

International Journal of Research in Advent Technology (E-ISSN: 2321-9637) Special Issue
National Conference “NCPCI-2016”, 19 March 2016

Available online at www.ijrat.org

86

 Survey on SELinux in Android
Prof. S.S.Sambare,
ssambare69@gmail.com

Ayushi Agarwal,
ayushi3a@gmail.com

Sneha Bhambhani,
sabhambhani@gmail.com

Ritesh Tejwani ,
tejwanii.riteshh@gmail.com

Prerana Rai,
preranarai0409@gmail.com

Dept of Comp Engg,
Pimpri Chinchwad College of Engineering, Pune.

Abstract: With the increase in technology, the current use of mobile phones is increasing with a rigorous amount and
so we need to assure that the information stored in our cell phones is secure and is not being misused. The apps
when installed in Android do not provide high level security to the information present in our cell phones and thus
the implementation of SELinux helps in securing the information more effectively. Android being a Linux based
system can support SELinux and thus provide users with a robust Mandatory Access Control (MAC) to ensure full
system security. It not only provides flexible security but also helps in reduction of performance overhead only by
implementing a limited chip area.

Keywords: - Android, SELinux, Security, Mobile devices, MAC.

1.0 Android Introduction

Android is the most popular mobile operating
systems. It was released by Google in 2008.It is an
open source operating system, primarily based on the
Linux Kernel.

Android applications are written in Java and run on
virtual machines. The open nature of Android attracts
a variety of third-party application marketplaces.
These, either provide an alternative for the devices
that are not allowed to ship with Google Play Store,
or provide applications that cannot be offered on the
Google Play Store due to policy violations, or for
some other reason.

Android is mainly designed for use in smart phones,
tablets etc. Recently, we also have AndroidTV for

televisions, AndroidAuto in cars, AndroidWear for
watches and many more.

Malware attacks propagating into smart phones
include cellular networks, Bluetooth, the Internet,
USB, and other peripherals. Security mechanisms
such as anti-malware and anti-spam software, host-
based intrusion detection tools, and firewalls are
available, but not widely used.

Today, Android has the largest base among all the
operating systems.

Hence, security in Android is of immense importance
and is required to be very strong.

International Journal of Research in Advent Technology (E-ISSN: 2321-9637) Special Issue
National Conference “NCPCI-2016”, 19 March 2016

Available online at www.ijrat.org

87

1.1 ANDROID FRAMEWORK

Fig. 1. Android Framework

The Android software stack is divided into five main
layers:

1. Linux Kernel.

2. Native Libraries.

3. Android Runtime

4. Application Framework

5. Application.

The Linux kernel is responsible for providing core
services to the Android software stack. These
services consist of networking, memory management,
file system, device drivers, power management etc.
The Native Libraries in Android are written in

C/C++. Standard libraries such as libc were
developed mainly for low memory consumption.

The Android Runtime consists of Java core libraries
and Dalvik Virtual machine. It enables every app to
run in its own process, with its own instance of the
Dalvik virtual machine. [1]

 The Application Framework consists of various
frameworks written in Java. These provide an
abstraction of the underlying native libraries and
Dalvik capabilities to applications. It includes tools
provided by Google as well as proprietary extensions
or services. Each application is packaged into a .apk
archive for installation.

2.0 Security in Android The core of the security at application-level in
Android is its permission mechanism. Contradicting

International Journal of Research in Advent Technology (E-ISSN: 2321-9637) Special Issue
National Conference “NCPCI-2016”, 19 March 2016

Available online at www.ijrat.org

88

a typical Linux-based Personal system, different
applications in Android are executed as different
users. This preventive measure causes the bar to rise
on successful exploitation because one application
can’t affect others in a normally. However, more
processes could run as the same user, and,
particularly, several system daemons run as system,
radio and root users. The security mechanisms of
both Android-specific and Linux inherited are
insufficient and too coarse-grained to deal with the
security issue. [1]. While installing an application,
the application displays a dialog indicating the
permissions requested and asks if it should continue
the installation. The user can not accept or refuse
individual permissions – he must accept or refuse all
the requested permissions only as a block. The
security model of Android is based on the concept of
sandbox. Every application runs in the separate
individual sandbox. Beginning with the 4.3 Android
version, SELinux further describes the boundary
limits of the Android application sandbox. Android
uses SELinux as a part of its security model, which
enforces MAC(mandatory access control) over other
processes, including the processes running with
superuser/root privileges. Android security is
enhanced by SELinux that confines privileged
processes and automating the creation of security
policy. Many contributions have been made to it by
various organizations. Using SELinux, Android can
do better confinement of system services, access
control to application and system data and logs,
reducing the ill-effects of malicious code, protecting
users from flaws in code on mobile and other
handheld devices.

2.1 Security using SELinux

Default denial is the ethos on which SELinux works.
Anything which is not explicitly allowed is refused.
SELinux opeartes in two global modes: permissive
mode, in which permission refusals are logged but
not forced, and enforcing mode, denials are both
logged and enforced in which . SELinux even
supports a per-domain mode in which particular
processes can also be made permissive while keeping
the remaining of the system in global enforcing mode
[3]. Per-domain permissive mode enables
applications of SELinux to an ever-increasing part of

the system. Per-domain permissive mode also enables
the development of policy for new services while
keeping the rest of the system enforcing. SELinux
was introduced to Android and it was evaluated on an
HTC G1 device. The experiment indicated that
running SELinux on Android enabled devices is
comfortable and that an enhanced level of security
can be achieved by providing a relevant policy.[2]
This security has the property of operating with a
regular user without disturbing in any noticeable
way. In fact, the user need not be cautious that
SELinux has been applied. Applications need to
continue functioning on SELinux-enabled devices
without any modification.

When deciding upon customization of SELinux,
developers should remember to: Give SELinux
policy for every new daemon, Use earlier defined
domains whenever neccessary, assign a domain to
any process spawned as an init service, know the
macros before writing policy, make changes to core
policy to AOSP And not to.[5]Create inappropriate
policy Allow application user policy customization
Allow customizing of MDM policy make users aware
with policy violations Add backdoors Seeing the
Security Features of Kernel section of the Android
Compatibility Definition document for specific
requirements. SELinux makes use of a white list
approach, in which all access must be allowed
explicitly in order to be granted. Since Android's
default SELinux policy already supports the Android
Open Source Project, there is no need of OEM to
modify SELinux settings in any way. If they
customize SELinux settings, they should take utmost
care not to break existing applications. Divide the
software components into modules which conduct
singular tasks. Creating SELinux policies that isolates
the processes from unrelated functions. Puting these
policies in *.te files. [4] Within the
/device/manufacturer/device-name/sepolicy directory
and use BOARD_SEPOLICY variables to include
them in your build. In an ideal software development
process, SELinux policy changes only, when the
software model changes and not the actual
implementation. As device developers begin the
customization of SELinux, they must priorly patent
their additions to Android [4]. If they've featured a
component that does a new function, the developers

International Journal of Research in Advent Technology (E
National Conference “NCPCI

will need to assure that the component satisfies the
security policy, as well as any related policy crafted
by the OEM, before turning on enforcing mode. This
expresses that all application domains are allowed to
write and read files labelled as app_data_file. Intents
are asynchronous messages that grants permission to
application components to request functionalities
from other Android components (Fig2). This

Fig. 2.SELinux-IntentFirewall architecture

3.0 Comparison between SELinux and AppArmor.

Integration In Android since 4.3

Identification Identifies filesystem objects by inode

Operation Set Set of operations are larger.

Granularity Better

Multi-threading Supports implicit use of POSIX
capabilities.

Rule Sets Incredibly complex

Security Potentially much secure if profiles
are built well.

Isolation Processes are well isolated.

Current Usage Android 4.3 onwards.

4.0 Steps in detail

International Journal of Research in Advent Technology (E-ISSN: 2321-
National Conference “NCPCI-2016”, 19 March 2016

Available online at www.ijrat.org

will need to assure that the component satisfies the
security policy, as well as any related policy crafted
by the OEM, before turning on enforcing mode. This

plication domains are allowed to
write and read files labelled as app_data_file. Intents
are asynchronous messages that grants permission to
application components to request functionalities
from other Android components (Fig2). This

represent the higher-level Android Interprocess
Communication (IPC) technique, and this underlying
transport mechanism used is known as binder. This
means that a common person developing an
application refrains to use this mechanism to prevent
its own app from malicious request
applications[8].

IntentFirewall architecture

Fig. 3.Integration of Security module(SELinux)

3.0 Comparison between SELinux and AppArmor.

SELinux AppArmor

In Android since 4.3 Integrated to Synology’s DSM 5.1 Beta in

Identifies filesystem objects by inode Identifies file system by path.

Set of operations are larger. Set of operations are

 Much less.

Supports implicit use of POSIX
capabilities.

No controls for categorically boundary.

Incredibly complex AppArmor and Smack are straight forward.

Potentially much secure if profiles
are built well.

Lesser secure since identifies entire path.

Processes are well isolated. Lesser control on bounding prevents isolation.

Android 4.3 onwards. Ubuntu, Fedora, etc.

-9637) Special Issue
2016”, 19 March 2016

89

evel Android Interprocess
Communication (IPC) technique, and this underlying
transport mechanism used is known as binder. This
means that a common person developing an
application refrains to use this mechanism to prevent
its own app from malicious requests by other

Fig. 3.Integration of Security module(SELinux)

AppArmor

Integrated to Synology’s DSM 5.1 Beta in
2014.

Identifies file system by path.

Set of operations are smaller.

No controls for categorically boundary.

AppArmor and Smack are straight forward.

Lesser secure since identifies entire path.

Lesser control on bounding prevents isolation.

Ubuntu, Fedora, etc.

International Journal of Research in Advent Technology (E-ISSN: 2321-9637) Special Issue
National Conference “NCPCI-2016”, 19 March 2016

Available online at www.ijrat.org

90

1. Enable SELinux in the

kernel: CONFIG_SECURITY_SELINUX=y

2. Change the kernel_cmdline parameter so that:

BOARD_KERNEL_CMDLINE :=

androidboot.selinux=permissive.

This is only for initial development of policy for

the device. Once you have an initial bootstrap

policy, remove this parameter so that your device

is enforcing or it will fail CTS.

3. Boot up the system in permissive and see what

denials are encountered on boot:

On Ubuntu 14.04 or newer:

adb shell su -c dmesg | grep denied | audit2allow -

p out/target/product/board/root/sepolicy

4. On Ubuntu 12.04: adb shell su -c dmesg | grep

denied | audit2allow

5. Evaluate the output. See Validation for

instructions and tools.

6. Identify devices, and other new files that need

labeling.

7. Use existing or new labels for your objects. Look

at the *_contexts files to see how things were

previously labeled and use knowledge of the label

meanings to assign a new one. Ideally, this will be

an existing label which will fit into policy, but

sometimes a new label will be needed, and rules

for access to that label will be needed, as well.

8. Identify domains/processes that should have

their own security domains. A policy will likely

need to be written for each of these from scratch.

All services spawned from init, for instance,

should have their own. The following commands

9.

10. help reveal those that remain running (but ALL

services need such a treatment):

$ adb shell su -c ps -Z | grep init

$ adb shell su -c dmesg | grep 'avc: '

11. Review init.<device>.rc to identify any which are

without a type. These should be given domains

EARLY in order to avoid adding rules to init or

otherwise confusing init accesses with ones that

are in their own policy.

12. Setup BOARD_CONFIG.mk to

use BOARD_SEPOLICY_* variables. See the

README in external/sepolicy for details on

setting this up.

13. Examine the init.<device>.rc and fstab.<device>

file and make sure every use of “mount”

corresponds to a properly labeled filesystem or

that a context= mount option is specified.

14. Go through each denial and create SELinux policy

to properly handle each. See the examples within

Customization [8].

15.

16. CONCLUSION
� In comparison of SELinux with other LSMs (like Apparmor, Smack, etc), it is observed that the rule sets

are comparatively more complex, but gives more control over process isolation which makes it potentially
much secure. The notion of multi-level security and the concept of remote policy server gives SELinux an
edge over Apparmor. The integration of SELinux into Android is thus a significant step towards the
realization of more robust and flexible security services.

�
� REFERENCES

� [1]. Asaf Shabtai, Yuval Fledel and Yuval Elovici at Ben-Gurion University,“Securing Android-Powered
Mobile Devices using SELinux”, IEEE 2010
� [2]. Asaf Shabtai Deutsche Telekom Laboratories at Ben-Gurion University, “Malware Detection on
Mobile Devices”, Eleventh International Conference on Mobile Data Management, 2010.
� [3]. Kashif Ahmad Khan, Muhammad Amin ,”SELinux IN and OUT” – IEEE 2011.

International Journal of Research in Advent Technology (E-ISSN: 2321-9637) Special Issue
National Conference “NCPCI-2016”, 19 March 2016

Available online at www.ijrat.org

91

� [4]. Leandro Fiorin, Alberto Ferrante, Konstantinos Padarnitsas, Francesco Regazzoni in
Switzerland,“IEEE_2012 Security Enhanced Linux on Embedded Systems “.ICSAI_2012 Analysis For
SELinux Security Policy
� [5]. Prof. Dr. Frank Bellosa, Stefan Brahler, “Analysis of the Android-Architecture “, IEEE 2015.
� [6]. B. Vogel and B. Steinke, “Using SELinux Security Enforcement in Linux-Based Embedded
Devices, Proc. 1st Int’l Conf. Mobile Wireless Middleware, Operating Systems, and Applications (MobilWare
08)
� [7] https://source.android.com/security/selinux
� [8]. Simone Mutti, Enrico Bacis, “An SELinux-based Intent manager for Android “,
� IEEE CNS 2015 Poster Session.

