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Abstract-Binary Rotation Invariant and Noise Tolerant (BRINT) has been proposed which is a very fast, compact 
and also more accurate while illumination variations, noise and rotation changes. Here feature extraction has been 
done with local binary pattern (LBP) approach where computed local binary descriptor. These descriptors points are 
sampled in a circular neighborhood and provided single-scale LBP histograms. In this approach there is not needed 
dictionary constructor because of using different datasets. This proposed algorithm not only provide accurate 
solution and also performed significantly and consistently better in presence of noise due to its high distinctiveness 
and robustness. This method used for different level of noise such as Gaussian, salt and pepper, and speckle noise. It 
is highly discriminative, has low computational complexity, is highly robust to noise and rotation, and allows for 
compactly encoding a number of scales and arbitrarily large circular neighborhoods. These approach overcome the 
limitation such as the instability of the uniform patterns, the lack of noise robustness, the inability to encode a large 
number of different local neighborhoods, an incapability to cope with large local neighborhoods, and high 
dimensionality. Texture classification process involves two phases: the learning phase and the recognition phase. In 
the learning phase, the target is to build a model for the texture content of each texture class present in the training 
data, which generally comprises of images with known class labels. The texture content of the training images is 
captured with the chosen texture analysis method, which yields a set of textural features for each image. In our 
process snake texture has been taken and processed. 

Keywords: Binary Rotation Invariant and Noise Tolerant, local binary pattern, Local ternary patterns and Texture 
classification. 

1. INTRODUCTION 

Texture analysis is important in many 
applications of computer image analysis for 
classification or segmentation of images based on 
local spatial variations of intensity or color. A 
successful classification or segmentation requires an 
efficient description of image texture. Important 
applications include industrial and biomedical surface 
inspection, for example for defects and disease, 
ground classification and segmentation of satellite or 
aerial imagery, segmentation of textured regions in 
document analysis, and content-based access to 
image databases. However, despite many potential 
areas of application for texture analysis in industry 
there is only a limited number of successful[1] 
examples. A major problem is that textures in the real 
world are often not uniform, due to changes in 
orientation, scale or other visual appearance. In 
addition, the degree of computational complexity of 
many of the proposed texture measures is very high.  

Texture classification process involves two 
phases: the learning phase and the recognition phase. 
In the learning phase, the target is to build a model 

for the texture content of each texture class present in 
the training data, which generally comprises of 
images with known class labels. The texture content 
of the training images is captured with the chosen 
texture analysis method, which yields a set of textural 
features for each image[2]. These features, which can 
be scalar numbers or discrete histograms or empirical 
distributions, characterize given textural properties of 
the images, such as spatial structure, contrast, 
roughness, orientation, etc. In the recognition phase 
the texture content of the unknown sample is first 
described with the same texture analysis method. 
Then the textural features of the sample are compared 
to those of the training images with a classification 
algorithm, and the sample is assigned to the category 
with the best match. Optionally, if the best match is 
not sufficiently good according to some predefined 
criteria, the unknown sample can be rejected instead.  

Statistical methods analyze the spatial distribution of 
gray values, by computing local features at each point 
in the image, and deriving a set of statistics from the 
distributions of the local features. Depending on the 
number of pixels defining the local feature statistical 
methods can be further classified into first-order (one 
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pixel), second-order[1] (two pixels) and higher-order 
(three or more pixels) statistics[2]. The basic 
difference is that first-order statistics estimate 
properties (e.g. average and variance) of individual 
pixel values, ignoring the spatial interaction between 
image pixels, whereas second- and higher-order 
statistics estimate properties of two or more pixel 
values occurring at specific locations relative to each 
other.  

Geometrical methods consider texture to be 
composed of texture primitives, attempting to 
describe the primitives and the rules governing their 
spatial organization. Which is defined generalized 
cooccurrence matrices,[1] which describe second-
order statistics of edges. Model-based methods 
hypothesize the underlying texture process, 
constructing a parametric generative model, which 
could have created the observed intensity 
distribution. The intensity function is considered to 
be a combination of a function representing the 
known structural information on the image surface 
and an[2] additive random noise sequence. Pixel-
based models view an image as a collection of pixels, 
whereas region-based models regard an image as a 
set of sub patterns placed according to given rules. 
An example of region-based models are random 
mosaic models, which tessellate the image into 
regions and assign gray levels to the regions 
according to a specified probability density function. 
The facet model is a pixel-based model, which 
assumes no spatial interaction between neighboring 
pixels, and the observed intensity function is assumed 
to be the sum of a deterministic polynomial and 
additive noise. 

When choosing a texture analysis algorithm, a 
number of aspects [3]should be considered: 

1. Illumination (gray scale) invariance; how 
sensitive the algorithm is to changes in gray 
scale. This is particularly important for 
example in industrial machine vision, where 
lighting conditions may be unstable. 

2. Spatial scale invariance; can the algorithm 
cope, if the spatial scale of unknown 
samples to be classified is different from 
that of training data. 

3. Rotation invariance; does the algorithm 
cope, if the rotation of the images changes 
with respect to the viewpoint. 

4. Projection invariance (3-D texture analysis); 
in addition to invariance with respect to 

spatial scale and rotation the algorithm may 
have to cope with changes in tilt and slant 
angles. 

5. Robustness with respect to noise; how well 
the algorithm tolerates noise in the input 
images. 

6. Robustness with respect to parameters; the 
algorithm may have several built-in 
parameters; is it difficult to find the right 
values for them, and does a given set of 
values apply for a large range of textures. 

7. Computational complexity; many algorithms 
are so computationally intensive that they 
cannot be considered for applications with 
high throughput requirements, e.g. real-time 
visual inspection and retrieval of large 
databases 

8. Generativity; does the algorithm facilitate 
texture synthesis, i.e. regenerating the 
texture that was captured using the 
algorithm. 

9. Window/sample size; how large sample the 
algorithm requires to be able to produce a 
useful description of the texture 
content.Section 2 describes about existing 
methodology, Section 3describes about 
proposed methods and section 4 is 
conclusion. 
 

2. EXISTING SYSTEM 

 In this proposed approach BRINT_S Descriptor 
has been introduced which is a same scheme of 
sampling method of original LBP approach, it sample 
pixels around a central pixel, also restricted the 
number of points sampled to be a multiple of eight. 
It’s grouping equal binary representations under 
rotations, assigning[1] code numbers to the resulting 
groups. This approach performed well such as LBP 
rotation invariance but it does not imply the 
performance when computational cost much high 
compared with traditional LBP descriptors. 

 Next BRINT_M Descriptor has been introduced 
to overcome the drawback of the BRINT_S 
Descriptor. This new method has been worked as 
CLBP_CSM feature extraction method and also like 
LBP (uniform rotation invariance) where used single 
features. Compared with CLBP methods this 
BRINT_M outperformed. BRINT_M Descriptor is 
achieved by combining BRINT_S and performance 
of the CLBP_CSM feature. Finally Multi Resolution 
BRINT has been proposed which performed efficient 
and [1] extracted from a single resolution with a 
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circularly symmetric neighbor set. Goal of our 
approach is to cope with a large number of different 
scales and created operators for different spatial 
resolutions. This method operation by concatenating 
binary histograms from multiple resolutions into a 
single histogram. BRINT descriptor is noise robust, 
in contrast to the noise sensitivity of the traditional 
LBP and its many variants. Since BRINT_CSM, the 
joint histogram of BRINT_C, BRINT_S and 
BRINT_M, has a very high dimensionality of 36 ∗ 36 
∗ 2 = 2592, in order to reduce the number of bins 
needed. This modern approach achieved the Nearest 
Neighbor Classifier (NNC) applied to the normalized 
BRINT histogram feature[2] vectors. The proposed 
BRINT gives the highest performance at high SNR. 
The proposed BRINT descriptor is noise robust, in 
contrast to the noise sensitivity. 

Advantage 

• It is applicable for discriminative and robust 
combination for multi resolution analysis. 

• This proposed method more robustness in 
performance for all three Outex databases 
under noisy conditions. 

• Our proposed method more reliable 
compared with state-of-the-art texture 
classification methods on all three Outex test 
suites. 

• The robustness of the proposed approach to 
image rotation and noise has been validated. 

• The proposed approach to produce 
consistently good classification results on all 
of the datasets, most significantly 
outperforming in high noise conditions. 

A. BRINT_CSM 

Proposition and analysis of a weighted 
combination scheme of the proposed descriptor for 
images and the feature for grayscale images in gender 
recognition using different sources of RGB-D data. 

BRINT operator performs by thresholding the 
differences of the center value and the neighborhood 
in the 3x3 grid surrounding one pixel. [1] The 
resulting values are then considered as an 8-bit binary 
number represented for that pixel. The histogram of 
these binary numbers in the whole image can be used 
as a descriptor for the image. 

Another remarkable improvement of BRINT is 
the so called uniform pattern BRINT codes are not 
uniformly distributed, some codes appear much more 
frequently than the others. These frequent codes have 
at most two transitions from 0 to 1 or vice versa when 
the pattern is traversed circularly, and are called 
uniform[4] patterns. When computing the histogram, 
every uniform pattern is labeled with one 
distinguished value while all the non-uniform 
patterns are group into one category. 

It is a powerful approach to analyze and 
discriminate textures. However, it just considers the 
sign of differences and ignores the difference values, 
[5]which can be an important source of information. 
By just keeping the sign of the differences, two 
different textures could be misclassified as the same 
by BRINT. 

B. Local ternary patterns 

 Local ternary patterns (LTP) are an extension of 
Local binary patterns (LBP).[1] Unlike LBP, it does 
not threshold the pixels into 0 and 1, rather it uses a 
threshold constant to threshold pixels into three 
values. Considering k as the threshold constant, c as 
the value of the center pixel, a neighboring pixel p, 
the result of threshold is: 

\begin{cases} 
1, & \text{if } p>c+k \\ 
0, & \text{if } p>c-k \text{ and } p<c+k \\ 
-1 & \text{if } p<c-k \\ 
\end{cases} 

 In this way, each thresholded pixel has one of the 
three [1]values. Neighboring pixels are combined 
after thresholding into a ternary pattern. Computing a 
histogram of these ternary values will result in a large 
range, so the ternary[6] pattern is split into two 
binary patterns. Histograms are concatenated to 
generate a descriptor double the size of LBP. 

C. Local binary patterns 

 Local binary patterns (LBP) is a type of feature 
used for classification in computer vision. LBP is the 
particular case of the Texture Spectrum model 
proposed. LBP was[1] first described and it has since 
been found to be a powerful feature for texture 
classification; it has further been determined that 
when LBP is combined with [8]the Histogram of 
oriented gradients (HOG) descriptor, it improves the 
detection performance considerably on some 
datasets. 
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The Process of LBP are, 

• Divide the examined window into 
cells (e.g. 16x16 pixels for each cell). 

• For each pixel in a cell, compare 
the pixel to each of its 8 neighbors (on its left-
top, left-middle, left-bottom, right-top, etc.). 
Follow the pixels along a circle, i.e. clockwise or 
counter-clockwise. 

• Where the center pixel's value is 
greater than the neighbor's value, write "1". 
Otherwise, write "0". This gives an 8-digit 
binary number (which is usually converted to 
decimal for convenience). 

• Compute the histogram, over the 
cell, of the frequency of each "number" 
occurring (i.e., each combination of which pixels 
are smaller and which are greater than the 
center). 

• Optionally normalize the 
histogram. 

• Concatenate (normalized) 
histograms of all cells. This gives the feature 
vector for the window. 

D. Completed modeling of Local Binary 
Pattern 

 Completed modeling of Local Binary Pattern 
(CLBP) which is composed by the center gray level, 
sign components and magnitude components. To 
improve rotation invariance, considerably lower 
dimensionality we implemented Completed Local 
Binary Patterns (CLBP) which is consists of three 
LBP descriptors. [1] Which include information on 
the center pixel, signed differences, and magnitudes 
of differences, respectively, with the variants tested 
to improve the discriminative power of the original 
LBP operator. The three CLBP proposed CLBP_C, 
CLBP_S and CLBP_M. This histogram effectively 
has a description of the Texture on three different 
levels of locality: the CLBP labels for the histogram 
contain information about the patterns on a pixel-
level, the labels are summed over a small region to 
produce information on a regional level and the 
regional histograms are concatenated to build a 
global description of the Texture. It should be noted 
that when using the histogram based methods the 

regions do not need to be rectangular. Both do they 
need to be of the same size nor shape, and they do 
not necessarily have to cover the whole image. It is 
also possible to have partially overlapping regions. 

The LBP methodology has led to significant progress 
in texture analysis. It is widely used all over the 
world both in research and [9] applications. Due to its 
discriminative power and computational simplicity, 
the method has been very successful in many such 
computer vision problems which were not earlier 
even regarded as texture problems, such as face 
analysis and motion analysis. 

 

 

 

 
 

 

 

 

 

 Figure 1:  Architecture Diagram 

Preprocessing 

 In pre-processing we are applying Gaussian 
filtering to our input image. Gaussian filtering is 
often used to remove the noise from the image. Here 
we used wiener function to our input image. 
Gaussian filter is windowed filter of linear class, [1] 
by its nature is weighted mean. Named after famous 
scientist Carl Gauss because weights in the filter 
calculated according to Gaussian distribution. 

 The Gaussian Smoothing Operator performs a 
weighted average of surrounding pixels based on the 
Gaussian distribution. It is used to remove Gaussian 
noise and is a realistic model of defocused lens. 
Sigma defines the amount of [10] blurring. The 
radius slider is used to control how large the template 
is. Large values for sigma will only give large 
blurring for larger template sizes. Noise can be added 
using the sliders. 

Feature Extraction 

SVM 
Classifier 

BRINT 

Result 

Feature 
Extraction 

Image 
Preprocessing 

Snake 
Texture 

Classification 
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  Feature selection is the process of selecting a 
subset of relevant features for use in model 
construction. The central assumption when using a 
feature [12] selection technique is that the data 
contains many redundant or irrelevant features. 
Redundant features are those which provide no more 
information than the currently selected features, and 
irrelevant features provide no useful information in 
any context. Feature selection techniques are a subset 
of the more general field of feature extraction. 
Feature extraction[1] creates new features from 
functions of the original features, whereas feature 
selection returns a subset of the features. Feature 
selection techniques are often used in domains where 
there are many features and comparatively few 
samples (or data points). The archetypal case is the 
use of feature selection in analyzing DNA 
microarrays, where there are many thousands of 
features, and a few tens to hundreds of samples. 
Feature selection techniques provide three main 
benefits when constructing predictive 
models:Improved model interpretability, shorter 
training times, enhanced generalization by reducing 
overfitting. 

 BRINT has to reduce Dimensionality [1] 
Reduction and Rotation Invariance, Discriminative 
Power and Noise Robustness. BRINT_CSM, the joint 
histogram of BRINT_C, BRINT_S and BRINT_M, 
has a very high dimensionality of 36 ∗ 36 ∗ 2 = 2592, 
in order to reduce the number of bins needed. The 
BRINT operator assigned a label to every pixel of a 
gray level image. The label mapping to a pixel is 
affected by the relationship between this pixel and its 
eight neighbors of the pixel. If we set the gray level 
image is I, and Z0 is one pixel in this image. 

SVM CLASSIFIER 

 SVM maps input vectors to a higher dimensional 
vector space where an optimal hyper plane is 
constructed. Among the many hyper planes available, 
there is only one hyper plane that maximizes the 
distance between itself and the nearest data vectors of 
each category. This hyper plane which maximizes the 
margin is called [1] the optimal separating hyper 
plane and the margin is defined as the sum of 
distances of the hyper plane to the closest training 
vectors of each category. 

 (i).Data setup: our dataset contains three classes, 
each N samples. The data is 2D plot original data for 
visual inspection 

(ii).SVM with linear kernel (-t 0). We want to find 
the best parameter value Cusing 2-fold cross 
validation (meaning use 1/2 data to train, the other 
1/2 to test).  

(iii).After finding the best parameter value for C, we 
train the entire data 

again using this parameter value 

(iv). plot support vectors 

(v). plot decision area  

Expression for hyper plane 

w.x+b = 0 

x – Set of training vectors 

w – vectors perpendicular to the separating hyper 
plane 

b – offset parameter which allows the increase of the 
margin 

 Kernel function is used when decision function 
is not a linear function of the data and the data will be 
mapped from the input space through a nonlinear 
transformation rather than fitting non-linear curves to 
the vector space to separate the data 

 

 

Figure 2: Margin is d1+d2 
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With an optimal kernel function implemented in 
SVM model, the classification task is able to scale 
high dimensional data relatively well, tradeoff 
between classifier complexity and classification error 
can be controlled explicitly. 

Classification by n-class SVM 

This defines a grouping of all the classes in two 
disjoint groups of classes. This grouping is then used 
to train a SVM classifier in the root node of the 
decision tree, using the samples of the first group as 
positive examples and the samples of the second 
group as negative examples. The classes from the 
first clustering group are being assigned to the first 
(left) subtree, while the classes of the second 
clustering group are being assigned to the (right) 
second subtree. The process continues recursively 
until there is only one class per group which defines a 
leaf in the decision tree. 

 

Figure 3:Decision tree 

3. PROPOSED SYSTEM 

 In proposed method going to implement 
detection and classification of texture by computing 
feature extraction. There are three feature extraction  
[1]  such as BRINT_CSM, Statistical Pattern and 
Gray level Co-Occurrence features will be extracted. 
Finally RVM classifier can be used to classify the 
texture based on the extracted features. 

A. RVM Algorithm 

 A relevance vector machine (RVM) is a machine 
learning technique that uses Bayesian inference to 
obtain parsimonious solutions for regression and 
probabilistic classification.[1] The RVM has an 
identical functional form to the support vector 
machine, but provides probabilistic classification. 

 A relevance vector machine [Tipping 2001] 
provides a regression method in a Bayesian 
framework. It can be also adapted to perform 

classification tasks. Like Support Vector Machines 
(SVM) it learns a sparse representation of input basis 
functions. In its original form it only has a single 
dimensional output. This is a drawback in some 
regression tasks with multi-dimension outputs (e.g. 
human body pose estimation), since we have to use a 
separate relevance vector machine for each output 
dimension and will lead to separate sets of basis 
functions being selected for each output dimension, 
reducing the sparsity. To avoid this, we propose an 
extension which enables a single relevance vector 
machine to handle multiple output dimensions. We 
also extend the fast bottom-up basis function 
selection algorithm [Tipping 2003] to the 
multivariate output case. 

 

Figure 2: 3 class synthetic data in RVM classifier 

   It is developed based on the probabilistic 
Bayesian learning framework. The RVM process is 
an iterative one and involves repeatedly re-estimating 
and until a stopping condition is met. Our hyper 
parameter values and which result from the procedure 
are those that maximize marginal likelihood.  Hence 
are those used when making a new estimate of a 
target value t for a new input x0.RVM is a 
probabilistic non-linear model with a prior 
distribution on the weights that enforces sparse 
solutions.  It is reported that RVM can yield nearly 
identical performance to, if not better than, that of 
SVM while using far fewer relevance vectors than 
the number of support vectors for SVM in several 
benchmark studies. Compared with SVM, it is not 
necessary for RVM to tune any regularization 
parameter during the training phase, neither for 
kernel function to satisfy Mercer’s condition. 
Furthermore, the predictions are probabilistic. For 
regression problems, the RVM makes predictions 
based on the function. 

4. CONCLUSION 
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 The proposed BRINT descriptor is noise robust, 
in contrast to the noise sensitivity of the traditional 
LBP and its many variants. The proposed idea can be 
generalized and integrated with existing LBP 
variants, such as conventional LBP, rotation invariant 
patterns, rotation invariant uniform patterns, CLBP 
and Local Ternary Patterns (LTP) to derive new 
image features for texture classification. Highly 
effective multi-resolution descriptor for rotation 
invariant texture classification. The proposed 
approach firmly puts rotation invariant binary 
patterns back on the map, after they were shown to be 
very ineffective. 
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