
International Journal of Research in Advent Technology (E-ISSN: 2321-9637) Special Issue
National Conference “NCPCI-2016”, 19 March 2016

Available online at www.ijrat.org

34

 Continuous Summarization and Timeline Generation
for Topic Evolutionary Tweet Streams

Mr.Amol Dhepe1, Bharat Burghate2

Department of Computer Engineering
Bhivrabai Sawant Institute of Technology & Research

Wagholi, Pune
Email: dhepeamol4@gmail.com1, bharatburghate@gmail.com 2

Abstract- Tweets are being created short text message and shared for both users and data analysts. Twitter
which receive over 400 million tweets per day has emerged as an invaluable source of news, blogs, opinions and
more. Our proposed work consists three components tweet stream clustering to cluster tweet using k-prototype
cluster algorithm (In existing base paper, k-means clustering algorithm used to create the initial clusters. with
global cluster, it didn't work well. So in our proposed work, we use k-prototype clustering produce tighter
clusters than k-means clustering, especially if the clusters are globular) and second tweet cluster vector technique
to generate rank summarization using greedy algorithm, therefore requires functionality which significantly
differ from traditional summarization. In general, tweet summarization and third to detect and monitors the
summary - based and volume based variation to produce timeline automatically from tweet stream.
Implementing continuous tweet stream reducing a text document is however not a simple task, since a huge
number of tweets are worthless, unrelated and raucous in nature, due to the social nature of tweeting. Further,
tweets are strongly correlated with their posted instance and up-to-the-minute tweets tend to arrive at a very fast
rate. Efficiency - tweet streams are always very big in level, hence the summarization algorithm should be
greatly capable; Flexibility - it should provide tweet summaries of random moment durations. Topic evolution -
it should routinely detect sub - topic changes and the moments that they happen.

Keywords- Tweet stream, continuous summarization, timeline, summary.

1. INTRODUCTION

Growing attractiveness of micro-blogging services
such as Twitter, Weibo, and Tumblr has resulted in the
explosion of the amount of short-text messages.
Twitter, for instance, which receives over 400 million
tweets per day1 has emerged as an invaluable source
of news, blogs, opinions, and more. Tweets, in their
raw form, while being informative, can also be
overwhelming. For instance, search for a hot topic in
Twitter may yield millions of tweets, spanning weeks.
Even if filtering is allowed, plowing through so many
tweets for important contents would be a nightmare,
not to mention the enormous amount of noise and
redundancy that one might encounter. To make things
worse, new tweets satisfying the filtering criteria may
arrive continuously, at an unpredictable rate. One
possible solution to information overload problem is
summarization. Summarization represents restating of
the main ideas of the text in as few words as possible
intuitively, a good summary should cover the main
topics (or subtopics) and have diversity among the
sentences to reduce redundancy. Summarization is
widely used in comfortable arrangement, especially
when users surf the internet with their mobile devices
which have much lesser screens than PCs. Traditional
document summarization approaches, however, are
not as effective in the situation of tweets given both

the big size of tweets as well as the fast and
continuous nature of their arrival.
 Tweet summarization, therefore, requires
functionalities which significantly differ. From
traditional summarization. In general, tweet
summarization has to take into consideration the
temporal feature of the arriving tweets. Consider a
user interested in a topic - related tweet stream, for
example, tweets about "Apple". A tweet
summarization system will continuously monitor
"Apple" related tweets producing a real time timeline
of the tweet stream. A user may explore tweets based
on a timeline (e.g. "Apple" tweets posted between Oct.
to Nov.). Given a timeline range, the document system
may generate a series of current time summaries to
highlight points where the topic/subtopics evolved in
the stream. Such a system will effectively enable the
user to learn major news discussion related to "Apple"
without having to read through the entire tweet stream.
Given the big picture about topic evolution about
"Apple", a user may decide to zoom in to get a more
detailed report for a smaller duration (e.g., from three
hour) system may provide a drill - down summary of
the duration that enables the user to get additional
details for that duration. Such application would not
only facilitate easy in topic - relevant tweets, but also

International Journal of Research in Advent Technology (E-ISSN: 2321-9637) Special Issue
National Conference “NCPCI-2016”, 19 March 2016

Available online at www.ijrat.org

35

support a range of data analysis tasks such as instant
reports or historical survey.
 In this project, we propose continuous
tweet summarization as a solution to address this
problem. While traditional document focus on static
and small-scale data, we aim to deal with dynamic,
tweet streams. We propose a novel tweet streams. We
propose a novel prototype called Slumber
(Summarization By stream clustering) for tweet
streams. We first propose an online tweet stream
clustering algorithm to cluster tweets and maintain
distilled statistics called Tweet Cluster Vectors. In
existing base paper, at the start of the stream, k-means
clustering algorithm used to create the initial clusters.
With global cluster, it didn't work well. In our
proposed work, we use k-prototype clustering produce
tighter clusters than k-means clustering, especially if
the clusters are globular. Then we develop a TCV-
Rank summarization technique for generating online
summaries and historical summaries of arbitrary time
durations. Finally, we describe a topic evolvement
detection method, which consumes online and
historical summaries to produce timelines
automatically from tweet streams.

2. LITERATURE SURVEY

2.1Characterizing debate performance via
aggregated twitter sentiment
 Television broadcasters are beginning to
combine social micro-blogging systems such as
Twitter with television to create social video
experiences around events. We looked at one such
event, the first U.S. presidential debate in 2008, in
conjunction with aggregated ratings of message
sentiment from Twitter. We begin to develop an
analytical methodology and visual representations that
could help a journalist or public affairs person better
understand the temporal dynamics of sentiment in
reaction to the debate video. We demonstrate visuals
and metrics that can be used to detect sentiment pulse,
anomalies in that pulse, and indications of
controversial topics that can be used to inform the
design of visual analytic systems for social media
events.

2.2 A Visual Backchannel for Large-Scale Events

 We introduce the concept of a Visual
Backchannel as a novel way of following and
exploring online conversations about large-scale
events. Micro blogging communities, such as Twitter,
are increasingly used as digital backchannels for
timely exchange of brief comments and impressions
during political speeches, sport competitions, natural
disasters, and other large events. Currently, shared
updates are typically displayed in the form of a simple
list, making it difficult to get an overview of the fast-
paced discussions as it happens in the moment and

how it evolves over time. In contrast, our Visual
Backchannel design provides an evolving, interactive,
and multi-faceted visual overview of large-scale
ongoing conversations on Twitter. To visualize a
continuously updating information stream, we include
visual saliency for what is happening now and what
has just happened, set in the context of the evolving
conversation. As part of a fully web-based
coordinated-view system we introduce Topic Streams,
a temporally adjustable stacked graph visualizing
topics over time, a People Spiral representing
participants and their activity, and an Image Cloud
encoding the popularity of event photos by size.
Together with a post listing, these mutually linked
views support cross-filtering along topics, participants,
and time ranges. We discuss our design
considerations, in particular with respect to evolving
visualizations of dynamically changing data. Initial
feedback indicates significant interest and suggests
several unanticipated uses.

2.3 Evolutionary timeline summarization: a balanced
optimization framework via iterative substitution
 Classic news summarization plays an
important role with the exponential document growth
on the Web. Many approaches are proposed to
generate summaries but seldom simultaneously
consider evolutionary characteristics of news plus to
traditional summary elements. Therefore, we present a
novel framework for the web mining problem named
Evolutionary Timeline Summarization (ETS). Given
the massive collection of time-stamped web
documents related to a general news query, ETS aims
to return the evolution trajectory along the timeline,
consisting of individual but correlated summaries of
each date, emphasizing relevance, coverage,
coherence and cross-date diversity. ETS greatly
facilitates fast news browsing and knowledge
comprehension and hence is a necessity. We formally
formulate the task as an optimization problem via
iterative substitution from a set of sentences to a
subset of sentences that satisfies the above
requirements, balancing coherence/diversity
measurement and local/global summary quality. The
optimized substitution is iteratively conducted by
incorporating several constraints until convergence.
We develop experimental systems to evaluate on 6
instinctively different datasets which amount to 10251
documents.

2.4 Twit-info: aggregating and visualizing
microblogs for event exploration
 Microblogs are a tremendous repository of
user-generated content about world events. However,
for people trying to understand events by querying
services like Twitter, a chronological log of posts
makes it very difficult to get a detailed understanding
of an event. In this paper, we present Twit-Info, a

International Journal of Research in Advent Technology (E-ISSN: 2321-9637) Special Issue
National Conference “NCPCI-2016”, 19 March 2016

Available online at www.ijrat.org

36

system for visualizing and summarizing events on
Twitter. Twit-Info allows users to browse a large
collection of tweets using a timeline-based display that
highlights peaks of high tweet activity. A novel
streaming algorithm automatically discovers these
peaks and labels them meaningfully using text from
the tweets. Users can drill down to sub-events, and
explore further via geo-location, sentiment, and
popular URLs. We contribute a recall-normalized
aggregate sentiment visualization to produce more
honest sentiment overviews. An evaluation of the
system revealed that users were able to reconstruct
meaningful summaries of events in a small amount of
time. An interview with a Pulitzer Prize-winning
journalist suggested that the system would be
especially useful for understanding a long-running
event and for identifying eyewitnesses.

 2.5 Summarizing sporting events using twitter
 The status updates posted to social networks,
such as Twitter and Facebook, contain a myriad of
information about what people are doing and
watching. During events, such as sports games, many
updates are sent describing and expressing opinions
about the event. In this paper, we describe an
algorithm that generates a journalistic summary of an
event using only status updates from Twitter as a
source. Temporal cues, such as spikes in the volume
of status updates, are used to identify the important
moments within an event, and a sentence ranking
method is used to extract relevant sentences from the
corpus of status updates describing each important
moment within an event.

2.6 A Probabilistic Model for Online Document
Clustering with Application to Novelty Detection
 In this paper we propose a probabilistic model
for online document clustering. We use non-
parametric Dirichlet process prior to model the
growing number of clusters, and use a prior of general
English language model as the base distribution to
handle the generation of novel clusters. Furthermore,
cluster uncertainty is modeled with a Bayesian
Dirichlet-multinomial distribution. We use empirical
Bayes method to estimate hyper parameters based on a
historical dataset.

 2.7 On clustering massive text and categorical data
streams
 In this paper, we will study the data stream
clustering problem in the context of text and
categorical data domains. While the clustering
problem has been studied recently for numeric data
streams, the problems of text and categorical data
present different challenges because of the large and
un-ordered nature of the corresponding attributes.
Therefore, we will propose algorithms for text and
categorical data stream clustering. We will propose a

condensation based approach for stream clustering
which summarizes the stream into a number of fine
grained cluster droplets. These summarized droplets
can be used in conjunction with a variety of user
queries to construct the clusters for different input
parameters. Thus, this provides an online analytical
processing approach to stream clustering. We also
study the problem of detecting noisy and outlier
records in real time.

2.8 Using Lexical Chains for Text Summarization
 We investigate one technique to produce a
summary of an original text without requiring its full
semantic interpretation, but instead relying on a model
of the topic progression in the text derived from
lexical chains. We present a new algorithm to compute
lexical chains in a text, merging several robust
knowledge sources: the Word Net thesaurus, a part-of-
speech tagger, shallow parser for the identification of
nominal groups, and a segmentation algorithm.
Summarization proceeds in four steps: the original text
is segmented, lexical chains are constructed, strong
chains are identified and significant sentences are
extracted. We present in this paper empirical results
on the identification of strong chains and of significant
sentences. Preliminary results indicate that quality
indicative summaries are produced.

2.9 Multi-document summarization by maximizing
informative content-words
 We show that a simple procedure based on
maximizing the number of informative content-words
can produce some of the best reported results for
multi-document summarization. We first assign a
score to each term in the document cluster, using only
frequency and position information, and then we find
the set of sentences in the document cluster that
maximizes the sum of these scores, subject to length
constraints. Our overall results are the best reported on
the DUC-2004 summarization task for the ROUGE-1
score, and are the best, but not statistically
significantly different from the best system in MSE-
2005.

2.10 LexRank: graph-based lexical centrality as
salience in text summarization
 We introduce a stochastic graph-based method
for computing relative importance of textual units for
Natural Language Processing. We test the technique
on the problem of Text Summarization (TS).
Extractive TS relies on the concept of sentence
salience to identify the most important sentences in a
document or set of documents. Salience is typically
defined in terms of the presence of particular
important words or in terms of similarity to a centroid
pseudo-sentence. We consider a new approach,
LexRank, for computing sentence importance based
on the concept of eigenvector centrality in a graph

International Journal of Research in Advent Technology (E-ISSN: 2321-9637) Special Issue
National Conference “NCPCI-2016”, 19 March 2016

Available online at www.ijrat.org

37

representation of sentences. In this model, a
connectivity matrix based on intra-sentence cosine
similarity is used as the adjacency matrix of the graph
representation of sentences. Our system, based on
LexRank ranked in first place in more than one task in
the recent DUC 2004 evaluation. In this paper we
present a detailed analysis of our approach and apply
it to a larger data set including data from earlier DUC
evaluations. We discuss several methods to compute
centrality using the similarity graph. The results show
that degree-based methods (including LexRank)
outperform both centroid-based methods and other
systems participating in DUC in most of the cases.
Furthermore, the LexRank with threshold method
outperforms the other degree-based techniques
including continuous LexRank.

3. PROPOSED SYSTEM

Our framework consists of three main modules: the
tweet stream clustering module, the high-level
summarization module and the timeline generation
module.

Tweet Stream Clustering

The tweet stream clustering module maintains the
online statistical data. Given a topic - based tweet
stream, it is able to efficiently cluster the tweets and
maintain compact cluster information a scalable
clustering framework which selectively stores
important portions of the data, and compresses or
discards other portions. CluStream is one of the most
classic stream clustering methods. It consists of an
online micro-clustering component and an offline
macro - clustering component. A variety of services
on the Web such as news filtering, text crawling, and
topic detecting etc. have posed requirements for text
stream clustering CluStream to generate duration -
based clustering results for text and categorical data
streams. However, this algorithm relies on an online
phase to generate a large number of micro - clusters
and an offline phase to re - cluster them. In contrast,
our tweet stream clustering algorithm is an online
procedure without extra offline clustering. And in the
context of tweet summarization, we adapt the online
clustering phase by incorporating the new structure
TCV, and restricting the number of clusters to
guarantee efficiency and the quality of TCVs.

1. Tweet Stream Initialization
2. Incremental Clustering
3. Deleting Outdated Clusters
4. Merging Clusters

Tweet Stream Initialization

At the start of the stream, we collect a small
number of tweets and use a k-prototype clustering
algorithm (instead of k-means) to create the initial
clusters. Next, the stream clustering process starts to

incrementally update the TCVs whenever a new tweet
arrives.

Incremental Clustering
 Suppose a tweet t arrives at time ts, and there are
N active clusters at that time. The key problem is to
decide whether to attract into one of the in progress
clusters or advance t as a new cluster. We first find the
cluster whose centroid is the closest to t. specifically,
we get the centroid of each cluster, compute its cosine
similarity to t, and find the cluster Cp with the largest
similarity.

Deleting Outdated Clusters

For most events (such as news, football
matches and concerts) in tweet streams, timeliness is
important because they usually do not last for a long
time. Therefore it is safe to delete the clusters
representing these sub - topics when they are rarely
discussed. To find out such clusters, an intuitive way
is to estimate the average arrival time (denoted as
Avgp) of the last p percent of tweets in a cluster.
However, storing p percent of tweets for every cluster
will increase memory costs, especially when clusters
grow big. Thus, we employ an approximate method to
get Avgp.

Merging Clusters

If the number of clusters keeps increasing
with few deletions, system memory will be exhausted.
To avoid this, we specify an upper limit for the
number of clusters as Nmax. When the limit is
reached, a merging process starts. The process merges
clusters in a greedy way. First, we sort all cluster pairs
by their centroid similarities in a descending order.
Then, starting with the most similar pair, we try to
merge two clusters in it. When both clusters are single
clusters which have not been merged with other
clusters, they are merged into a new composite cluster.
When one of them belongs to a composite cluster (it
has been merged with others before), the other is also
merged into that composite cluster. When both of
them have been merged, if they belong to the same
composite cluster, this pair is skipped; otherwise, the
two composite clusters are merged together. This
process continues until there are only mc percentage
of the original clusters left (mc is a merging
coefficient which provides a balance between
available memory space and the quality of remaining
clusters).

 High - Level Summarization
 The high-level summarization module provides
two types of summaries: online and historical
summaries. An online summary describes what is
currently discussed among the public. Thus, the input
for generating online summaries is retrieved directly
from the current clusters maintained in memory. On

International Journal of Research in Advent Technology (E-ISSN: 2321-9637) Special Issue
National Conference “NCPCI-2016”, 19 March 2016

Available online at www.ijrat.org

38

the other hand, a historical summary helps people
understand the main happenings during a specific
period, which means we need to eliminate the
influence of tweet contents from the outside of that
period. As a result, retrieval of the required
information for generating historical summaries is
more complicated, and this shall be our focus in the
following discussion. Suppose the length of a user -
defined time duration is H, and the ending timestamp
of the duration is tse.

 Document/Microblog Summarization

Document summarization can be categorized
as extractive and abstractive. The former selects
sentences from the documents, while the latter may
generate phrases and sentences that do not appear in
the original documents. In this paper, we focus on
extractive summarization. Extractive document
summarization has received a lot of recent attention.
Most of them assign salient scores to sentences of the
documents, and select the top - ranked sentences.
Some works try to extract summaries without such
salient scores. The symmetric non - negative matrix
factorization to cluster sentences and choose sentences
in each cluster for summarization. Proposed to
summarize documents from the perspective of data
reconstruction, and select sentences that can best
reconstruct the original documents. In modeled
documents (hotel reviews) as multi - attribute
uncertain data problem and optimized a probabilistic
coverage of the summary There have also been studies
on summarizing microblogs for some specific types of
events, e.g., sports events. Proposed to identify the
participants of events, and generate summaries based
on sub - events detected from each participant.
Introduced a solution by learning the underlying
hidden state representation of the event, which needs
to learn from previous events (football games) with
similar structure. In summarized events by exploiting
"good reporters", depending on event - specific
keywords which need to be given in advance. In
contrast, we aim to deal with general topic - relevant
tweet streams without such prior knowledge.
Moreover, their method stores all the tweets in each
segment and selects a single tweet as the summary,
while our method maintains distilled information in
TCVs to reduce storage/computation cost, and
generates multiple tweet summaries in terms of
content coverage and novelty. In addition to online
summarization, our method also supports historical
summarization by maintaining TCV snapshots.

 Timeline Detection

The demand for analyzing massive contents
in social Medias fuels the developments in
visualization techniques. Timeline is one of these
techniques which can make analysis tasks easier and
faster. Presented a timeline - based backchannel for

conversations around events. Proposed the
evolutionary timeline summarization (ETS) to
compute evolution timelines similar to ours, which
consists of a series of time - stamped summaries. The
dates of summaries are determined by a pre - defined
timestamp set. In contrast, our method discovers the
changing dates and generates timelines dynamically
during the process of continuous summarization.
Moreover, ETS does not focus on efficiency and
scalability issues, which are very important in our
streaming context. Several systems detect important
moments when rapid increases or "spikes" in status
update volume happen. Developed an algorithm based
on TCP congestion detection, employed a slope -
based method to find spikes. After that, tweets from
each moment are identified, and word clouds or
summaries are selected. Different from this two - step
approach, our method detects topic evolution and
produces summaries/timelines in an online fashion.

4. MODULE DESCRIPTION

 Fig. 1 System Architecture

Load Dataset

• In this module, we load the Twitter data sets.
Because tweets are being created and shared at
an unprecedented rate.

• Tweets, in their raw form, while being
informative, can also be overwhelming.

• For both end-users and data analysts, it is a
nightmare to plow through millions of tweets
which contain enormous amount of noise and
redundancy.

• In this project, we propose a novel continuous
summarization framework called slumber to
alleviate the problem. So we load the dataset for
continuous summarization and timeline
generation.

International Journal of Research in Advent Technology (E-ISSN: 2321-9637) Special Issue
National Conference “NCPCI-2016”, 19 March 2016

Available online at www.ijrat.org

39

Tweet Stream Clustering

• In this module maintains the online statistical
data. Given a topic - based tweet stream, it is
able to efficiently cluster the tweets and maintain
compact cluster information a scalable clustering
framework which selectively stores important
portions of the data, and compresses or discards
other portions.

• It consists of 4 phases such as
 1) Tweet Stream Initialization
 2) Incremental Clustering
 3) Deleting Outdated Clusters
 4) Merging Clusters
• Tweet Stream Initialization: At the start of the

stream, we collect a small number of tweets and
use a k-prototype clustering algorithm (instead
of k-means) to create the initial clusters. Next,
the stream clustering process starts to
incrementally update the TCVs whenever a new
tweet arrives.

• Incremental Clustering: Suppose a tweet t arrives
at time ts, and there are N active clusters at that
time. The key problem is to decide whether to
attract into one of the in progress clusters or
advance t as a new cluster. We first find the
cluster whose centroid is the closest to t.
specifically, we get the centroid of each cluster,
compute its cosine similarity to t, and find the
cluster Cp with the largest similarity.

• Deleting Outdated Clusters: For most events
(such as news, football matches and concerts) in
tweet streams, timeliness is important because
they usually do not last for a long time.
Therefore it is safe to delete the clusters
representing these sub - topics when they are
rarely discussed. To find out such clusters, an
intuitive way is to estimate the average arrival
time (denoted as Avgp) of the last p percent of
tweets in a cluster. However, storing p percent of
tweets for every cluster will increase memory
costs, especially when clusters grow big. Thus,
we employ an approximate method to get Avgp.

• Merging Clusters: If the number of clusters
keeps increasing with few deletions, system
memory will be exhausted. To avoid this, we
specify an upper limit for the number of clusters
as Nmax. When the limit is reached, a merging
process starts. The process merges clusters in a
greedy way. First, we sort all cluster pairs by
their centroid similarities in a descending order.
Then, starting with the most similar pair, we try
to merge two clusters in it. When both clusters
are single clusters which have not been merged
with other clusters, they are merged into a new
composite cluster. When one of them belongs to
a composite cluster (it has been merged with

others before), the other is also merged into that
composite cluster. When both of them have been
merged, if they belong to the same composite
cluster, this pair is skipped; otherwise, the two
composite clusters are merged together. This
process continues until there are only mc
percentage of the original clusters left (mc is a
merging coefficient which provides a balance
between available memory space and the quality
of remaining clusters).

 High-Level Summarization

• The high-level summarization module provides

two types of summaries: online and historical
summaries. An online summary describes what
is currently discussed among the public. Thus,
the input for generating online summaries is
retrieved directly from the current clusters
maintained in memory.

• On the other hand, a historical summary helps
people understand the main happenings during a
specific period, which means we need to
eliminate the influence of tweet contents from
the outside of that period.

• As a result, retrieval of the required information
for generating historical summaries is more
complicated, and this shall be our focus in the
following discussion. Suppose the length of a
user - defined time duration is H, and the ending
timestamp of the duration is tse.

Timeline Detection

• The demand for analyzing massive contents in

social Medias fuels the developments in
visualization techniques. Timeline is one of
these techniques which can make analysis tasks
easier and faster.

• It presented a timeline - based backchannel for
conversations around events. It proposed the
evolutionary timeline summarization (ETS) to
compute evolution timelines similar to ours,
which consists of a series of time - stamped
summaries.

• The dates of summaries are determined by a
pre - defined timestamp set. In contrast, our
method discovers the changing dates and
generates timelines dynamically during the
process of continuous summarization.
Moreover, ETS does not focus on efficiency
and scalability issues, which are very important
in our streaming context.

• Several systems detect important moments
when rapid increases or "spikes" in status

• Update volume happen. Developed an algorithm
based on TCP congestion detection, employed a
slope - based method to find spikes.

International Journal of Research in Advent Technology (E-ISSN: 2321-9637) Special Issue
National Conference “NCPCI-2016”, 19 March 2016

Available online at www.ijrat.org

40

• After that, tweets from each moment are
identified, and word clouds or summaries are
selected. Different from this two - step approach,
our method detects topic evolution and produces
summaries/timelines in an online fashion.

5. CONCLUSION

In this project, we proposed a continuous tweet stream
summarization framework, namely slumber, to
generated summaries and timelines in the context of
streams. Slumber employs a tweet stream clustering
algorithm to compress tweets into TCVs and
maintains them in an online fashion. Our proposed k-
prototype clustering algorithm produced tighter
clusters than k- means clustering, especially if the
clusters are globular. We designed a novel data
structure called TCV for stream processing, and
proposed the TCV-Rank algorithm for online and
historical summarization. The topic evolution can be
detected automatically, allowing slumber to produce
dynamic timelines for tweet streams.

REFERENCES

1] N. A. Diakopoulos and D. A. Shamma,
“Characterizing debate performance via aggregated
twitter sentiment,” in Proc. SIGCHI Conf. Human
Factors Comput. Syst., 2010, pp. 1195–1198.

[2] M. Dork, D. Gruen, C. Williamson, and S.
Carpendale, “A visual backchannel for large- scale
events,” IEEE Trans. Vis. Comput. Graph. vol. 16, no.
6, pp. 1129–1138, Nov. 2010.

[3] R. Yan, X. Wan, J. Otterbacher, L. Kong, X. Li,
and Y. Zhang, “Evolutionary timeline summarization:
A balanced optimization framework via iterative
substitution,” in Proc. 34th Int. ACM SIGIR Conf.
Res. Develop. Inf. Retrieval, 2011, pp. 745–754.

[4] A. Marcus, M. S. Bernstein, O. Badar, D. R.
Karger, S. Madden, and R. C. Miller, “Twitinfo:
Aggregating and visualizing micro-blogs for event
exploration,” in Proc. SIGCHI Conf. Human Factors
Comput. Syst. , 2011, pp. 227–236

[5] J. Nichols, J. Mahmud, and C. Drews,
“Summarizing sporting events using twitter,” in Proc.
ACM Int. Conf. Intell. User Interfaces, 2012, pp. 189–
198.

[6] J. Zhang, Z. Ghahramani, and Y. Yang, “A
probabilistic model for online document clustering
with application to novelty detection,” in Proc. Adv.
Neural Inf. Process. Syst., 2004, pp. 1617–1624.

[7] C. C. Aggarwal and P. S. Yu, “On clustering
massive text and categorical data streams,” Knowl.
Inf. Syst., vol. 24, no. 2, pp. 171–196, 2010.

[8] R. Barzilay and M. Elhadad, “Using lexical chains
for text summa-rization,” in Proc. ACL Workshop
Intell. Scalable Text Summarization, 1997, pp. 10–17.

[9] W.-T. Yih, J. Goodman, L. Vanderwende, and H.
Suzuki, “Multi-document summarization by
maximizing informative content-words,” in Proc. 20th
Int. Joint Conf. Artif. Intell, 2007, pp. 1776–1782.

[10] G. Erkan and D. R. Radev, “LexRank: Graph-
based lexical central-ity as salience in text
summarization,” J. Artif. Int. Res., vol. 22, no. 1, pp.
457–479, 2004.

