
International Journal of Research in Advent Technology (E-ISSN: 2321-9637) Special Issue
National Conference “NCPCI-2016”, 19 March 2016

Available online at www.ijrat.org

28

An Optimization of Backup Storage using Backup History
and Cache Knowledge in reducing Data Fragmentation for

In_line deduplication in Distributed

Abhijit Goswami1, Nitin Shivale2

Department of Computer Engineering1,2,3

Bhivrabai Sawant Institute of Technology & Research Pune, India
Email: goabhijit239@gmail.com1

nitinrajni3@gmail.com2

Abstract: The chunks of data that are generated after the backup are physically distributed after deduplication in backup
system, which creates a problem know as fragmentation. Basically fragmentation basically comes into sparse and out-
of-order containers. The sparse container adversely affect the performance while restoring the database and garbage
collection effectively , while the out-of-order container brings an adverse effect on the performance issue if the restore
cache built is small. To overcome this fragmentation problem , we propose a method of History-Aware Rewriting
algorithm (HAR) and also Cache-Aware Filter (CAF).HAR will gather the historical information in backup systems to
define, identify and reduce sparse containers, and CAF acknowledges restore cache knowledge to find the out-of-order
containers that impacts restore performance. CAF supports HAR in datasets where out-of-order containers are
prominent. To get rid of metadata of the garbage collection, we exploit Container-Marker Algorithm (CMA) to gather
valid containers instead of valid chunks. My output helps to prove how HAR significantly improves the restore
performance.

Keywords:chunkHARfragmentation,metadataCMA .

1. INTRODUCTION

The present challenge in backup storage
infrastructure is the management we need to handle
the ever increasing volume of data. To face known
challenge and to convert management scalable, de-
duplication technique is very well known and new
techniques and research are being done to make this
technique more optimized for future use. Data
deduplication is a special technique used in data
compression. These work by eliminating the
duplicate copy in storage. Hence it helps in
improving the total experience and utilization of the
data storage in dataset. Also help in managing the
data transfer via network where the amount of data
transfer will get reduced significantly. In
deduplication we keep only one copy of data and
eliminated redundant data and refer other data which
are redundant to the same copy original copy.
Deduplication can happen either in the file level
system or can happen in the block level. In file-level
it removes duplicate copies of the files which are
same. The fragmentation are classified into two
categories: sparse containers and out-of-order The
former reduces restore performance, which might be
self-addressed by increasing the size of cache used
for restoration. The latter reduces each restore
performance and garbage collection, and that we

need a editing rule that's capable of accurately
distinguishing sparse containers. So as to accurately
establish and reduce sparse containers, we have a
tendency to observe that sparse containers stay
sparse in next backup, and hence propose
HAR..HAR considerably improves restore
performance with a small decrease of deduplication
ratio. We have a tendency to develop CAF to take
advantage of cache information to spot the out-of-
order containers that might hurt restore performance.
CAF is employed within the hybrid theme to boost
restore performance underneath restricted restore
cache while not a major decrease of deduplication
magnitude relation. So as to scale back the data
overhead of the garbage collection we have a
tendency to propose CMA that identifies valid
containers rather than valid chunks within the
garbage collection. Deduplication also can also
happen at the block level, thus eliminate duplicate
set of blocks of knowledge that occur in non-
identical files.Although the data deduplication
methods brings lots of advantages to user along with
security and privacy issues. Still the users’ sensitive
data can be in danger from insider and outsider
attacks. Ancient encoding, while providing the
knowledgeconfidentialityto the user, is incompatible
with data deduplication. Specifically, ancient
encoding needs completely different set of users to

International Journal of Research in Advent Technology (E-ISSN: 2321-9637) Special Issue
National Conference “NCPCI-2016”, 19 March 2016

Available online at www.ijrat.org

cypher their own data of which they have their own
keys. Thus, identical dataset copies of completely of
various users can result in different cipher texts,
creating deduplication not possible. Convergent
encoding has been planned to enforce dataset
confidentiality whereas creating deduplication
possibleAnalyzing the visual content may not be
sufficient to capture users’ privacy preferences. Tags
and other metadata are indicative of the social
context of the image, including where it was taken
and why [4], and also provide a synthetic description
of images,complementing the information obtained
from visual content analysis.

2. LITERATURE SURVEY

A. iDedup: Latency-aware, Inline Data set
Deduplication for Primary Storage in systems.

Deduplication technologies are more and more being
deployed to scale back value and increase space-
efficiency in company knowledge centers. However,
previous analysis has not applied deduplication
techniques to the path which is requested for latency
sensitive, primary workloads. This is often primarily
thanks to the additional latency these techniques
were introduced. Inherently, deduplicating data that
is present on the disk causes fragmentation [2] that
may increases seek for sequent successive reads of a
similar data thus, increasing latency. Additionally,
deduplicating knowledge needs additional disk IOs
to access on-disk deduplication information. During
this paper, we have a tendency to propose AN inline
deduplication resolution, iDedup [1], for primary
workloads, whereas minimizing additional IOs and
seek. Our algorithmic rule relies on 2 key insights
from real-world workloads: i) abstraction vicinity
exists in duplicated primary knowledge; and ii)
temporal vicinity exists within the access patterns of
duplicated data. Mistreatment the primary insight,
we have a tendency to by selection deduplicated
solely sequences of disk blocks. This reduces
fragmentation and seeks caused by deduplication.
The second insight permits U.S. to switch the high-
priced, on-disk, deduplication information with a
smaller, in-memory cache. These techniques alter
U.S. to exchange capability savings for performance,
as incontestable in our analysis with real-world
workloads.

B. Chunk Fragmentation Level: An Effective way to
Indicate for Read Performance Degradation in
Data deduplication has recently become very well
known thing in most auxiliary storage and even in
some primary storage for the capability improvement
purpose. Other than its write performance, browse
performance of the deduplication storage has been

gaining quite importance with a good vary of its
deployments. During this paper, we have a tendency
to emphasize the importance of browsing in
theperformance in reconstituting a knowledge stream
from its distinctive and shared chunks physically
spread over deduplication storage. We have a
tendency to freshly introduce a browse performance
indicator referred to as Chunk Fragmentation Level
(CFL) [3]. We have a tendency to conjointly validate
that the CFL is incredibly effective to point browse
performanceof the deduplication storage by
understanding theoretical performance model and
intensive experiments.

C.Optimized Hybrid Inline and Out-of-Line
Deduplication for Backup Storage in database

Backup storage systems typically take away
redundancy across backups via inline deduplication
that works by referring duplicate chunks of the
newest backup to those of existing backups. Inline
deduplication reduces restore performance of the
newest backup owing to fragmentation, and
complicates deletion of terminated backups owing to
the sharing of knowledge chunks. Whereas out-of-line
deduplication addresses the issues by forward-
pointing existing duplicate chunks to those of the
newest backup, it introduces extra I/Os of writing and
removing duplicate chunks. We have a tendency to
style and implement RevDedup[4], associate degree
economical hybrid inline present in data set and out-
of-line deduplication system for backup storage. It
applies for the coarse-grained inline deduplication
data to delete the duplicates of the newest backup,
and so fine-grained out-of-line reverse deduplication
to delete the duplicates from older backups. Our
reverse deduplication style limits the I/O overhead
and prepares for economical deletion of terminated
backups

D.Reducing the impact of data fragmentation caused due

to in-line deduplication
Deduplication results inevitably in knowledge fragmentation,

as a result of logically continuous knowledge is scattered
across several disk locations. during this work we have a
tendency to specialize in fragmentation caused by
duplicates from previous backups of identical backup set,
since such duplicates area unit quite common attributable
to recurrent full backups containing plenty of unchanged
knowledge. For systems with in-line dedup that detects
duplicates throughout writing and avoiding them to store,
such fragmentation causes knowledge from the most
recent backup being scattered across old backup. Then
the time of restore from the most recent backup may be
considerably inflated, typically over doubled. we have a

29

tendency to propose AN formula referred to as context-
based editing (CBR in short)[5] minimizing this come by
restore performance for up to date backups by shifting
fragmentation to older backups, that area unit seldom
used for restore. By selection editing a tiny low
proportion of duplicates throughout backup, we will scale
back the come by restore information measure from 12--
55% to solely 4--7%, as shown by experiments driven by
a group of backup traces. All of this can be achieved with
solely little increase in writing time, between a hundred
and twenty fifth and five-hitter[8]. Since we have a
tendency to rewrite solely few copies of duplicates and
recent copies are basically rewritten knowledge area unit
removed within the background, the entire method
introduces little and temporary house overhead.

E.File recipe compression technique in data deduplication
systems
Data deduplication database finds and exploit redundancy
of data between totally different information blocks. The
foremost common approach divides information into
chunks and identifies redundancies via fingerprints. The
file content is remodeled by combining the chunk
fingerprints that square measure hold on consecutive
during a file formula. The corresponding file formula
information will occupy a major fraction of the full disc
space, particularly if the deduplication magnitude relation
is incredibly high. We have a tendency to propose a mix
of economical and scalable compression schemes to
shrink the file[6][7]. At simulation shows that these ways
will compress file recipes by up to ninety three.

3 PROPOSED METHODOLOGY:

A Convergent encryption:

Convergent secret writing provides information
confidentiality in deduplication. A user tries to derive a
convergent key from every original information copy and
encrypts the data copy with the help of convergent key.
Additionally, the user conjointly tag for the data copy,
specified the tag are accustomed find duplicates. Here,
we try to assume that the correctness of the tag holds
property, i.e., if 2 information copies area unit constant,
then their tags area unit constant.
To find repeating copies, the user initial sends the tag to
the server aspect to envision if the identical copy has
been already keep. Note that each the convergent key and
therefore the tag area unit severally derived and therefore
the tag cannot be accustomed deduce the convergent key
and compromise information confidentiality. The
information which are encrypted and its respective tags
are keep on the server aspect

B. HAR Architecture:

We have pool of container which can provide a storage
service on disk. We can use fingerprint indexes for this.
The disk is useful for keeping the finger print index, and
hot part which is in memory. For writing the chunk we

use container buffer which is present inside memory the
dataset are assigned with the unique ID, say DS1.The
transaction or historical data we have are stored on disk
which consists of ID for e.g. DS1the transactional or
historical data are divided into 3 main parts: Sparse
container of HAR for inherited IDs, the optimal
replacement cache and CMA for container manifest

C. History-Aware Rewriting Algorithm

• Whenever the backup starts, HAR holds the IDs of

sparse container which are inherited to build in-
memory S inherited structure. Whenever backup
start, HAR rewrites all duplicate chunks whose
container IDs exist in S inherited.

• Along with that HAR also maintains a structure in
built knows as S emerging to monitor or
housekeeping the container referred by backup and
maintains their utilization factor.

• S emerging is used to record the utilization factor
and each dataset or record consist of utilization
factor of each container

• Once the backup is done HAR uses the technique to
get the record of higher utilization from S emerging.
S emerging has the list of all emerging container
which are sparse.

• S emerging can be directly sent to disk as the size of
S emerging is small due to our second observation

• Hence from the observation we can come to know
that if the value of chunks is more than they are
rewritten in next backup. It would hamper the
performance and cause bottleneck issues.

• To mitigate this effect HAR set the limit as 5% for
rewriting, tis would avoid too much rewrite on future
backup. HAR makes use of limit defined for
rewriting for segregating too many sparse container
in S emerging

• HAR helps in estimating the rewrite ratio for the
coming backup. Specifically it calculates the size for
the chunks which are rewritten for each emerging
sparse container.

• This is done using the help of the utilization factor
that is calculated from container size. The rewrite
ratio is later calculated as the total of all estimated
size dividing by the current backup size, which may
be give us approx. value of rewrite ratio for the
coming backup or next backup.

• If the value which is estimated for rewrite ratio crosses
the predefined value rewrite limit, HAR helps in
removing the Semerging with highest utilization and
directly jump to step1Else HAR helps in replacing the
IDs which are old inherit sparse container with their IDs
of the emerging sparse container present in S emerging.
The result generated as S inherited which helps to
provide as the S inherited for next backup.

The complete work flow of HAR is delineated in rule
one. Figure four illustrates the time period of a rewritten

30

International Journal of Research in Advent Technology (E-ISSN: 2321-9637) Special Issue
National Conference “NCPCI-2016”, 19 March 2016

Available online at www.ijrat.org

distributed Container. The parallelogram may be a
Container, and therefore the blank space is that the
chunks not documented by the backup. We have a
tendency to assume four latest backups are maintained.
(1) The Container becomes sparse in a backup n. (2) The
Container is rewritten in backup n + one. The chunks
documented by backup n + one ar rewritten to a
replacement Container that holds distinctive chunks and
different rewritten chunks (blue area). But the previous
Container can't be saved once backup n + one, as a result
of backup n2, n1, and n still seek advice from the
previous Container. (3) Once backup n + four is finished,
all backups bearing on the previous Container are
deleted, and so the previous container are often saved.
Every distributed Container decreases the restore
performance drastically in the given database of the
backup recognizing it, and can be saved once the backup
is deleted. Attributable to the restricted variety of familial
distributed containers, the memory consumed by the S
familial is negligible. S rising consumes a lot of memory
as a result of it has to monitor all containers that are
connected with the help of the backup. If the de-fault
Container size is four MB and therefore the average
utilization is five hundredth which might be simply
achieved by HAR, the S rising of a one TB stream
consume eight MB memory (each record contains a 4-
byte ID, a 4-byte current utilization, associated an 8-byte
pointer). The memory footprint is smaller than the editing
buffer utilized in cosmic microwave background
radiation and Capping. There’s an exchange in HAR as
we have a tendency to vary the employment threshold.
The next utilization threshold leads to a lot of containers
being thought of distributed, and so backups are of higher
average utilization and restore performance however
worse deduplication magnitude relation. If the
employment threshold is ready to 50%, HAR guarantees
a mean utilization of no but 50%, and therefore the most
restore performance isn't any but 50% of the most storage
information measure.

D. Optimal Restore Cache

To reduce the side effects of out-of-order containers on restore
performance, we tend to implement Belady’s best
replacement cache. Implementing the optimal cache
(OPT) has to apprehend the long run access pattern. We
will collect such data throughout the backup, since the
sequence of reading chunks throughout the restore is
simply constant because the sequence of writing them
throughout a backup. Once a chunk is processed through
either elimination or over-writing its Container ID, its
Container ID is understood. We tend to add access record
in the information that is collected .Every access record
will solely hold a Container ID. Consecutive accesses to
the identical container will be incorporated into a record.

This part of historical data will be updated to disks
sporadically, and so wouldn't consume a lot of memory
The entire sequence of access records will consume hefty
memory once out-of-order containers are dominant.
Forward every container is accessed fifty times
intermittently and also the average utilization is five
hundredth, the entire sequence of access records of a one
TB stream consumes over a hundred MB of memory.
Rather than checking the entire sequence of access
records, we can take a help of slide window to look into a
fixed-sized a part of the long run sequence, as a near-
optimal theme. The memory foot-print of this near-
optimal theme is thus delimited.

E. Container-Marker Algorithm:

Existing garbage pickup schemes have faith in merging
thin containers to reclaim invalid chunks within the
containers. Before merging, they need to spot invalid
chunks to work out utilizations of containers, i.e.,
reference management. Existing reference management
approaches area unit inevitably cumbersome owing to the
existence of huge amounts of chunks. HAR naturally
accelerates expirations of thin containers and therefore
the merging is not any longer necessary. Hence, we'd like
to not calculate the precise utilization of every container
we tend to copy the Container-Marker algorithmic
program (CMA) to with efficiency confirm that
containers area unit invalid. CMA assumes users delete
backups during a FIFO theme, during which oldest
backups area unit deleted initial.

4. SYSTEM ARCHITECTURE

Fig. 1 System Architecture

The Main purpose of our model is to provide Security to

Authorized Deduplication in daily backup and helping it
to reduce the fragmentation via exploiting backup history
and cache knowledge. Deduplication comes with many
issues like security, privacy of user. The security
measures taken in deduplication are not good enough.
Specially the old measures to protect the data against
encryption. The earlier method encrypt with the own key
making it impossible to access.A new method knows as 31

Convergent encryption used widely for making
deduplication possible. Hence hash value is used to
protect the data copy. After the generation of key the user
keeps the key and sends the cipher text to backup system.
As the key is derived from the main data the duplicate
will have the same data which would prove out to be
easier to access the data in feasible way.A new protocol
is introduced for user data to identify the duplicate data is
the copy of main file hence need not upload the same in
the server.A convergent key can be used to decrypt the
data which is encrypted in the server. This key can be
downloaded from the server itself.This encryption can
help to prevent the unauthorized access of data in the
server for the user

• User Access

User creates account in the database with his username,
password, name, email, mobile no and so on.This data
are used as user access management.The user needs to
qualify for the data access

• File Uploading and its encryption

User need to upload files in the backend.
Encryption of file is done using Convergent Encryption.
Convergent encryption algorithm is used to follow data
confidentiality while making Deduplication feasible.
It encrypts/decrypts a data set with a convergent key,
which is produced by applying the cryptographic hash
value of the content of the data copy.
After the generation of the key and database encryption,
users will have the keys and send the cipher text to the
backup storage. Since the encryption operation is
produced from the data content, identical data copies will
produce the same convergent key and thus we will have
the same cipher text.

• Fragmentation reducing in the system

To overcome the Fragmentation, we have introduced History-
Aware Rewriting algorithm (HAR) and Cache-Aware
Filter (CAF). HAR exploits historical information in
backup history systems to mark correctly and reduce
sparse containers, and CAF exploits restore cache
knowledge to understand the out-of-order containers that
will impact restore performance

5. ALGORITHM

History Aware Algorithm

Input: S inherited IDs of inherited sparse container
Output: Semerging IDs of emerging sparse container

1. First you need to initialize Semerging
2. Using while unless the backup is done
3. Need to receive the chunk of the data produced

and lookup for its fingerprinting in the
fingerprint index

4 if the chunk is duplicate
5 ifthe container ID exists in S inherited
Then
6 Rewrite the chunk to a new container
 7 else
 8 Need to eliminate the chunk data
 9 endif
 10 end
 11 write the chunk to new container
 12 endif
 13 update the utilization record in Semerging
 14 endwhile

15 Remove all utilization record of larger utilization
 16 calculate the estimated rewrite ratio for the next

backup
 17 while the estimated rewrite ratio is larger than the

rewrite limit do
 18 remove utilization record largest utilization in
Semerging
 19 Update the estimated rewrite ratio
 20 endwhile
 21 return Semerging

6. CONCLUSION

There is considerably decrease in restore and garbage
collection efficiencies because of fragmentation in
deduplication backup systems. Fragmentation can be
categorized in 2 forms as sparse container and out-of-
order container. Sparse basically tell us about the
maximum restore and out-of-order tells us about restore
performance. HAR help us to identify and rewrite sparse
with the knowledge of history. We also came to the
conclusion that an optimal caching scheme which is
optimal and hybrid algorithm act as a complementary to
HAR for reducing the impact of out-of-order case. HAR
and OPT helps to optimize the restore performance in
deduplication ratio. HAR helps to optimize both
deduplication ratio and restore performance. As to reduce
deduplication in hybrid scheme we involved CAF to
reduce deduplication ratio in hybrid scheme. We can
adapt CAF for optimizing the rewriting algorithms.
Container-Marker Algorithm (CMA) is introduced to
identify valid containers instead of valid chunks. CMA is
bounded by the number of containers; it is more cost-
effective than the number of chunks.

REFERENCES

[1] .K. Srinivasan, T. Bisson, G. Goodson, and K.
Voruganti, “iDedup:Latency-aware, inline data
deduplication for primary storage,” in Proc. USENIX
FAST, 2012.
[2]Y. Nam, G. Lu, N. Park, W. Xiao, and D. H. Du,
“Chunk
fragmentation level: An effective indicator for read
performance

32

International Journal of Research in Advent Technology (E-ISSN: 2321-9637) Special Issue
National Conference “NCPCI-2016”, 19 March 2016

Available online at www.ijrat.org

degradation in deduplication storage,” in Proc. IEEE
HPCC, 2011.
[3]F. Guo and P. Efstathopoulos, “Building a
highperformance deduplication
system,” in Proc. USENIX ATC, 2011.
[4] J. Wei, H. Jiang, K. Zhou, and D. Feng, “MAD2: A
scalable highthroughput
exact deduplication approach for network backup
services,” in Proc. IEEE MSST, 2010
[5] M. Kaczmarczyk, M. Barczynski, W. Kilian, and C.
Dubnicki
[6] M. Lillibridge, K. Eshghi, D. Bhagwat, V. Deolalikar,
G. Trezise,
and P. Camble, “Sparse indexing: large scale, inline
deduplication
using sampling and locality,” in Proc. USENIX FAST,
2009.
[7] D. Meister and A. Brinkmann, “dedupv1: Improving
deduplication
throughput using solid state drives (SSD),” in Proc. IEEE
MSST, 2010.
“Reducing impact of data fragmentation caused by in-
line deduplication,”in Proc. ACM SYSTOR, 2012.

33

