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Abstract- The study of collective behavior is to understand how individuals behave in a social network 
environment. Oceans of data generated by social media like Facebook, Twitter, Flickr and YouTube present 
opportunities and challenges to studying collective behavior in a large scale. In this work, we aim to learn to 
predict collective behavior in social media. In particular, given information about some individuals, how can we 
infer the behavior of unobserved individuals in the same network? A social-dimension based approach is 
adopted to address the heterogeneity of connections presented in social media. However, the networks in social 
media are normally of colossal size, involving hundreds of thousands or even millions of actors. The scale of 
networks entails scalable learning of models for collective behavior prediction. To address the scalability issue, 
we propose an edge-centric clustering scheme to extract sparse social dimensions. With sparse social 
dimensions, the social dimension based approach can efficiently handle networks of millions of actors while 
demonstrating comparable prediction performance as other non-scalable methods. 

Index Terms- Facebook, Twitter, Flickr. 

1. Introduction  

Social media such as Facebook, MySpace, 
Twitter, Blog-Digg, YouTube and Flickr, facilitate 
people of allwalks of life to express their thoughts, 
voice their opinions, and connect to each other 
anytime and anywhere. For instance, popular content-
sharing sites like Del.icio.us, Flickr, and YouTube 
allow users to upload, tag and comment different types 
of contents (bookmarks, photos, videos). Users 
registered at these sites can also become friends, a fan 
orfollower of others. The prolific and  expanded use of 
social media has turn online interactions into a vital 
part of human experience. The election of Barack 
Obama as the President of United States was partially 
attributed to his smart Internet strategy and access to 
millions of younger voters through the new social 
media, such as Facebook. As reported in the New 
York Times, in response to recent Israeli air strikes in 
Gaza, young Egyptians mobilized not only in the 
streets of Cairo, but also through the pages of 
Facebook. 

Owning to social media, rich human 
interaction information is available. It enables the 
study of collective behavior in a much larger scale, 
involving hundreds of thousands or millions of actors. 
It is gaining increasing attentions across various 
disciplines including sociology, behavioral science, 
anthropology, epidemics, economics and marketing 
business, to name a few. In this work, we study how 
networks in social media can help predict some sorts 
of human behavior and individual preference. In 
particular, given the observation of  
some individuals’ behavior or preference in a network, 
how to infer the behavior or preference of other 
individuals in the same social network? This can help 
understand the behavior patterns presented in social 

media, as well as other tasks like social networking 
advertising and recommendation.  
Typically in social media, the connections of the same 
network are not homogeneous. Different relations are 
intertwined with different connections. For example, 
one user can connect to his friends, family, college 
classmates or colleagues. However, this relation type 
information is not readily available in reality. This 
heterogeneity of connections limits the effectiveness of 
a commonly used technique collective inference for 
network classification. Recently, a framework based 
on social dimensions [18] is proposed to address this 
heterogeneity. This framework suggests extracting 
social dimensions based on network connectivity to 
capture the potential affiliations of actors. Based on the 
extracted dimensions, traditional data mining can be 
accomplished. In the initial study, modularity 
maximization [15] is exploited to extract social 
dimensions. The superiority of this framework over 
other representative relational learning methods is 
empirically verified on some social media data [18].  

However, the instantiation of the framework 
with modularity maximization for social dimension 
extraction is not scalable enough to handle networks of 
colossal size, as it involves a large-scale eigenvector 
problem to solve and the corresponding extracted 
social dimensions are dense. In social media, millions 
of actors in a network are the norm. With this huge 
number of actors, the dimensions cannot even be held 
in memory, causing serious problem about the 
scalability. To alleviate the problem, social dimensions 
of sparse representation are preferred. In this work, we 
propose an effective edge-centric approach to extract 
sparse social dimensions. We prove that the sparsity of 
the social dimensions following our proposed 
approach is guaranteed. Extensive experiments are 
conducted using social media data. The framework 
based on sparse social dimensions, without sacrificing 
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the prediction performance, is capable of handling 
real-world networks of millions of actors in an 
efficient way. 
  

2. Collective Behavior Learning 

The recent boom of social media enables the study 
of collective behavior in a large scale. Here, behavior 
can include a broad range of actions: join a group, 
connect to a person, click on some ad, become 
interested in certain topics, date with people of certain 
type, etc. When people are exposed in  a social 
network environment, their behaviors are not 
independent [6, 22]. That is, their behaviors can be 
influenced by the behaviors of their friends. This 
naturally leads to behavior correlation between 
connected users. This behavior correlation can also be 
explained by homophily.  Homophily [12] is a term 
coined in 1950s to explain our tendency to link up with 
one another in ways that confirm rather than test our 
core beliefs. Essentially, we are more likely to connect 
to others sharing certain similarity with us. This 
phenomenon has been observed not only in the real 
world, but also in online systems [4]. Homophily leads 
to behavior correlation between connected friends. In 
other words, friends in a social network tend to behave 
similarly. Take marketing as an example, if our friends 
buy something, there’s better-than-average chance 
we’ll buy it too. 

In this work, we attemt to utilize the behavior 
correlation presented in a social network to predict the 
collective behavior in social media. Given a network 
with behavior information of some actors, how can we 
infer the behavior outcome of the remaining ones 
within the same network? Here, we assume the studied 
behavior of one actor can be described with K class 
labels {c1, · · · , cK}. For each label,ci can be 0 or 1. 
For instance, one user might join multiple groups of 
interests, so 1 denotes the user subscribes toone group 
and 0 otherwise. Likewise, a user can be interestedn 
several topics simultaneously or click on multiple 
types of ads. One special case is K = 1. That is, the 
studied behavior can be described by a single label 
with 1 and 0 denoting corresponding meanings in its 
specific context,  like whether or not one user voted 
for Barack Obama in the presidential election. 
 
 
 
 

 First item in the second level 
 Second item in the second level 

 First item in the third level 
 Second item in the third level 

 Third item in the second level 
 Fourth item in the second level 

 item in the first level 

(i) First item in the second level  
(ii)  Second item in the second level 

 
Figure 1: Contacts of One User in Facebook  

3. Social Dimensions  

Connections in social media are not homogeneous. 
People can connect to their family, colleagues, college 
classmates, or some buddies met online. Some of these 
relations are  helpful to determine the targeted 
behavior (labels) but not necessarily always so true. 
For instance, Figure 1 shows the contacts of the first 
author on Facebook. The densely-knit group on the 
right side are mostly his college classmates, while the 
upper left corner shows his connections at his graduate 
school. Meanwhile, at the bottom left are some of his 
high-school friends. While it seems reasonable to infer 
that his college classmates and friends in graduate 
school are very likely to be interested in IT gadgets 
based on the fact that the user is a fan of IT gadget (as 
most of them are majoring in computer science), it 
does not make sense to propagate this preference to his 
high-school friends. In a nutshell, people are involved 
in different affiliations and connections are emergent 
results of those affiliations. These affiliations have 

to be differentiated for behavior prediction. 
However, the affiliation information is not readily 
available  in social media. Direct application of 
collective inference[ 11] or label propagation [24] 
treats the connections in a social network 
homogeneously. This is especially problematic when 
the connections in the network are noisy. To address 
the heterogeneity presented in connections, we have 
proposed a framework (SocDim) [18] for collective 
behavior  learning. 

The framework SocDim is composed of two steps: 
1) social dimension extraction, and 2) discriminative 
learning. In the first step, latent social dimensions are 
extracted based on network topology to capture the 
potential affiliations of actors. These extracted social 
dimensions represent how each actor is involved in 
diverse affiliations. 

 
One example of the social dimension representation is 
shown in Table 1. The entries show the degree of one 
user involving in an affiliation. These social 
dimensions can be treated as features of actors for the 
subsequent discriminative learning. Since the network 
is converted into features, typical classifier such as 
support vector machine and logistic regression can be 
employed. The discriminative learning procedure will 
determine which latent social dimension correlates 
with the targeted behavior and assign proper weights. 
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Now let’s re-examine the contacts network in Figure 1. 
One key observation is that when actors are belonging 
to the same affiliations, they tend to connect to each 
other as well. It is reasonable to expect people of the 
same department to interact with each other more 
frequently. Hence, to infer the latent affiliations, we 
need to find out a group of people who interact with 
each other more frequently than random. This boils 
down to a classical community detection problem. 
Since each actor can involve in more than one 
affiliations, a soft clustering scheme is preferred. In the 
instantiation of the framework SocDim, modularity 
maximization [15] is adopted to extract social 
dimensions. The social dimensions correspond to the 
top eigenvectors of a modularity matrix. It has been 
empirically shown that this framework outperforms 
other representative relational learning methods in 
social media. However, there are several concerns 
about the scalability of SocDim with modularity  
maximization: Consequently, it is imperative to 
develop scalable methods that can handle large-scale 
networks efficiently without extensive memory 
requirement. In the next section, we elucidate an edge-
centric clustering scheme to extract sparse social 
dimensions. With the scheme, we can update the social 
dimensions efficiently when new nodes or new edges 
arrive in a network. 

4. Algorithm-Edgecluster 

In this section, we first show one toy example to 
illustrate the intuition of our proposed edge-centric 
clustering scheme EdgeCluster, and then present one 
feasible solution to handle large-scale networks. 

 
4.1 Edges-Centric View 
As mentioned earlier, the social dimensions extracted 
based on modularity maximization are the top 
eigenvectors of a modularity matrix. Though the 
network is sparse, the social dimensions become 
dense, begging for abundant memory space. Let’s look 
at the toy network in Figure 2. The column of 
modularity maximization in Table 2 shows the top 
eigenvector of the modularity matrix. Clearly, none of 
the entries is zero. This becomes a serious problem 
when the network expands into millions of actors and 
a reasonable large number of social dimensions need 
to be extracted. The eigenvector computation is 
impractical in this case. Hence, it is essential to 
develop some approach such that the extracted social 
dimensions are sparse. The social dimensions 
according to modularity maximization or other soft 
clustering scheme tend to assign a non-zero score for 
each actor with respect to each affiliation. However, it 
seems reasonable that the number of affiliations one 
user can participate in is upperbounded by the number 

of connections. Consider one extreme case that an 
actor has only one connection. It is expected that he is 
probably active in only one affiliation. It is not 
necessary to assign a nonzero score for each 
affiliation. Assuming each connection represents one 
dominant affiliation, we expect the number of 
affiliations of one actor is no more than his 
connections. Instead of directly clustering the nodes of 
a network into some communities, we can take an 
edge-centric view, i.e., partitioning the edges into 
disjoint sets such that each set represents one latent 
affiliation. For instance, we can treat each edge in 
the toy network in Figure 2 as one instance, and the 
nodes that define edges as features. This results in a 
typical feature-based data format as in Figure 3. Based 
on the features (connected nodes) of each edge, we can 
cluster the edges into two sets as in Figure 4, where the 
dashed edges represent one affiliation, and the 
remaining edges denote another affiliation. One actor 
is considered associated with one affiliation as long as 
any of his connections is assigned to that affiliation. 
Hence, the disjoint edge clusters in Figure 4 can be 
converted into the social dimensions as the last two 
columns for edge-centric clustering in Table 2. Actor 1 
is involved in both affiliations under this EdgeCluster 
scheme. In summary, to extract social dimensions, we 
cluster edges rather than nodes in a network into 
disjoint sets. To achieve this, k-means clustering 
algorithm can be applied. The edges of those actors 
involving in multiple affiliations (e.g., actor   in the toy 
network) are likely to be separated into different 
clusters. Even though the partition of edge-centric 
view is disjoint, the affiliations in the node-centric 
view can overlap. Each actor can be involved in 
multiple affiliations. In addition, the social dimensions 
based on edge-centric clustering are guaranteed to be 
sparse. 
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This is because the affiliations of one actor are no 
more than the connections he has. 

 
4.2 K-means Variant 

As mentioned above, edge-centric clustering 
essentially treats each edge as one data instance with 
its ending nodes being  eatures. Then a typical k-
means clustering algorithm can be applied to find out 

disjoint partitions.  One concern with this scheme is 
that the total number of edges might be too huge. 
Owning to the power law distribution of node degrees 
presented in social networks, the total number of edges 
is normally linear, rather than square, with respect to 
the number of nodes in the network. That is, m = O(n). 

This can be verified via the properties of power law 
distribution. 

 

 
Figure 6: Algorithm for Scalable K-means variant 
 

k-means variant as in Figure 6 to handle clustering of 
many edges. We only keep a vector of MaxSim to 
represent the maximum similarity between one data 
instance with a centroid. In each iteration, we first 
identify the set of relevant instances to a centroid, and 
then compute the similarities of these instances with 
the centroid. This avoids the iteration over each 
instance and each centroid, which would cost O(mk) 
otherwise. Note that the centroid contains one feature 
(node) if and only if any edge of that node is assigned 
to the cluster. In effect, most data instances (edge) are 
associated with few (much less than k) centroids. By 
taking advantage of the feature-instance mapping, the 
cluster assignment for all instances (lines 5-11 in 
Figure 6) can be fulfilled in O(m) time. To compute 
the new centroid (lines 12-13), it costs O(m) time as 
well. Hence, each iteration costs O(m) time only. 
Moreover, the algorithm only requires the feature-
instance mapping and network data to reside in main 
memory, which costs O(m + n) space. Thus, as long as 
the network data can be held in memory, this 
clustering algorithm is able to partition the edges into 
disjoint sets. Later as we show, even for a network 
with millions of actors, this clustering can be finished 
in tens of minutes while modularity maximization 
becomes impractical. As a simple k-means is adopted 
to extract social dimensions, it is easy to update the 
social dimensions if the network changes. If a new 
member joins a network and a new connection 
emerges, we can simply assign the new edge to the 

corresponding clusters. The update of 
centroids with new arrival of connections is also 
straightforward. This k-means scheme is especially 
applicable for dynamic largescale networks  
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Figure 7: Scalable Learning of Collective Behavior 

 

5. Conclusion And Futurework 

In this work, we examine whether or not we can 
predict the online behavior of users in social media, 
given the behavior information of some actors in the 
network. Since the connections in a social network 
represent various kinds of relations, a framework 
based on social dimensions is employed.  In the 
framework, social dimensions are extracted to 
represent the potential affiliations of actors before 
discriminative learning. But existing approach to 
extract social dimensions suffers from the scalability. 
To address the scalability issue, we propose an edge-
centric clustering scheme to extract social dimensions 
and a scalable k-means variant to  handle edge 
clustering. Essentially, each edge is treated as one data 
instance, and the connected nodes are the 
corresponding features. Then, the proposed k-means 
clustering algorithm can be applied to partition the 
edges into disjoint sets, with each set representing one 
possible affiliation. With this edge-centric view, the 
extracted social dimensions are warranted to be sparse. 
Our model based on the sparse social dimensions 
shows comparable prediction performance as earlier 
proposed approaches to extract social dimensions. An 
incomparable advantage of our model is that, it can 
easily scale to networks with millions of actors while 
the earlier model fails. This scalable approach offers a 
viable solution to effective learning of online 
collective behavior in a large scale. 
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