
International Journal of Research in Advent Technology (E-ISSN: 2321-9637) Special Issue
National Conference “NCPCI-2016”, 19 March 2016

Available online at www.ijrat.org

156

Modern Honey Network
Shah Manthan Jigneshkumar

Computer Engineering, Vishwakarma Institute of Information Technology
Email: mjshah101@gmail.com, manthan.shah@viit.ac.in

Abstract- The concept of honeypot has been around for a while now. But honeypots are yet to be adopted by
network security community as a standard majorly due to its complexity. MHN is an open-source project
developed by Threatstream which is aimed at overcoming the risk and complexity of honeypots and integration
with tools to analyze and productively use the data or intelligence gathered by such honeypots. MHN is easy to
deploy, configure and maintain and it provides integration with third-party apps and ability to add our own
honeypots, which could go a long way to making honeypots an industry standard.

Index Terms- MHN, Modern Honey Network, Honeypot, Open-source, Threatstream, Cyber Security

1. INTRODUCTION

The concept of honeypot was first introduced by
Clifford Stoll in his book ‘The Cuckoo's Egg:
Tracking a spy through the maze of computer
espionage’ in 1989. In 1990 Bill Cheswick of AT&T
Bell Laboratories wrote a paper named ‘An Evening
with Berferd: In which a cracker is lured, endured, and
studied’. The concept of honeypot has been realized,
applied and grown in the late 20th century as evident
by the release of the products like ‘Deception Toolkit’
in 1997, ‘CyberCop Sting’ Sin 1998, ‘Snort’,
‘BackOfficer Friendly’ and ‘NetFacade’, in 1998. The
formation of the ‘HoneyNet Project’ led by Lance
Spitzner in 1999 truly started the developments and
formalization of concepts of honeypots.
Today in 2016, it can be concluded that the changes
that significantly influenced the advances in honeypot
research are adoption of new types of network
applications, advances in networking hardware,
geographical diversity in internet user population and
growth in underground attackers’ communities. Today
we have already developed advanced honeypots like
‘BitSaucer’, ‘Honeyware’, ‘Argos’, ‘HoneyBow’,
‘PhoneyBots’ and advanced concepts like ‘Shadow
Honeypots’ or ‘Super Honeypots’.
But even after 25 years of private and crowd-sourced
research and developments, honeypots have failed to
receive industry wide adoption. The lack of adoption
by the industry and intelligence community can be
easily attributed to the complexity of deployment,
configuration and maintenance; and underdeveloped
or still-developing technologies related to Big Data,
Negative Database, Data Mining, Social Engineering
and Data Analytics.
1.1 Objectives / Problem Statement

(1) To create or implement a software solution
which is easy to deploy and maintain.

(2) To provide tools along with the software
solution to analyze and leverage the data
gathered.

(3) To overcome the demerits of honeypots and
make honeypots widely acceptable by the
industry and security/intelligence community.

2. HONEYPOT

A honeypot is an offensive security measure. Lance
Spitzner, the founder of the Honeynet Project defines
honeypot as “an information system resource whose
value lies in unauthorized or illicit use of that
resource”. According to Lance, a honeypot is “a
resource whose value is in being probed, attacked or
compromised”. Honeypot is a trap set to detect, deflect
or in some other manner counteract attempts at
unauthorized use of information systems. As such
honeypot is a security device that is designed to lure
malicious activity towards itself. Capturing such
malicious activity allows for studying it to understand
the operations and motivation of attackers and the
black hat community, and subsequently lead to
betterment of security of cyber information resources.

2.1 Classification of honeypots

Honeypots can be classified into various categories
based upon different object of classification scheme.
Such classification based upon various criteria is given
below.

(1) Interaction Level
Interaction level describes if the exposed
functionality of a honeypot is limited.

• Low interaction
Low-interaction honeypots are easier to
deploy and maintain. Low-interaction
honeypots work by emulating certain selected
services and operating systems and have
limited interaction, thus decreasing the risk of
information exposure.

International Journal of Research in Advent Technology (E-ISSN: 2321-9637) Special Issue
National Conference “NCPCI-2016”, 19 March 2016

Available online at www.ijrat.org

157

• High Interaction
High-interaction honeypots are very
complex, with real operating systems and
applications. In this type of honeypots,
attacker’s interaction is not limited and no
restrictions are imposed on the attack
behavior or attack vector which allows
honeypot administrators to capture and log
extensive details about the full extent of the
attacker’s methods, ability and motivation.

(2) Data Capture
Data capture describes the data that a honeypot is
able to capture from an attack point of view.

• Events
• Attacks
• Intrusions
• None

(3) Containment Strategy
Containment Strategy relates to the measures a
honeypot takes to defend against malicious
activity spreading from it.

• Block
• Defuse
• Slow Down
• None

(4) Distribution Appearance
Distribution appearance relates to how the
honeypot system is perceived from outside. It also
relates to simulation or virtual honeypots.

• Distributed
• Stand-alone

(5) Communication Interface
It describes the type of interface that is used by
the user to interact with honeypot.

• Network Interface
• Non-network hardware interface
• Software API

(6) Role in multi-tier architecture
This category describes the role played by
honeypot in multi-tier architecture.

• Server-side
This type of honeypot acts as a server. It does
not provide or simulate and production
services. It passively waits for requests from
clients
• Client-side
This type of honeypot acts as a client. It
provides or simulates various production
services and actively sends requests to
servers.

2.2 Merits and Demerits

Merits of a honeypot system are listed below.

(1) Smaller data sets
(2) Reduced false positives
(3) Catching false negatives
(4) Protection against encrypted attacks
(5) Protection from unknown or zero-day attacks.
(6) High flexibility
(7) Minimum resource requirement

Demerits of a honeypot system are,

(1) Risk / Exposure
(2) Limited field of interaction and view
(3) Discovery and fingerprinting

When placed with other security measures like
Intrusion Detection Systems (IDS), Intrusion
Prevention Systems (IPS), and Firewalls; honeypots
can become a highly effective tool against attacks
performed by black hat community. Most traditional
security measures like IDS, IPS or Firewalls detect
and prevent attacks using predefined signatures
embedded into them. Such tools cannot protect against
Zero-day attacks whose signatures do not exist in their
database. Honeypots are designed to protect against all
known and unknown attacks. As every activity in a
honeypot is by definition unauthorized, it can detect
stealthiest attacks and any new or unseen anomalies or
attacks stand out. This helps honeypots with reducing
the false positives and catching the false negatives.

3. MHN

MHN stands for Modern Honey Network. MHN is an
open-source project developed by a prominent cyber
security company named Threatstream. The aim
behind the project was to make an easily adoptable
honeypot software solution motivated by the limited
adoption of honeypots as an advisable security
solution. MHN is completely free open source
software which supports honeypot deployments of
both internal and external nature at a large and
distributed scale. MHN uses the HPFeeds standard and
low-interaction honeypots to keep effectiveness and
security at enterprise grade levels. MHN provides full
REST API out of the box and from the secure
deployment to the aggregation of thousands of events.
MHN provides enterprise grade management of
various open source honeypot software which are
dominantly used in the industry currently. MHN has
been designed as a free alternative to the current
solutions on the market that can help increase the
number of production honeypots. It relies on open
source tools such as HPFeeds for collecting sensor
data, Mnemosyne for indexing the data into
MongoDB, and HoneyMap for real-time visualization
of the information.

International Journal of Research in Advent Technology (E-ISSN: 2321-9637) Special Issue
National Conference “NCPCI-2016”, 19 March 2016

Available online at www.ijrat.org

158

3.1 MHN Architecture

MHN is designed on three-tier architecture. Various
sensors and honeypots are placed at the bottom. The
tier above the sensors includes HPFeeds, HPFeeds-
Logger, HoneyMap and Mnemosyne. The next tier has
MongoDB. The top tier includes the Web App and
Rest APIs. The architecture is shown in the figure
below.

Fig. 1. Architecture of MHN Server

Going from bottom to top, features of each tier are
listed below.

(1) Sensors
This layer of architectures involves the sensors which
are the data generation points. The purpose of this tier
is to make use of multiple sensors deployed in
different geographical locations with different
configurations and to form a honeynet or a honeypot
network. Various sensors that can be deployed easily
via MHN include Snort, Suricata, Dionaea, Conpot,
Kippo, Amun, Glastopf, Wordpot, ShockPot, p0f and
Elastichoney. Along with computer network sensors,
MHN also provides the facility to deploy a sensor for
Raspberry Pi WSN. On top the already configured
sensors listed above, MHN provides the facility to add
new sensors very easily.

(2) Tier-3
This layer has HPFeeds at its core. HPFeeds is an
open-source tool used to collect data from various
sensors deployed at the bottom tier. HPFeeds-logger is
used to collate the data collected by HPFeeds and feed

the data to third-party app integrations like Splunk,
ArcSight and ELK. HoneyMap is used for real-time
visualization of data gathered by HPFeeds. Thus this
layer is dedicated to data collection and collation.
Mnemosyne is used to index the data into MongoDB.

(3) Tier-2
This tier has MongoDB at its core to store, manage
and manipulate data. Mnemosyne is used to index the
data into MongoDB. Such this layer consists of data
management system

(4) Tier-1
This is the top layer of MHN architecture. This layer
involves MHN Web App and Rest APIs which the
user directly interacts with. The Rest APIs include
CEF and STIX support for direct SIEM integration
through our Commercial platform developed by
Threatstream called ‘Optic’.

Fig. 2. Architectural Layout of MHN

3.2 Sensors

As mentioned in the MHN architecture, sensors are
deployed at the base of MHN server. These sensors
are various honeypots, IDS, passive scanners which
generate the data about the attack, the attacker and the
attack vector. These sensors log every activity in the
honeypots and scan them for known malware or virus
or worm signatures and detect anomalies. The data
generated by these scanners is the raw products that
will be collected, collated, indexed, stored and process
to provide useful results. Various sensors are available
to deploy, pre-configured as a part of MHN Server and
Web app. These sensors are listed below.

(1) Dionea
Dionea is an open-source low-interaction honeypot
that is designed to capture attack payloads and
malware. Dionaea is meant to be a nepenthes
successor. Dionea is embedding python as a scripting
language. It uses libemu to detect shell codes. Dionea
also supports IPv6 and TLS. The ultimate goal of

International Journal of Research in Advent Technology (E-ISSN: 2321-9637) Special Issue
National Conference “NCPCI-2016”, 19 March 2016

Available online at www.ijrat.org

159

Dionea is gaining a copy of the malware. Dionaea’s
intention is to trap malware exploiting vulnerabilities
exposed by services offered or simulated to a network.

(2) Snort
Snort is an open source network intrusion prevention
system. It was developed by Martin Roesch in 1998.
Snort is now being developed by ‘Sourcefire’ which
has been owned by CISCO since 2013. It is capable of
performing real-time traffic analysis and packet
logging on IP networks. It can perform protocol
analysis and content searching/matching. It can be
used to detect a variety of attacks and probes, such as
buffer overflows, stealth port scans, CGI attacks, SMB
probes and OS fingerprinting attempts. Snort has been
included in the ‘Open Source Hall of Fame’ by
‘InfoWorld’ as one of the "greatest open source
software of all time".

(3) Conpot
Conpot has been developed as a part of the ‘HoneyNet
Project’. Conpot is an Industrial Control System
honeypot with the goal to collect intelligence about the
motives and methods of adversaries targeting
industrial control systems. It is a low-interactive
server-side honeypot. It is easy to deploy, modify and
extend.

(4) Kippo
Kippo is a medium-interaction SSH honeypot. It was
written in Python. Kippo was designed to log brute
force attacks. Kippo logs the entire shell interaction
performed by the attacker. It was written in Python.

(5) Amun
Amun is a low-interaction honeypot. Amun aims at
capturing malware in an automated fashion through
the use of emulated vulnerabilities.

(6) Glastopf
Glastopf is a Web Application honeypot which was
initially developed by Lukas Rist in 2009. Glastopf is
a client-side honeypot written in Python. It emulates
thousands of vulnerabilities using vulnerability type
emulation to gather data from attacks targeting
different web applications.

(7) Wordpot
Wordpot is a Wordpress honeypot which detects
probes for plugins, themes, timthumb and other
common files used to fingerprint a Wordpress
installation.

(8) ShockPot
ShockPot is a Web app honeypot created by
Threatstream. It is designed to guard against the
attacks done by black hat community exploiting
vulnerabilities in the Bash remote code namely

“ShellShock”. This honeypot detects the attacks
exploiting ShellShock vulnerability on HTTP port 80
and logs the exploit code and scripts. Such data
generated by ShockPot can be easily fed to VirusTotal
or Threatstream Optic to extract URLs and files.

(9) ElasticHoney
ElasticSearch is an open-source search server
developed by Shay Banon. ElasicHoney is an
ElasticSearch Honeypot. It is designed to catch
attackers trying to exploit RCE vulnerabilities in
ElasticSearch.

(10) P0f
P0f is a passive packet analyzer and a versatile passive
OS fingerprinting tool. It was developed in C
programming language by Michal Zalewski. P0f is a
tool that utilizes an array of sophisticated, purely
passive traffic fingerprinting mechanisms to identify
the actors behind any incidental TCP/IP
communications without interfering with the
communication in any way.

(11) Suricata
Suricata is an open-source IDS/IPS developed by
Open Information Security Foundation (OISF).
Suricata is a rule-based ID/PS engine that utilizes
externally developed rule sets to monitor network
traffic. It provides alerts to the system administrator
when suspicious events occur. Suricata was designed
to be compatible with most of the existing network
security components. Suricata features unified output
functionality. Suricata also has pluggable library
options, which are used to accept calls from other
applications.

3.3 HPFeeds

HPFeeds was developed under the HoneyNet Project.
The HPFeeds data sharing model has since evolved
into HPFriends and HoneyMap. HPFriends can be
used to choose and share data feeds with friends.
HoneyMap is a real-time world map which shows the
honeypots deployed and attacks being carried out on
them.
HPFeeds was designed as systems that can implement
a lightweight authenticated publish/subscribe protocol
for exchanging live data feeds. HPFeeds uses a simple
wire-format so that feeds can be subscribed using any
language. This makes HPFeeds very versatile.
HPFeeds supports integration with WireShark. The
channel users can choose the serialization format to
subscribe to structured data feeds. Thus HPFeeds can
gather data from multiple honeypot software, format
them and feed them to other software like HPFeeds-
logger, HPFriends, HoneyMap, Mnemosyne, and
WireShark which can analyze and process the data to
produce human readable, useful results.

International Journal of Research in Advent Technology (E-ISSN: 2321-9637) Special Issue
National Conference “NCPCI-2016”, 19 March 2016

Available online at www.ijrat.org

160

HPFeeds plays the very important role as a data
gathering point for MHN Server. HPFeeds lies at the
base of MHN Server. HPFeeds can have multiple
inputs from different honeypot software which work
as a data generation point. HPFeeds has internal
connections to HPFeeds-logger, HoneyMap and
Mnemosyne.

3.4 Mnemosyne

Mnemosyne is used as a data normalization tool,
which connects HPFeeds with MongoDB.

Mnemosyne has three main objectives:

(1) Provide immutable persistence for HPFeeds.
(2) Normalization of data to enable sensor

agnostic analysis.
(3) Expose the normalized data through a

RESTful API.

Mnemosyne uses following collections:

(1) Counts
This collection was added specifically for MHN. This
collection was designed to speed up aggregation
queries. It can be described as pre-computed
summaries of counts over time-ranges.

(2) Daily_stats
This is a default collection of Mnemosyne which
stores daily summaries statistics across various
dimensions of data.

(3) Dork
This default collection stores searches, file paths and
associated metadata collected from honeypot. This
collection specifically relates to web application
honeypots. It serves Dorks collected by Glastopf.

(4) File
This is the default collection used to store files and
associated metadata collected from various honeypots.

(5) HPFeed
This default collection stores the raw message sent
back from a honeypot in the original format (Usually
JSON).

(6) Metadata
This collection has been specifically added by MHN.
It is used to store metadata around IP addresses. This
collection is used as a pre-computed collection of
observations around an attacker IP. This collection is
mainly used for P0f data.

(7) Session

This default collection is the most important. This
collection summarizes honeypot interaction as a
normalized 5-tuple record.

(8) URLs
This default collection is used to store URLs and
associated metadata collected from various honeypots.
These URLs are potentially serving malicious content.

(9) HPFeeds Database
This collection is specifically used by HPFeeds
broker.

(10) Auth_key
This collection stores data about HPFeeds users. It
gets populated as new users are added to HPFeeds.

3.5 MHN Web Application

MHN Server provides an attractive web application
designed by ThreatStream.
This web app can be used to log in to the MHN Server
and do manipulations graphically.

Fig. 3. Screenshot of MHN Web App Log-in

Having logged into the MHN Server, the homepage is
shown. This homepage provides a summary. The
attack count of past 24 hours is shown along with a list
of top attacker IPs, attacked ports, honeypots, sensors
and attack signatures.

The web app provides many facilities:

(1) Map
This tab provides a direct integration to HoneyMap in
MHN Server. A real-time map of the world is shown.
Different honeypots deployed and attacks are also
displayed in real-time fashion.

(2) Deploy

International Journal of Research in Advent Technology (E-ISSN: 2321-9637) Special Issue
National Conference “NCPCI-2016”, 19 March 2016

Available online at www.ijrat.org

161

This tab provides the user with the ability to deploy
pre-configured honeypots very easily using GUI.

(3) Attacks
This tab provides an attacks report. The attacks are
listed using date, sensor, country, source IP,
destination port, protocol and honeypot used. These
records can be filtered using various ‘parameters
provided in the search filter.

(4) Payloads
This tab provides a payloads report. The records are
listed along with priority, classification and signatures.
Search filter is also provided.

(5) Rules
This tab is used for rules management. This tab allows
the user to list, filter, edit, remove, activate or
deactivate individual rules used in the configuration of
Snort. It lets the user change the default source
“http://rules.emergingthreats.net/open/snort-
2.9.0/emerging.rules.tar.gz”. Thus giving the user the
ability to configure or reconfigure Snort.

(6) Sensors
This tab provides a list of sensors deployed by MHN
Server. Sensors deployed by other servers can also be
added using sensor and host names which allows for
creation of various honeynets and resource/data
sharing between servers.

(7) Charts
This tab provides a direct integration with Kippo.
Charts are provided are,

• Top passwords
• Top users
• Top user/passwords
• Top attackers

(8) Settings

This tab provides the current user information. It also
lists the users of MHN Server and allows the user to
add remove users and change passwords.

3.6 HPFeeds-Logger

HPFeeds-Logger is a simple utility used to log events
from HPFeeds in formats compatible with third party
integration apps like Splunk and ArcSight. HPFeeds-
Logger works with the HPFeeds user which is able to
subscribe to all channels.

3.7 Splunk

Splunk has been developed by Michael Baum, Rob
Das and Erik Swan. Splunk is a data processor. Splunk
is a horizontal technology that deals with raw machine

data for application management, security and
compliance. Splunk is also user for data mining from
machine-generated big data. Splunk is also used for
business and web analytics.
Splunk can index structured and/or unstructured
machine-generated data in textual form. Splunk can
perform real-time and historical search on data and
perform statistical analysis and generate reports.
Splunk uses Search Processing Language which is
derived from SQL and Unix Piping. Using SPL,
Splunk can search, filter, modify, insert, delete or
manipulate machine-generated big data.
Splunk is used in MHN Server as third party
integration to HPFeeds. HPFeeds-Logger is used to
index data from HPFeeds into Splunk. Splunk then
performs data analysis and generates dashboards and
visualization of web based interface which can be used
to generate alerts, reports and graphs.
Splunk app integration with MHN was released in
2015, making MHN largest crowd-sourced honeynet.

4. CONCLUSION

Modern Honey Network is explained in the paper
above. The architecture, different components and
features are discussed. The process flow is explained.

MHN Server has truly overcome the demerits of
standard honeypots and provided following unique
merits.

(1) Easy to deploy, configure, maintain and use
honeypot software.

(2) Risk or exposure is decreased as each sensor
is pre-configured.

(3) Field of view and interaction is wide as
multiple sensors and honeypots are deployed
together.

(4) The risk of identification is decreased as
multiple sensors and logical as well as
geographical partition between components
make discovery and fingerprinting very
difficult.

Thus, I conclude that MHN has been able to overcome
the demerits of honeypots which have been majorly
influential in lack of adoption of honeypots by the
security community of the world.

REFERENCES

[1] Spitzner, L. (2001): “The value of honeypots,
part one: definitions and values of
honeypots”

[2] Bringer, M; Chelmecki, C; Fujinoki, H.
(2012): “A survey: recent advances and
future trends in honeypot research”,
International Journal of Computer Network

International Journal of Research in Advent Technology (E-ISSN: 2321-9637) Special Issue
National Conference “NCPCI-2016”, 19 March 2016

Available online at www.ijrat.org

162

and Information Security (IJCNIS Vol.4,
No.10, September 2012)

[3] Seifert, C; Welch, I, Komisarczuk, P. (2006):
“Taxonomy of honeypots”, CS Technical
Report TR-06-12, School of Mathematics,
Statistics and Computer Science, Victoria
University of Wellington, New Zealand

[4] The honeynet project (http://honeynet.org/)
[5] MHN, Threatstream

(https://github.com/threatstream/mhn)

