005) Acta Cryst E61:3656
[9] Boonak N, Chantrapromma S, Fun H-K, Anjum S, Ali S, Atta-ur-Rahman, Karalai C. (2005) Acta Cryst E61:0410
[10] Saeed A, Shahid H, Florke U. (2008) Turk J Chem 32:481
[11] Rubin-Preminger JM, Win T, Granot Y, Bittner S.Z. (2004) Kristallogr NCS 219:323
[12] Wu D-Q, Zhang H-B, Xi B.-M. (2008) Acta Cryst E64:01155
[13] Gao S, Huo L-H, Zhao H, Ng S.W. (2004) Acta Cryst E60:o1733
[14] Gao S, Huo L-H, ZháAAH) Ng S.W. (2004) Acta Cryst E60:02193
[15]Li J, Wang W, Lan J, You J. (2008) Acta Cryst E64:o1052

