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Abstract- Tweets are being created short text message and shared for both users and data analysts. Twitter 
which receive over 400 million tweets per day has emerged as an invaluable source of news, blogs, opinions and 
more. Our proposed work consists three components tweet stream clustering to cluster tweet using k-prototype 
cluster algorithm (In existing base paper, k-means clustering algorithm used to create the initial clusters. with 
global cluster, it didn't work well. So in our proposed work, we use k-prototype clustering produce tighter 
clusters than k-means clustering, especially if the clusters are globular) and second tweet cluster vector technique 
to generate rank summarization using greedy algorithm, therefore requires functionality which significantly 
differ from traditional summarization. In general, tweet summarization and third to detect and monitors the 
summary - based and volume based variation to produce timeline automatically from tweet stream. 
Implementing continuous tweet stream reducing a text document is however not a simple task, since a huge 
number of tweets are worthless, unrelated and raucous in nature, due to the social nature of tweeting. Further, 
tweets are strongly correlated with their posted instance and up-to-the-minute tweets tend to arrive at a very fast 
rate. Efficiency - tweet streams are always very big in level, hence the summarization algorithm should be 
greatly capable; Flexibility - it should provide tweet summaries of random moment durations. Topic evolution - 
it should routinely detect sub - topic changes and the moments that they happen. 
 

Keywords- Tweet stream, continuous summarization, timeline, summary. 

1. INTRODUCTION 

Growing attractiveness of micro-blogging services 
such as Twitter, Weibo, and Tumblr has resulted in the 
explosion of the amount of short-text messages. 
Twitter, for instance, which receives over 400 million 
tweets per day1 has emerged as an invaluable source 
of news, blogs, opinions, and more. Tweets, in their 
raw form, while being informative, can also be 
overwhelming. For instance, search for a hot topic in 
Twitter may yield millions of tweets, spanning weeks. 
Even if filtering is allowed, plowing through so many 
tweets for important contents would be a nightmare, 
not to mention the enormous amount of noise and 
redundancy that one might encounter. To make things 
worse, new tweets satisfying the filtering criteria may 
arrive continuously, at an unpredictable rate. One 
possible solution to information overload problem is 
summarization. Summarization represents restating of 
the main ideas of the text in as few words as possible 
intuitively, a good summary should cover the main 
topics (or subtopics) and have diversity among the 
sentences to reduce redundancy. Summarization is 
widely used in comfortable arrangement, especially 
when users surf the internet with their mobile devices 
which have much lesser screens than PCs. Traditional 
document summarization approaches, however, are 
not as effective in the situation of tweets given both 

the big size of tweets as well as the fast and 
continuous nature of their arrival.  
                 Tweet summarization, therefore, requires 
functionalities which significantly differ. From 
traditional summarization. In general, tweet 
summarization has to take into consideration the 
temporal feature of the arriving tweets. Consider a 
user interested in a topic - related tweet stream, for 
example, tweets about "Apple". A tweet 
summarization system will continuously monitor 
"Apple" related tweets producing a real time timeline 
of the tweet stream. A user may explore tweets based 
on a timeline (e.g. "Apple" tweets posted between Oct. 
to Nov.). Given a timeline range, the document system 
may generate a series of current time summaries to 
highlight points where the topic/subtopics evolved in 
the stream. Such a system will effectively enable the 
user to learn major news discussion related to "Apple" 
without having to read through the entire tweet stream. 
Given the big picture about topic evolution about 
"Apple", a user may decide to zoom in to get a more 
detailed report for a smaller duration (e.g., from three 
hour) system may provide a drill - down summary of 
the duration that enables the user to get additional 
details for that duration. Such application would not 
only facilitate easy in topic - relevant tweets, but also 
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support a range of data analysis tasks such as instant 
reports or historical survey. 
                   In this project, we propose continuous 
tweet summarization as a solution to address this 
problem. While traditional document focus on static 
and small-scale data, we aim to deal with dynamic, 
tweet streams. We propose a novel tweet streams. We 
propose a novel prototype called Slumber 
(Summarization By stream clustering) for tweet 
streams. We first propose an online tweet stream 
clustering algorithm to cluster tweets and maintain 
distilled statistics called Tweet Cluster Vectors. In 
existing base paper, at the start of the stream, k-means 
clustering algorithm used to create the initial clusters. 
With global cluster, it didn't work well. In our 
proposed work, we use k-prototype clustering produce 
tighter clusters than k-means clustering, especially if 
the clusters are globular. Then we develop a TCV-
Rank summarization technique for generating online 
summaries and historical summaries of arbitrary time 
durations. Finally, we describe a topic evolvement 
detection method, which consumes online and 
historical summaries to produce timelines 
automatically from tweet streams. 

2. LITERATURE SURVEY  

2.1Characterizing debate performance via 
aggregated twitter sentiment 
           Television broadcasters are beginning to 
combine social micro-blogging systems such as 
Twitter with television to create social video 
experiences around events. We looked at one such 
event, the first U.S. presidential debate in 2008, in 
conjunction with aggregated ratings of message 
sentiment from Twitter. We begin to develop an 
analytical methodology and visual representations that 
could help a journalist or public affairs person better 
understand the temporal dynamics of sentiment in 
reaction to the debate video. We demonstrate visuals 
and metrics that can be used to detect sentiment pulse, 
anomalies in that pulse, and indications of 
controversial topics that can be used to inform the 
design of visual analytic systems for social media 
events. 
 
2.2 A Visual Backchannel for Large-Scale Events 

            We introduce the concept of a Visual    
Backchannel as a novel way of following and 
exploring online conversations about large-scale 
events. Micro blogging communities, such as Twitter, 
are increasingly used as digital backchannels for 
timely exchange of brief comments and impressions 
during political speeches, sport competitions, natural 
disasters, and other large events. Currently, shared 
updates are typically displayed in the form of a simple 
list, making it difficult to get an overview of the fast-
paced discussions as it happens in the moment and 

how it evolves over time. In contrast, our Visual 
Backchannel design provides an evolving, interactive, 
and multi-faceted visual overview of large-scale 
ongoing conversations on Twitter. To visualize a 
continuously updating information stream, we include 
visual saliency for what is happening now and what 
has just happened, set in the context of the evolving 
conversation. As part of a fully web-based 
coordinated-view system we introduce Topic Streams, 
a temporally adjustable stacked graph visualizing 
topics over time, a People Spiral representing 
participants and their activity, and an Image Cloud 
encoding the popularity of event photos by size. 
Together with a post listing, these mutually linked 
views support cross-filtering along topics, participants, 
and time ranges. We discuss our design 
considerations, in particular with respect to evolving 
visualizations of dynamically changing data. Initial 
feedback indicates significant interest and suggests 
several unanticipated uses. 
 
2.3 Evolutionary timeline summarization: a balanced 
optimization framework via iterative substitution 
             Classic news summarization plays an 
important role with the exponential document growth 
on the Web. Many approaches are proposed to 
generate summaries but seldom simultaneously 
consider evolutionary characteristics of news plus to 
traditional summary elements. Therefore, we present a 
novel framework for the web mining problem named 
Evolutionary Timeline Summarization (ETS). Given 
the massive collection of time-stamped web 
documents related to a general news query, ETS aims 
to return the evolution trajectory along the timeline, 
consisting of individual but correlated summaries of 
each date, emphasizing relevance, coverage, 
coherence and cross-date diversity. ETS greatly 
facilitates fast news browsing and knowledge 
comprehension and hence is a necessity. We formally 
formulate the task as an optimization problem via 
iterative substitution from a set of sentences to a 
subset of sentences that satisfies the above 
requirements, balancing coherence/diversity 
measurement and local/global summary quality. The 
optimized substitution is iteratively conducted by 
incorporating several constraints until convergence. 
We develop experimental systems to evaluate on 6 
instinctively different datasets which amount to 10251 
documents. 
 
2.4 Twit-info: aggregating and visualizing 
microblogs for event exploration 
              Microblogs are a tremendous repository of 
user-generated content about world events. However, 
for people trying to understand events by querying 
services like Twitter, a chronological log of posts 
makes it very difficult to get a detailed understanding 
of an event. In this paper, we present Twit-Info, a 
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system for visualizing and summarizing events on 
Twitter. Twit-Info allows users to browse a large 
collection of tweets using a timeline-based display that 
highlights peaks of high tweet activity. A novel 
streaming algorithm automatically discovers these 
peaks and labels them meaningfully using text from 
the tweets. Users can drill down to sub-events, and 
explore further via geo-location, sentiment, and 
popular URLs. We contribute a recall-normalized 
aggregate sentiment visualization to produce more 
honest sentiment overviews. An evaluation of the 
system revealed that users were able to reconstruct 
meaningful summaries of events in a small amount of 
time. An interview with a Pulitzer Prize-winning 
journalist suggested that the system would be 
especially useful for understanding a long-running 
event and for identifying eyewitnesses. 
 
 2.5 Summarizing sporting events using twitter 
         The status updates posted to social networks, 
such as Twitter and Facebook, contain a myriad of 
information about what people are doing and 
watching. During events, such as sports games, many 
updates are sent describing and expressing opinions 
about the event. In this paper, we describe an 
algorithm that generates a journalistic summary of an 
event using only status updates from Twitter as a 
source. Temporal cues, such as spikes in the volume 
of status updates, are used to identify the important 
moments within an event, and a sentence ranking 
method is used to extract relevant sentences from the 
corpus of status updates describing each important 
moment within an event. 
 
2.6 A Probabilistic Model for Online Document 
Clustering with Application to Novelty Detection 
          In this paper we propose a probabilistic model 
for online document clustering. We use non-
parametric Dirichlet process prior to model the 
growing number of clusters, and use a prior of general 
English language model as the base distribution to 
handle the generation of novel clusters. Furthermore, 
cluster uncertainty is modeled with a Bayesian 
Dirichlet-multinomial distribution. We use empirical 
Bayes method to estimate hyper parameters based on a 
historical dataset. 
 
 2.7 On clustering massive text and categorical data 
streams 
         In this paper, we will study the data stream 
clustering problem in the context of text and 
categorical data domains. While the clustering 
problem has been studied recently for numeric data 
streams, the problems of text and categorical data 
present different challenges because of the large and 
un-ordered nature of the corresponding attributes. 
Therefore, we will propose algorithms for text and 
categorical data stream clustering. We will propose a 

condensation based approach for stream clustering 
which summarizes the stream into a number of fine 
grained cluster droplets. These summarized droplets 
can be used in conjunction with a variety of user 
queries to construct the clusters for different input 
parameters. Thus, this provides an online analytical 
processing approach to stream clustering. We also 
study the problem of detecting noisy and outlier 
records in real time. 
 
2.8 Using Lexical Chains for Text Summarization 
            We investigate one technique to produce a 
summary of an original text without requiring its full 
semantic interpretation, but instead relying on a model 
of the topic progression in the text derived from 
lexical chains. We present a new algorithm to compute 
lexical chains in a text, merging several robust 
knowledge sources: the Word Net thesaurus, a part-of-
speech tagger, shallow parser for the identification of 
nominal groups, and a segmentation algorithm. 
Summarization proceeds in four steps: the original text 
is segmented, lexical chains are constructed, strong 
chains are identified and significant sentences are 
extracted. We present in this paper empirical results 
on the identification of strong chains and of significant 
sentences. Preliminary results indicate that quality 
indicative summaries are produced. 
 
2.9 Multi-document summarization by maximizing 
informative content-words 
          We show that a simple procedure based on 
maximizing the number of informative content-words 
can produce some of the best reported results for 
multi-document summarization. We first assign a 
score to each term in the document cluster, using only 
frequency and position information, and then we find 
the set of sentences in the document cluster that 
maximizes the sum of these scores, subject to length 
constraints. Our overall results are the best reported on 
the DUC-2004 summarization task for the ROUGE-1 
score, and are the best, but not statistically 
significantly different from the best system in MSE-
2005. 
 
2.10 LexRank: graph-based lexical centrality as 
salience in text summarization 
             We introduce a stochastic graph-based method 
for computing relative importance of textual units for 
Natural Language Processing. We test the technique 
on the problem of Text Summarization (TS). 
Extractive TS relies on the concept of sentence 
salience to identify the most important sentences in a 
document or set of documents. Salience is typically 
defined in terms of the presence of particular 
important words or in terms of similarity to a centroid 
pseudo-sentence. We consider a new approach, 
LexRank, for computing sentence importance based 
on the concept of eigenvector centrality in a graph 
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representation of sentences. In this model, a 
connectivity matrix based on intra-sentence cosine 
similarity is used as the adjacency matrix of the graph 
representation of sentences. Our system, based on 
LexRank ranked in first place in more than one task in 
the recent DUC 2004 evaluation. In this paper we 
present a detailed analysis of our approach and apply 
it to a larger data set including data from earlier DUC 
evaluations. We discuss several methods to compute 
centrality using the similarity graph. The results show 
that degree-based methods (including LexRank) 
outperform both centroid-based methods and other 
systems participating in DUC in most of the cases. 
Furthermore, the LexRank with threshold method 
outperforms the other degree-based techniques 
including continuous LexRank. 

 

3. PROPOSED SYSTEM 

Our framework consists of three main modules: the 
tweet stream clustering module, the high-level 
summarization module and the timeline generation 
module. 
 
Tweet Stream Clustering 

The tweet stream clustering module maintains the 
online statistical data. Given a topic - based tweet 
stream, it is able to efficiently cluster the tweets and 
maintain compact cluster information a scalable 
clustering framework which selectively stores 
important portions of the data, and compresses or 
discards other portions. CluStream is one of the most 
classic stream clustering methods. It consists of an 
online micro-clustering component and an offline 
macro - clustering component. A variety of services 
on the Web such as news filtering, text crawling, and 
topic detecting etc. have posed requirements for text 
stream clustering CluStream to generate duration - 
based clustering results for text and categorical data 
streams. However, this algorithm relies on an online 
phase to generate a large number of micro - clusters 
and an offline phase to re - cluster them. In contrast, 
our tweet stream clustering algorithm is an online 
procedure without extra offline clustering. And in the 
context of tweet summarization, we adapt the online 
clustering phase by incorporating the new structure 
TCV, and restricting the number of clusters to 
guarantee efficiency and the quality of TCVs. 

1. Tweet Stream Initialization 
2. Incremental Clustering 
3. Deleting Outdated Clusters 
4. Merging Clusters 

 
Tweet Stream Initialization 

At the start of the stream, we collect a small 
number of tweets and use a k-prototype clustering 
algorithm (instead of k-means) to create the initial 
clusters. Next, the stream clustering process starts to 

incrementally update the TCVs whenever a new tweet 
arrives. 

 
Incremental Clustering 
         Suppose a tweet t arrives at time ts, and there are 
N active clusters at that time. The key problem is to 
decide whether to attract into one of the in progress 
clusters or advance t as a new cluster. We first find the 
cluster whose centroid is the closest to t. specifically, 
we get the centroid of each cluster, compute its cosine 
similarity to t, and find the cluster Cp with the largest 
similarity. 
 
Deleting Outdated Clusters 

For most events (such as news, football 
matches and concerts) in tweet streams, timeliness is 
important because they usually do not last for a long 
time. Therefore it is safe to delete the clusters 
representing these sub - topics when they are rarely 
discussed. To find out such clusters, an intuitive way 
is to estimate the average arrival time (denoted as 
Avgp) of the last p percent of tweets in a cluster. 
However, storing p percent of tweets for every cluster 
will increase memory costs, especially when clusters 
grow big. Thus, we employ an approximate method to 
get Avgp. 

 
Merging Clusters 

If the number of clusters keeps increasing 
with few deletions, system memory will be exhausted. 
To avoid this, we specify an upper limit for the 
number of clusters as Nmax. When the limit is 
reached, a merging process starts. The process merges 
clusters in a greedy way. First, we sort all cluster pairs 
by their centroid similarities in a descending order. 
Then, starting with the most similar pair, we try to 
merge two clusters in it. When both clusters are single 
clusters which have not been merged with other 
clusters, they are merged into a new composite cluster. 
When one of them belongs to a composite cluster (it 
has been merged with others before), the other is also 
merged into that composite cluster. When both of 
them have been merged, if they belong to the same 
composite cluster, this pair is skipped; otherwise, the 
two composite clusters are merged together. This 
process continues until there are only mc percentage 
of the original clusters left (mc is a merging 
coefficient which provides a balance between 
available memory space and the quality of remaining 
clusters). 
 
 High - Level Summarization 
            The high-level summarization module provides 
two types of summaries: online and historical 
summaries. An online summary describes what is 
currently discussed among the public. Thus, the input 
for generating online summaries is retrieved directly 
from the current clusters maintained in memory. On 



International Journal of Research in Advent Technology (E-ISSN: 2321-9637) Special Issue 
National Conference “NCPCI-2016”, 19 March 2016 

Available online at www.ijrat.org 
 

38 
 

the other hand, a historical summary helps people 
understand the main happenings during a specific 
period, which means we need to eliminate the 
influence of tweet contents from the outside of that 
period. As a result, retrieval of the required 
information for generating historical summaries is 
more complicated, and this shall be our focus in the 
following discussion. Suppose the length of a user - 
defined time duration is H, and the ending timestamp 
of the duration is tse. 
 
 Document/Microblog Summarization 

Document summarization can be categorized 
as extractive and abstractive. The former selects 
sentences from the documents, while the latter may 
generate phrases and sentences that do not appear in 
the original documents. In this paper, we focus on 
extractive summarization. Extractive document 
summarization has received a lot of recent attention. 
Most of them assign salient scores to sentences of the 
documents, and select the top - ranked sentences. 
Some works try to extract summaries without such 
salient scores. The symmetric non - negative matrix 
factorization to cluster sentences and choose sentences 
in each cluster for summarization. Proposed to 
summarize documents from the perspective of data 
reconstruction, and select sentences that can best 
reconstruct the original documents. In modeled 
documents (hotel reviews) as multi - attribute 
uncertain data problem and optimized a probabilistic 
coverage of the summary There have also been studies 
on summarizing microblogs for some specific types of 
events, e.g., sports events. Proposed to identify the 
participants of events, and generate summaries based 
on sub - events detected from each participant. 
Introduced a solution by learning the underlying 
hidden state representation of the event, which needs 
to learn from previous events (football games) with 
similar structure. In summarized events by exploiting 
"good reporters", depending on event - specific 
keywords which need to be given in advance. In 
contrast, we aim to deal with general topic - relevant 
tweet streams without such prior knowledge. 
Moreover, their method stores all the tweets in each 
segment and selects a single tweet as the summary, 
while our method maintains distilled information in 
TCVs to reduce storage/computation cost, and 
generates multiple tweet summaries in terms of 
content coverage and novelty. In addition to online 
summarization, our method also supports historical 
summarization by maintaining TCV snapshots. 
 
 Timeline Detection 

The demand for analyzing massive contents 
in social Medias fuels the developments in 
visualization techniques. Timeline is one of these 
techniques which can make analysis tasks easier and 
faster. Presented a timeline - based backchannel for 

conversations around events. Proposed the 
evolutionary timeline summarization (ETS) to 
compute evolution timelines similar to ours, which 
consists of a series of time - stamped summaries. The 
dates of summaries are determined by a pre - defined 
timestamp set. In contrast, our method discovers the 
changing dates and generates timelines dynamically 
during the process of continuous summarization. 
Moreover, ETS does not focus on efficiency and 
scalability issues, which are very important in our 
streaming context. Several systems detect important 
moments when rapid increases or "spikes" in status 
update volume happen. Developed an algorithm based 
on TCP congestion detection, employed a slope - 
based method to find spikes. After that, tweets from 
each moment are identified, and word clouds or 
summaries are selected. Different from this two - step 
approach, our method detects topic evolution and 
produces summaries/timelines in an online fashion. 
 

4. MODULE DESCRIPTION 

 
     Fig. 1 System Architecture 

 
Load Dataset 
 

• In this module, we load the Twitter data sets. 
Because tweets are being created and shared at 
an unprecedented rate. 

• Tweets, in their raw form, while being 
informative, can also be overwhelming. 

• For both end-users and data analysts, it is a 
nightmare to plow through millions of tweets 
which contain enormous amount of noise and 
redundancy. 

• In this project, we propose a novel continuous 
summarization framework called slumber to 
alleviate the problem. So we load the dataset for 
continuous summarization and timeline 
generation. 
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Tweet Stream Clustering 
 

• In this module maintains the online statistical 
data. Given a topic - based tweet stream, it is 
able to efficiently cluster the tweets and maintain 
compact cluster information a scalable clustering 
framework which selectively stores important 
portions of the data, and compresses or discards 
other portions. 

• It consists of 4 phases such as  
       1) Tweet Stream Initialization 
       2) Incremental Clustering  
       3) Deleting Outdated Clusters  
       4) Merging Clusters 
• Tweet Stream Initialization: At the start of the 

stream, we collect a small number of tweets and 
use a k-prototype clustering algorithm (instead 
of k-means) to create the initial clusters. Next, 
the stream clustering process starts to 
incrementally update the TCVs whenever a new 
tweet arrives. 

• Incremental Clustering: Suppose a tweet t arrives 
at time ts, and there are N active clusters at that 
time. The key problem is to decide whether to 
attract into one of the in progress clusters or 
advance t as a new cluster. We first find the 
cluster whose centroid is the closest to t. 
specifically, we get the centroid of each cluster, 
compute its cosine similarity to t, and find the 
cluster Cp with the largest similarity. 

• Deleting Outdated Clusters: For most events 
(such as news, football matches and concerts) in 
tweet streams, timeliness is important because 
they usually do not last for a long time. 
Therefore it is safe to delete the clusters 
representing these sub - topics when they are 
rarely discussed. To find out such clusters, an 
intuitive way is to estimate the average arrival 
time (denoted as Avgp) of the last p percent of 
tweets in a cluster. However, storing p percent of 
tweets for every cluster will increase memory 
costs, especially when clusters grow big. Thus, 
we employ an approximate method to get Avgp. 

• Merging Clusters: If the number of clusters 
keeps increasing with few deletions, system 
memory will be exhausted. To avoid this, we 
specify an upper limit for the number of clusters 
as Nmax. When the limit is reached, a merging 
process starts. The process merges clusters in a 
greedy way. First, we sort all cluster pairs by 
their centroid similarities in a descending order. 
Then, starting with the most similar pair, we try 
to merge two clusters in it. When both clusters 
are single clusters which have not been merged 
with other clusters, they are merged into a new 
composite cluster. When one of them belongs to 
a composite cluster (it has been merged with 

others before), the other is also merged into that 
composite cluster. When both of them have been 
merged, if they belong to the same composite 
cluster, this pair is skipped; otherwise, the two 
composite clusters are merged together. This 
process continues until there are only mc 
percentage of the original clusters left (mc is a 
merging coefficient which provides a balance 
between available memory space and the quality 
of remaining clusters). 

 
 High-Level Summarization 
 
• The high-level summarization module provides 

two types of summaries: online and historical 
summaries. An online summary describes what 
is currently discussed among the public. Thus, 
the input for generating online summaries is 
retrieved directly from the current clusters 
maintained in memory. 

• On the other hand, a historical summary helps 
people understand the main happenings during a 
specific period, which means we need to 
eliminate the influence of tweet contents from 
the outside of that period. 

• As a result, retrieval of the required information 
for generating historical summaries is more 
complicated, and this shall be our focus in the 
following discussion. Suppose the length of a 
user - defined time duration is H, and the ending 
timestamp of the duration is tse. 

 
Timeline Detection  
 
• The demand for analyzing massive contents in 

social Medias fuels the developments in 
visualization techniques. Timeline is one of 
these techniques which can make analysis tasks 
easier and faster. 

• It presented a timeline - based backchannel for 
conversations around events. It proposed the 
evolutionary timeline summarization (ETS) to 
compute evolution timelines similar to ours, 
which consists of a series of time - stamped 
summaries. 

• The dates of summaries are determined by a 
pre - defined timestamp set. In contrast, our 
method discovers the changing dates and 
generates timelines dynamically during the 
process of continuous summarization. 
Moreover, ETS does not focus on efficiency 
and scalability issues, which are very important 
in our streaming context. 

• Several systems detect important moments 
when rapid increases or "spikes" in status  

• Update volume happen. Developed an algorithm 
based on TCP congestion detection, employed a 
slope - based method to find spikes. 
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• After that, tweets from each moment are 
identified, and word clouds or summaries are 
selected. Different from this two - step approach, 
our method detects topic evolution and produces 
summaries/timelines in an online fashion. 
 

5. CONCLUSION 

In this project, we proposed a continuous tweet stream 
summarization framework, namely slumber, to 
generated summaries and timelines in the context of 
streams. Slumber employs a tweet stream clustering 
algorithm to compress tweets into TCVs and 
maintains them in an online fashion. Our proposed k-
prototype clustering algorithm produced tighter 
clusters than k- means clustering, especially if the 
clusters are globular. We designed a novel data 
structure called TCV for stream processing, and 
proposed the TCV-Rank algorithm for online and 
historical summarization. The topic evolution can be 
detected automatically, allowing slumber to produce 
dynamic timelines for tweet streams. 

REFERENCES 

1] N. A. Diakopoulos and D. A. Shamma, 
“Characterizing debate performance via aggregated 
twitter sentiment,” in Proc. SIGCHI Conf. Human 
Factors Comput. Syst., 2010, pp. 1195–1198. 
 
[2] M. Dork, D. Gruen, C. Williamson, and S. 
Carpendale, “A visual backchannel for large- scale 
events,” IEEE Trans. Vis. Comput. Graph. vol. 16, no. 
6, pp. 1129–1138, Nov. 2010. 
 
[3] R. Yan, X. Wan, J. Otterbacher, L. Kong, X. Li, 
and Y. Zhang, “Evolutionary timeline summarization: 
A balanced optimization framework via iterative 
substitution,” in Proc. 34th Int. ACM SIGIR Conf. 
Res. Develop. Inf. Retrieval, 2011, pp. 745–754. 
 
[4] A. Marcus, M. S. Bernstein, O. Badar, D. R. 
Karger, S. Madden, and R. C. Miller, “Twitinfo: 
Aggregating and visualizing micro-blogs for event 
exploration,” in Proc. SIGCHI Conf. Human Factors 
Comput. Syst. , 2011, pp. 227–236 
 
[5] J. Nichols, J. Mahmud, and C. Drews, 
“Summarizing sporting events using twitter,” in Proc. 
ACM Int. Conf. Intell. User Interfaces, 2012, pp. 189–
198. 
 
[6] J. Zhang, Z. Ghahramani, and Y. Yang, “A 
probabilistic model for online document clustering 
with application to novelty detection,” in Proc. Adv. 
Neural Inf. Process. Syst., 2004, pp. 1617–1624. 
 

[7] C. C. Aggarwal and P. S. Yu, “On clustering 
massive text and categorical data streams,” Knowl. 
Inf. Syst., vol. 24, no. 2, pp. 171–196, 2010. 
 
[8] R. Barzilay and M. Elhadad, “Using lexical chains 
for text summa-rization,” in Proc. ACL Workshop 
Intell. Scalable Text Summarization, 1997, pp. 10–17. 
 
[9] W.-T. Yih, J. Goodman, L. Vanderwende, and H. 
Suzuki, “Multi-document summarization by 
maximizing informative content-words,” in Proc. 20th 
Int. Joint Conf. Artif. Intell, 2007, pp. 1776–1782. 
 
[10] G. Erkan and D. R. Radev, “LexRank: Graph-
based lexical central-ity as salience in text 
summarization,” J. Artif. Int. Res., vol. 22, no. 1, pp. 
457–479, 2004. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


