
International Journal of Research in Advent Technology (E-ISSN: 2321-9637) Special Issue
1st International Conference on Advent Trends in Engineering, Science and Technology

“ICATEST 2015”, 08 March 2015

356

Developing Asynchronous Web Service and their
Invocation

 G M Tere1, R R Mudholkar2, B T Jadhav3

1 Research Scholar, Dept of Computer Science, Shivaji University, Kolhapur-416004, girish.tere@gmail.com
2 Professor, Dept of Electronics, Shivaji University, Kolhapur-416004, rrm_eln@unishivaji.ac.in

3 Professor, Dept of Computer Science, Y.C. Institute of Science, Satara, 415001, btj21875@gmail.com

Abstract: This paper introduces asynchronous Web service concepts and describes how to develop and
configure asynchronous Web services. The JAX-WS specification provides an asynchronous client API that can
call synchronous methods in an asynchronous way. Web services are really useful if they are called from remote
machines/devices. This will be time consuming. To improve performance one must call Web services
asynchronously.
Keywords – Asynchronous call, JAX-WS, MDB, WSDL

1. INTRODUCTION TO ASYNCHRONOUS
WEB SERVICES

Web service invocation in Java API for XML-Web
Services (JAX-WS) 2.0 [1] is built upon the
concurrent programming support in JDK. When a
Web service synchronously invoked, the invoking
client application waits for the response to return
before it can continue with its work. In cases where
the response returns immediately, this method of
invoking the Web service might be adequate.
However, because request processing can be delayed,
it is often useful for the client application to continue
its work and handle the response later on. By calling a
Web service asynchronously, the client can continue
its processing, without interrupt, and will be notified
when the asynchronous response is returned.

2. Asynchronous Web Service Using a Request and
 a Response Queue

Two separate message-driven beans (MDBs) are
required in this case. One MDB is required to handle
the request processing and one to handle the response
processing as shown in Fig. 1. By separating the
execution of business logic from the response return,
this scenario provides improved error recovery.

The flow of event shown in Fig. 1 is described below:
1 The client calls an asynchronous method.
2 The asynchronous Web services receives the

request and stores it in the request queue.
3 The asynchronous Web service sends a receipt

confirmation to the client.
4 The MDB listener on the request queue receives

the message and initiates processing of the
request.

5The request MDB calls the required method in the
Web service implementation.

Fig. 1: Asynchronous Web Service Using a Request

and Response Queue

5 The Web service implementation returns the

response.
6 The request MDB saves the response to the

response queue.
7 The request MDB sends a confirmation to the

request queue to terminate the process.
8 The onMessage listener on the response queue

initiates processing of the response.
9 The response MDB, acting as the callback client,

returns the response to the callback service.
10 The callback service returns a receipt

confirmation message.

International Journal of Research in Advent Technology (E-ISSN: 2321-9637) Special Issue
1st International Conference on Advent Trends in Engineering, Science and Technology

“ICATEST 2015”, 08 March 2015

357

11 The response MDB returns a confirmation
message to the response queue to terminate the
sequence.

3. Client Calling Asynchronous Web Service

From the client side, the asynchronous method call
consists of two one-way message exchanges, as
shown in Fig. 2.

Fig. 2: Asynchronous Web Service Client Flow

As shown in Fig. 2, before initiating the asynchronous
call, the client must deploy a callback service to listen
for the response from the asynchronous Web service.
The message flow is as follows:
1 The client calls an asynchronous method.
2 The asynchronous Web services receive the

request; send a confirmation message to the
initiating client, and starts process the request.

3 Once processing of the request is complete, the
asynchronous Web service acts as a client to send
the response back to the callback service.

4 The callback service sends a confirmation
message to the asynchronous Web service.

4. Developing an Asynchronous Web Service

A JAX-WS Web service can be declared an
asynchronous Web service using the following
annotation:

oracle.webservices.annotations.async.AsyncWebService.

The following provides a very simple POJO example
of an asynchronous Web service:

import oracle.webservices.annotations.PortableWebService
import
oracle.webservices.annotations.async.AsyncWebService
@PortableWebService
@AsyncWebService
public class HelloService {
 public String hello(String name) {
 return “Hi “ + name;

 }
}

The generated WSDL for the asynchronous Web
service contains two one-way operations defined as
two portTypes: one for the asynchronous operation
and one for the callback operation.
For example:
<wsdl:portType name="HelloService">

<wsdl:operation name="hello">
<wsdl:input message="tns:helloInput"
xmlns:ns1="http://www.w3.org/2006/05/addr
essing/wsdl"
ns1:Action=""/>
</wsdl:operation>
</wsdl:portType>
<wsdl:portType
 name="HelloServiceResponse">
<wsdl:operation name="helloResponse">
<wsdl:input message="tns:helloOutput"
xmlns:ns1="http://www.w3.org/2006/05/addr
essing/wsdl"
ns1:Action=""/>
</wsdl:operation>

</wsdl:portType>

Calling Web service asynchronously improves
performance than calling synchronously. To check
this StockQuote Web service is developed using JDK
6.0, JAX-WS 2.1 reference implementation (RI)
[1][2], and Tomcat 6.0

An asynchronous invocation of the program must
return immediately without waiting for the actual
computation to complete. For the calling client to
retrieve the computation result, one approach is to
return the client an instance of
the java.util.concurrent.Future interface as a
placeholder for the result. This interface is defined as
follows:

public interface Future<V>{
 boolean cancel(boolean mayInterruptIfRunning);
 boolean isCancelled();
 boolean isDone();
 V get() throws InterruptedException,
ExecutionException;
 V get(long timeout, TimeUnit unit) throws
InterruptedException,ExecutionException,TimeoutExcepti
on;
}

V represents the computation result. get() allows the
client to make a rendezvous with the Future. When
called, it returns the result if ready; otherwise, it will
block until the computation has completed.
With get(long timeout, TimeUnit unit), the calling
client can specify the maximum waiting time.
Computation may be cancelled with

International Journal of Research in Advent Technology (E-ISSN: 2321-9637) Special Issue
1st International Conference on Advent Trends in Engineering, Science and Technology

“ICATEST 2015”, 08 March 2015

358

the cancel() method, but this can only be done before
the computation completes. The method isDone() is
used to check the status of the computation.

The second approach in asynchronous interaction is to
use callbacks. In this scenario, the calling client
provides a callback handler to the program along with
the invocation. The callback handler communicates
instructions from the client to the program on how to
process the result. When the result is ready, the
program invokes the handler, and processes the result
as instructed. Typically, the program will utilize the
Executor frameworkin java.util.concurrent to provide
a thread to execute the callback handler, and the
process may be tuned through the Executor.
JAX-WS 2.0 [3][4] adopts both approaches in its
asynchronous web service invocation mechanism. In
this case, the program is the client runtime. A web
service client with asynchrony enabled for a particular
operation may poll the invocation result using the
generic interface javax.xml.ws.Response, which
directly extends Future<T>.

5. A Simple Web Service

A simple web service is developed using with JAX-
WS 2.0. The service side of a web service can be
developed from a service endpoint implementation
class or from a WSDL file. This example follows the
first approach with the following implementation
class:

public class StockQuoteImpl {
 public double getQuote(String ticker) {
 double result = 0.0;
 if (ticker.equals("MHP")) {
 result = 50.0;
 } else if (ticker.equals("IBM")) {
 result = 83.0;
 }
 return result;
 }
}

To expose a class as a web service, JAX-WS 2.0
utilizes the annotation mechanism of JDK 6.0 [4],
particularly uses those annotations defined by JSR.
Web Service Metadata for the Java Platform. First
step is to annotate the StockQuoteImpl class and its
only operation, getQuote(), with
@WebService() and @WebMethod() espectively:

@WebService(name="StockQuote",
serviceName="StockQuoteService")
public class StockQuoteImpl {
 @WebMethod(operationName="getQuote")
 public double getQuote(String code) {

 }
}

The build-server-java task produces those annotated
classes:

@XmlRootElement(name = "getQuote",
 namespace =
"http://server.stockquote.jaxws.company.com/")
@XmlAccessorType(XmlAccessType.FIELD)
@XmlType(name = "getQuote",
 namespace =
"http://server.stockquote.jaxws.company.com/")
public class GetQuote {
 @XmlElement(name = "arg0", namespace = "")
 private String arg0;
 public String getArg0() {
 return this.arg0;
 }
 public void setArg0(String arg0) {
 this.arg0 = arg0;
 }
}

and

@XmlRootElement(name = "getQuoteResponse",
 namespace =
"http://server.stockquote.jaxws.company.com/")
@XmlAccessorType(XmlAccessType.FIELD)
@XmlType(name = "getQuoteResponse",
 namespace =
"http://server.stockquote.jaxws.company.com/")
public class GetQuoteResponse {
 @XmlElement(name = "return", namespace = "")
 private double _return;
 public double get_return() {
 return this._return;
 }
 public void set_return(double _return) {
 this._return = _return;
 }
}

These are the JavaBeans required by JAXB 2.0 for
marshalling and un-marshalling web service request
and response messages in JAX/XML binding [5]. To
complete our web service development, we need to
package the service-side artifacts into a .war archive
so that it can be deployed into Tomcat.

<target name="create-war">
 <war
warfile="${build.war.home}/${ant.project.name}.war"
 webxml="etc/web.xml">
 <webinf dir="${basedir}/etc" includes="sun-
jaxws.xml"/>
 <classes dir="${build.classes.home}"
includes="**/*.class"/>
 </war>
</target>

The content in web.xml is specific to the
implementations of Tomcat, GlassFish, and Sun Java
System Application Server.

The content of the .war file is shown below:

International Journal of Research in Advent Technology (E-ISSN: 2321-9637) Special Issue
1st International Conference on Advent Trends in Engineering, Science and Technology

“ICATEST 2015”, 08 March 2015

359

WEB-INF\web.xml
WEB-INF\sun-jaxws.xml
WEB-
INF\classes\com\company\jaxws\stockquote\server\Sto
kQuoteImpl.class
WEB-
INF\classes\com\company\jaxws\stockquote\server\jax
ws\GetQuote.class
WEB-
INF\classes\com\company\jaxws\stockquote\server\jax
ws\GetQuoteResponse.class

6. Asynchronous Invocation with a Port Proxy

Asynchronous invocation in JAX-WS 2.0 can be
realized completely in the client runtime, and this is
the approach JAX-WS 2.0 RI takes. The focus is in
generating the service endpoint interface with
operations for asynchronously invoking the web
service. Then, based on the interface, the client
runtime creates the dynamic port proxy, which will
carry out the actual asynchronous invocation. In JAX-
WS 2.0 RI, customizing the wsimport Ant task can
generate this service endpoint interface. The client
artifacts are as follows:

<target name="generate-client-async" depends="setup">
 <wsimport
 debug="${debug}"
 verbose="${verbose}"
 keep="${keep}"
 extension="${extension}"
 destdir="${build.classes.home}"
 wsdl="${client.wsdl}">
 <binding dir="${basedir}/etc"
includes="${schema.binding}"/>
 <binding dir="${basedir}/etc"
includes="${client.binding.async}"/>
 </wsimport>
</target>

The difference from our previous use of wsimport is
the file for one of the binding subelements
(${client.binding.async}). This element takes external
binding files for customizing WSDL binding for JAX-
WS 2.0 (the custom-schema.xml pointed
by ${schema.binding} is for JAXB binding
declaration, and we will not discuss it here). In the
synchronous case, we use custom-client.xml (pointed
by${client.binding}) for WSDL binding
customization:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<bindings
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

wsdlLocation="http://localhost:1970/stockquote/stockquote
?wsdl"
 xmlns="http://java.sun.com/xml/ns/jaxws">
 <bindings node="wsdl:definitions">
 <package
name="com.company.jaxws.stockquote.client"/>

 </bindings>
</bindings>

In the asynchronous case, one more element is added
to <bindings node="wsdl:definitions"> in the above
file (and result in custom-client-async.xml)

<bindings node="wsdl:definitions">
 <package
name="com.company.jaxws.stockquote.client"/>
 <enableAsyncMapping>true</enableAsyncMapping>
</bindings>

As a result, the service endpoint interface
 StockQuote becomes:

@WebService(name = "StockQuote",
 targetNamespace =
"http://server.stockquote.jaxws.company.com/")
public interface StockQuote {
 @WebMethod(operationName = "getQuote")
 @RequestWrapper(localName = "getQuote",
 targetNamespace =
"http://server.stockquote.jaxws.company.com/",
 className =
"com.company.jaxws.stockquote.client.GetQuote")
 @ResponseWrapper(localName = "getQuoteResponse",
 targetNamespace =
"http://server.stockquote.jaxws.company.com/",
 className =
"com.company.jaxws.stockquote.client.GetQuoteResponse"
)
 public Response<GetQuoteResponse>getQuoteAsync(
 @WebParam(name = "arg0", targetNamespace = "")
 String arg0);

 @WebMethod(operationName = "getQuote")
 @RequestWrapper(localName = "getQuote",
 targetNamespace =
"http://server.stockquote.jaxws.company.com/",
 className =
"com.company.jaxws.stockquote.client.GetQuote")
 @ResponseWrapper(localName = "getQuoteResponse",
 targetNamespace =
"http://server.stockquote.jaxws.company.com/",
 className =
"com.company.jaxws.stockquote.client.GetQuoteResponse"
)
 public Future<?>getQuoteAsync(
 @WebParam(name = "arg0", targetNamespace = "")
 String arg0,
 @WebParam(name = "asyncHandler",
targetNamespace = "")
 AsyncHandler<GetQuoteResponse>asyncHandler);

 @WebMethod
 @WebResult(targetNamespace = "")
 @RequestWrapper(localName = "getQuote",
 targetNamespace =
"http://server.stockquote.jaxws.company.com/",
 className =
"com.company.jaxws.stockquote.client.GetQuote")
 @ResponseWrapper(localName = "getQuoteResponse",
 targetNamespace =
"http://server.stockquote.jaxws.company.com/",
 className =
"com.company.jaxws.stockquote.client.GetQuoteResponse"

International Journal of Research in Advent Technology (E-ISSN: 2321-9637) Special Issue
1st International Conference on Advent Trends in Engineering, Science and Technology

“ICATEST 2015”, 08 March 2015

360

)
 public double getQuote(
 @WebParam(name = "arg0", targetNamespace = "")
 String arg0);
}

With this interface, the web service is invoked
through the corresponding proxy asynchronously in
two ways as mentioned before. One is pulling:

public
Response<GetQuoteResponse>getQuoteAsync(String
arg0);

The other employs a callback mechanism through:

public Future<?>getQuoteAsync(String arg0,
AsyncHandler<GetQuoteResponse>asyncHandler);

In our sample client, StockQuoteClientAsync, the
pulling method is called as follows:

Response<GetQuoteResponse>resp = port.getQuoteAsync
(code);
Thread.sleep (2000);
GetQuoteResponse output = resp.get();

In summary, all the features of the Future interface
come under our employment with this asynchronous
pulling method. The callback mechanism requires a
callback handler to process invocation result. In this
example, it is defined as follows:

private class GetQuoteCallbackHandler
 implements AsyncHandler<GetQuoteResponse>{
 private GetQuoteResponse output;
 public void handleResponse
(Response<GetQuoteResponse>response) {
 try {
 output = response.get ();
 } catch (ExecutionException e) {
 e.printStackTrace ();
 } catch (InterruptedException e) {
 e.printStackTrace ();
 }
 }
 GetQuoteResponse getResponse (){
 return output;
 }
}

handleResponse() is the only method required by
the AsyncHandler interface. Client uses this handler
as follows:

double result;
......
StockQuote port = new
StockQuoteService().getStockQuotePort();
GetQuoteCallbackHandler callbackHandler = new
GetQuoteCallbackHandler ();
......
Future<?>responseCallback;
......

responseCallback = port.getQuoteAsync ("MHP",
callbackHandler);
Thread.sleep (2000);
result = callbackHandler.getResponse().getReturn();

The wildcard interface Future<?> returned to the
client may be used to check invocation status, and to
cancel the invocation. If a web service operation is
enabled for asynchronous invocation, JAX-WS 2.0
requires that three methods be generated in the service
endpoint interface. Besides the two asynchronous
ones described above, we also have the usual
synchronous method. Response time has long been a
concern for web services. With the asynchronous
invocation mechanism in JAX-WS 2.0, web service
client applications on the Java platform will be able to
execute other client processes and invoke web
services concurrently. This should solve the problem
for a large number of use cases.

Call to Web Service StockQuote asynchronously and
synchronously is compared. Results obtained are
shown in Table 1 and graphically shown in Fig 3.

Table 1: Comparison of asynchronous and
synchronous call Performance

Method
Called

Time required in
msec (Calling
asynchronously)

Time required in
msec (Calling
synchronously)

getQuote 203 832
getPrice 168 756

Fig. 3: Performance comparison between
asynchronous call and synchronous call

International Journal of Research in Advent Technology (E-ISSN: 2321-9637) Special Issue
1st International Conference on Advent Trends in Engineering, Science and Technology

“ICATEST 2015”, 08 March 2015

361

7. Conclusions

Asynchronous web service invocation with a proxy
stub in JAX-WS 2.1 is discussed. This new
specification also defines a second client
programming model, the Dispatch API, which allows
a client to interact with a web service at the XML-
message level. Asynchronous service invocation can
also be performed with the Dispatch API. When web
methods of StockQuote Web services called in
different way, asynchronous call gives better
performance as client need not wait for result from
server.

ACKNOWLEDGEMENT

We thank teachers of Department of Computer

Science, Shivaji University, Kolhapur for motivating
us for this research work. We wish to thank Principal
of Thakur College of Science and Commerce,
Mumbai and Principal, Y.C. Institute of Science,
Satara, for providing resources required to perform
experiments to complete this paper.

REFERENCES

[1] JAX-WS Reference Implementation (RI),
https://jax-ws.java.net/ Accessed on 15 Feb 2015

[2] Naveen Balani, Rajeev Hathi, Design and
develop JAX-WS 2.0 web services, 2007,
http://www.ibm.com/developerworks/webservice
s/tutorials/ws-jax/ws-jax.html

[3] Robert Eckstein and Rajiv Mordani, Introducing
JAX-WS 2.0 With the Java SE 6 Platform, Part 1,
2006,
http://www.oracle.com/technetwork/articles/javas
e/jax-ws-2-141894.html

[4] Martin Kalin, Java Web Services: Up and
Running, Second Edition, O'Reilly Media 2013

[5] Eric Jendrock, Ian Evans, Devika Gollapudi,Kim
Haase, Chinmayee Srivathsa, The Java EE 6
Tutorial, 4th Edition,
Addison-Wesley, 2010

