
International Journal of Research in Advent Technology (E-ISSN: 2321-9637) Special Issue
National Conference “NCPCI-2016”, 19 March 2016

Available online at www.ijrat.org

61

Using Node.Js to Build High Speed and Scalable
Backend Database Server

S. L. Bangare1, S. Gupta2, M. Dalal3, A. Inamdar4

Department of Information Technology1, 2, 3, 4,
 sunil.bangare@gmail.com1 , guptashubham293@gmail.com2

Abstract- With the increasing number of Application and Website development, it is quite mandatory for the
developers to use a Database server for efficient storage and transfer of data. There are various 3rd party Cloud
Database providers (Google, AmazonAWS, Mongolab) for developers to start building their application without
worrying about the backend services (server-side scripting). This method is not very efficient and affordable for
small-scale developers. Also there is always a concern for the privacy of data as the data is not stored in our
machines. In order to overcome this problem for the developers, there needs to be a way for developer to build
their application along with hosting their own local machine as a database server. Also making them free from
tedious server-side coding. Node.Js is a server-side platform mainly used for real-time application because of it
'event-driven architecture' and 'non-blocking I/O'. Node.js is found to be 10 times faster in I/O operations.

Index Terms- Website development, database server, Node.js, server-side platforms, non-blocking I/O

1. INTRODUCTION

There is rapid increase in the development of Applications
and Websites with the rapid development of web today. The
developers always require a database server for storage of
their application data. These data can be very large and often
requires real-time access anytime from anywhere. At
present, building an app is very convenient if there is
backend service available which can be interfaced with their
apps across all platforms. But the main struggle for the
developers is in picking/selecting/building a flexible, high-
concurrency backend for their app. Many factors are
responsible for building the backend server like scripting
language, client handling mechanism, data transfer process
etc. Mobile phones are nowadays far more than merely
devices to communicate with. Especially, Smartphone’s are
products that help to make our work and everyday life easier
[13].

At present, a developer often use following couple of
methods to connect its application with backend database:

• Third Party Cloud Server: This services often
referred as PaaS (Platform as a Service) provides
application developers with various data storage
plans as per their need and support different
platforms.

• Implementing Backend server: A developer can
sometime deploy its data by building his own
server using different scripting languages like
PHP, Ruby on Rails etc.

2. LITERATURE SURVEY
The most important thing with a web server is its ability to
handle multiple users efficiently. This has a lot to do with
the programming language used to write its script. Hence
performance of server-side scripting languages like PHP,
Python were taken into consideration with comparison with
Node.js [8]. P. S. Bangare et al has proposed the novel
secure encryption mechanism which is a combination of
chaotic logistic mapping and RC4 stream cipher [10].

Node.js is an excellent tool if you want some kind of live
interaction, real-time results. It is capable of very quickly
delivering data to/from a web server. Traditionally, there has
always been a big problem with computers where the CPU
can only do one thing at a time. It was solved long ago with
multi-threading, allowing us to have multiple 'threads' on a
single CPU. It switches between them all the time, and while
it's pretty fast, the switching has a ton of overhead. To avoid
this overhead node.js solves this problem by running in a
single, event-driven thread. Rather than have a new thread
get created on each request, there is one thread for every
single request. When a new one comes in, it fires an event
that runs some code. When you make a call to a database,
for example, rather than block until it's returned, you just run
a call-back function after the call is complete. Any number
of call-backs can respond to any event, but only one call-
back function will ever be executing at any time. Everything
else your program might do—like waiting for data from a
file or an incoming HTTP request—is handled by Node, in
parallel, behind the scenes. Your application code will never
be executed at the same time as the most important thing
with a web server is its ability to handle multiple users
efficiently. This has a lot to do with the programming
language used to write its script. Hence performance of
server-side scripting languages like PHP, Python were taken
into consideration with comparison with Node.js [8].
Node.js is an excellent tool if you want some kind of live
interaction, real-time results. It is capable of very quickly
delivering data to/from a web server.
Traditionally, there has always been a big problem with
computers where the CPU can only do one thing at a time. It
was solved long ago with multi-threading, allowing us to
have multiple 'threads' on a single CPU. It switches between
them all the time, and while it's pretty fast, the switching has
a ton of overhead. To avoid this overhead node.js solves this
problem by running in a single, event-driven thread. Rather
than have a new thread get created on each request, there is

International Journal of Research in Advent Technology (E-ISSN: 2321-9637) Special Issue
National Conference “NCPCI-2016”, 19 March 2016

Available online at www.ijrat.org

62

one thread for every single request. When a new one comes
in, it fires an event that runs some code.
 When you make a call to a database, for example, rather
than block until it's returned, you just run a call-back
function after the call is complete. Any number of call-backs
can respond to any event, but only one call-back function
will ever be executing at any time. Everything else your
program might do—like waiting for data from a file or an
incoming HTTP request—is handled by Node, in parallel,
behind the scenes. Your application code will never be
executed at the same time as anything else. It will always
have the full attention of Node’s JavaScript engine while it’s
running.
Heavy I/O applications benefit well from this, whereas CPU
intensive applications will not. However, a backend database
server is more I/O intensive, so that's generally an effective
trade-off. Many middleware tasks are I/O-bound, just like
client-side scripting and databases. These server-side
programs often have to wait for things like a database result,
feedback from a third-party web service, or incoming
connection requests. Node.js is designed for exactly these
kinds of applications.
When compared on multi users the performance of Node.js
is better. The performance of Node.js is two times larger
than PHP and six to seven times larger than Python. Hence
making it highly concurrent and real-time [8].
The choice of database is very important when considering a
web server. It should go with the server framework selected.
Node.js is written in JavaScript environment and since
MongoDB also works on JavaScript it can perfectly
synchronize and work together. MongoDB is a document
database. The concept of rows still exists but columns are
removed from the picture. Rather than a column defining
what should be in the row, each row is a document, and this
document both defines and holds the data itself. MongoDb
stores documents as BSON, which is binary JSON. In short,
JSON is a JavaScript way of holding data, hence why
MongoDB fits so well into our JavaScript centric
framework.

3. RELATED WORK
There has been lots of implementation of Node.Js based
program lately. The systems have been implemented by
integrating Node with other tools and making web server for
application [7].
Stefan Tilkov and Steve Vinoski studied how JavaScript
based Node.js can be used to build high performance
programs. They studied and compared the performance of a
multi-thread over a single thread process [7].
An open source community linnovate developed a way of
using Node.Js with MongoDB, Express and Angular.Js to
create a full stack called MEAN stack. This shows how can
it is possible to integrate this all technologies to make server
for website and application.

4. PROPOSED SYSTEM
This paper aims to implement a framework for
application developers which include software bundles
like Node.js and MongoDB and create APIs to connect
their application with their database easily without
worrying of the server-side coding. Also this APIs can
be used to create drivers for various platforms like
Android, .Net, IOS etc.
There needs to be a more convenient and simple way for
an application developer to connect their applications
and website with a database server. This backend server
should be such that it could handle multiuser request and
should be of high concurrency. Also it should take into
consideration the privacy and security of data.
Node.js is currently a new and trending technology in
JavaScript. It is a platform built on Chrome's JavaScript
runtime for easily building fast, scalable network
applications. Using Node’s core functionality and
integrating it with one of the fastest and scalable
database i.e. MongoDB, we intent to implement a
framework for a backend server for our database which
can help easily connect our frontend with the MongoDB.
This framework will have the following advantage over
the above mentioned ways:

1. It will make a developer free from writing the
server side script and hence making him
concentrate only on the frontend to the application.

2. This framework uses Node.js with is than
traditional scripting language like PHP, Ruby on
Rails etc.

3. All the layers on this framework use only one
language throughout the stack i.e. JavaScript,
hence making it well fit and in sync.

4. As the database server is deployed on the
developers system, he has full control over the
privacy and security of it.

Node.js can be used with many databases such as Mysql,
MongoDB etc but due to various advantages of
MongoDB over other databases, we are using Mongodb
in our project. MongoDB is an increasingly popular
document-based, high-performance NoSQL database. In
MongoDB, data is stored as a document as a set of key-
value pairs. It can define multiple databases in
MongoDB where each database can have many
collections, and those collections are simply a set of
documents that consist of data stored as a key-value pair.
The data structure that defines a MongoDB document is
called BSON (Binary JSON). BSON is binary
representation of JSON and also supports data types
such as Date, which is not supported in plain JSON
format. MongoDB internally converts JSON to BSON
and vice versa for performance benefits, although
the user can save, query and retrieve as JSON.
MongoDB offers very good performance for
situations containing very high write loads, but
where data integrity isn’t a pressing concern; a
good example are the comments sections of large,
busy websites like Craigslist or The New York
Times – by the way, these aren’t theoretical by the
way: both of these use MongoDB [4]. Our main
aim is to implement a single framework integrating
node.js and its modules such as mongojs,express.js
.

International Journal of Research in Advent Technology (E-ISSN: 2321-9637) Special Issue
National Conference “NCPCI-2016”, 19 March 2016

Available online at www.ijrat.org

63

The deployment of Mongodb as a remote database
is taken into account after evaluation of its
performance. This paper aims to implement
framework using restfull API's over conventional
API's such as SOAP or CORBA. REST is an
architectural style that uses simple HTTP calls for
inter-machine communication instead of more
complex options like CORBA, COM+, RPC, or
even SOAP. Using REST means your calls will be
message-based and reliant on the HTTP standard
to describe these messages [5]. Using the HTTP
protocol means REST is a simple request/response
mechanism. Each request returns a subsequent
response [5]. P. A. Kotwal et al have shown in
their work to use App Server and its role in their
research work [14].

5. DETAILS
Node.js is a software platform that allows you to
create your own webserver and build web applications
on top of it. Node.js is not itself a webserver, nor is it a
language. It contains a built-in HTTP server library,
meaning that you don’t need to run a separate web
server program such as Apache or IIS. This ultimately
gives you greater control over how your web server
works, but does increase the complexity of getting it
up and running particularly in a live environment.
With PHP for example, you can easily find a shared-
server webhost running Apache, send some files up
over FTP and all being well your site is running. This
works because the webhost has already configured
Apache for you and others to use. With Node.js this is
not the case, as you configure the Node.js server when
you create the application.

Express is used to manage user sessions, with
optional support from MongoDB. User authentication
will typically use Node.js, Express, MongoDB and
Mongoose, but there are a number of third-party
modules that you can plug into your application so
that you don’t have to do all of the hard work. A
server on local port can be enabled using following
code:
 var express = require(’express’);
 app.listen(3000); //parameter is port number
 console.log(”Server running on port 3000”);

 //This will start the server on the port no. 300
of local host
Express abstracts this difficulty away by setting up a
web server to listen to incoming requests and return
relevant responses. On top of this it also defines a
directory structure. One of these folders is setup to
serve static files in a non-blocking way the last thing
you want is for your application to have to wait when
somebody else requests a CSS file! You could
configure this yourself directly in Node.js, but Express
does it for you.
An asynchronous programming model of events and
call backs is well suited for a server which has to wait

for a lot of things, such as incoming requests and
inter-process communications with other services (like
MongoDB).
MongoDB is a low-overhead database where all
entities are free-form BSON — “binary JSON” —
documents. This lets you work with heterogeneous
data and makes it easy to handle a wide variety of data
formats. Since BSON is compatible with JSON,
building a REST API is simple — the server code can
pass requests to the database driver without a lot of
intermediate processing.
Node and MongoDB are inherently scalable and
synchronize easily across multiple machines in a
distributed model; this combination is a good choice
for applications that don’t have an evenly distributed
load. This asynchronous nature on node coupled
couple with its compatibility with MongoDb makes it
vital for our server as it’s a real time functioning
framework. We further have to write all possible
operation that is supposed to be in a database server.
All CRUD (create, Read, Update, Delete) to and from
db.
We build an API for all CRUD operation using
callback functionality of Node.js. The APIs when
triggered lead to executing its operation in the
database and ending with the resulting callback
function.
the bellow example of an Insert API:

app.post('/register', function (req, res)
{
console.log("Request for Insertion received

with this data");
 console.log(req.body);
 db.users.insert(req.body,function(err,docs){
 console.log("Data after insert: ");
 console.log(docs);
 res.json(docs);
 });
});

These APIs work on various HTTP protocols. In the
above code for example we get a HTTP request from a
client with JSON data to be inserted. The code
executes it by using the mongodb driver functionality
and finaly responds with a HTTP response variable
[6]. This APIs is then used to build driver for Android
Platform. API testing is also possible, related work has
been mentioned by S. L. Bangare et al [11] [12].

6. CONCLUSION
This paper presents the framework using node.js to
build highly scalable and high-speed backend database
server for web developers as well as application
developers. It also demonstrates the use of NoSQL
database such as Mongodb in proposed project work
over other traditional database such as MySQL.

International Journal of Research in Advent Technology (E-ISSN: 2321-9637) Special Issue
National Conference “NCPCI-2016”, 19 March 2016

Available online at www.ijrat.org

64

7. ACKNOWLEDGEMENT
We are thankful to Prof. A. N. Adapanawar, HOD-
IT, Dr. K. P. Patil, Vice Principal & Dr. V. M.
Wadhai, Principal, Sinhgad Academy of
Engineering, Pune for providing the support for
this research work. Also we are thankful to Dr. S.
T. Patil, Professor, VIT, Pune & Dr. G. Pradeepini,
Professor, K. L. University, A.P. for their valuable
guidance.

REFERENCES
[1] http://node.js.org/
[2] http://php.net/
[3] http://python.org/
[4] https://www.upguard.com/articles/mysql-vs-

mongodb
[5] http://blog.pluralsight.com/representational-state-

transfer-tips
[6] https://github.com/mongodb/node-mongodb-

native
[7] S. Tilkov, S. Vinoski, “Node.js: Using JavaScript

To Built High-performance Network Programs”,
Internet Computing, IEEE, Page(s): 80-83
Volume: 14, Issue: 6, 01 November 2010.

[8] Kai Lei, Yining Ma, Zhi Tan, “Performance
Comparison and Evaluation of Web Development
Technologies in PHP, Python and Node,js”,
Computational Science and Engineering (CSE),
IEEE , Page(s): 661-668 ,19 December 2014.

[9] Jim R. Wilson, “Node.js the Right Way:Practical
Server Side Javascript that Scales”, The
Pragmetic express, ISBN-13: 978-1937785734.

[10] P. S. Bangare, S. L. Bangare, “Implementing
Separable Reversible Data Hiding In Encrypted
Image Using CLM RC4 Method”, International
Journal of Engineering Research and Technology
(IJERT), Volume 3, Issue 04, 2014/4/26.

[11] S. L. Banagre, P. S. Bangare, “Automated API
Testing Approach”, International Journal of
Engineering Science and Technology, Volume 4,
Issue 2, Page(s) 673-676, ISSN: 0975-5462, 2012.

[12] S. L. Bangare, P. S. Bangare, “Automated Testing
in Development Phase”, International Journal of
Engineering Science and Technology, Volume 4,
Issue 2, Page(s) 677-680, ISSN: 0975-5462, 2012

[13] P. S. Bangare, S. L. Bangare, “The Campus
Navigator: An Android Mobile Application”,
International Journal of Advanced Research in
Computer and Communication Engineering, Vol.
3, Issue 3, March 2014, Page(s) 5715-5717, ISSN
(Online) : 2278.

[14] P. A. Kotwal, S. L. Bangare, “A Location Tracer
With Social Networking Services”, International
Journal of Engineering and Technology (IJET),
Vol 4 No 1 Feb-Mar 2012, Page(s) 19-23, ISSN:
0975-4024.

