
International Journal of Research in Advent Technology (E-ISSN: 2321-9637) Special Issue
National Conference “NCPCI-2016”, 19 March 2016

Available online at www.ijrat.org

166

Serial to Parallel Code Converter Tools: A Review

Dr. Amit Barve1, Saanchi Khandelwal2, Nujhat Khan3, Shamali Keshatiwar4, Swapnali Botre5

Computer Engineering1, 2, 3, 4,5,VIIT,PUNE 1, 2, 3, 4,5
Email: barve.amit@gmail.com1, saanchik94@gmail.com 2 , khan.nujhat@gmail.com3,

shamalikeshattiwar@gmail.com4, swapnalibotre42@gmail.com5

Abstract- The arrival of multi-core architecture has extremely encouraged the area of parallel computing. This
multi-core model has enforced a change in the way applications are written. Multi-core processors have taken
the plunge to increase the performance of an application by utilizing the benefits of parallelization. However,
including parallelism in a program is not an easy task. This requires parallel programming expertise. In addition
to this manual parallelization of legacy serial codes is a strenuous and time consuming job. A number of tools
have been developed to automate the process of parallel compilation. These tools use the parallel programming
libraries to convert serial program into parallel one. This paper addresses various issues in the implementation of
serial to parallel code conversion with existing techniques used to resolves issues. The paper also presents a
survey of available tools used in serial to parallel code conversion, tools are compared on the basis of their
features, and a few tools are compared on the basis of their performance.
.
Index Terms- Parallel Converter Tools, Multi-Core Machines, Parallelization Techniques.

I. INTRODUCTION

 Parallel architectures have been advancing
over the past few decades. According to Hall et al
[1], in the present decade i.e. 2010 to 2020
compiler research will play a critical role in
addressing two of the major challenges facing the
overall computer field:
• Security and reliability of complex software

systems.
• Cost of programming multi-core processors.
The clock rate of the machine has almost reached
its theoretical limit, in spite of that the machine
speed is still continuing to increase impressively
due to increased parallelism in the form of multi-
core execution units. This trend of parallel
architecture is one of the greatest challenges for the
processor and software industries. Initially, only
scientific researchers were in need of parallel
programming. But now-a-days even general
programmers are also interested in parallel
programming. The invention of multi-core
increased the speed of the processor. But this
development of multi-core processors accompanied
with it a disadvantage as most of the legacy
applications or software’s are written in sequential
manner and therefore are unable to utilize the
complete power of multi-core. This limitation urges
the use of parallel programming. Also providing
training in parallel programming is a difficult task
if time and cost are to be considered. Therefore,
there is a need of assistance tools for parallel
programming. These tools take the serial code as

input and generate output code with parallelization
constructs. These tools help in increasing the
performance and efficiency of a system.

II. ISSUES IN IMPLEMENTATION OF
SERIAL TO PARALLEL CODE
CONVERTER

The following issues need to be address before
designing a serial to parallel code converter.

1. Dependency Analysis: Dependency
analysis needs to be carried out to
parallelize the application. Dependency
analysis represents how different parts of
the program are interdependent and how
changes in one part may affect the other.
Dependencies can be categories in two
types: control dependency and data
dependency. Control dependency is a
situation where the execution of a part or
statement in the program depends on the
output of execution of another part or
statement in the program. Whereas data
dependency is a situation where an
instruction is dependent on a previous
instruction it can further be categorized
into four types.

• Flow (true) data dependence: Data is
written at a particular location and later
read from that location.

International Journal of Research in Advent Technology (E-ISSN: 2321-9637) Special Issue
National Conference “NCPCI-2016”, 19 March 2016

Available online at www.ijrat.org

167

• Anti Dependency: When data is first read
at a particular location and then written to
that location at a later time.

• Output Dependency: When data is first
written at a location and then overwritten
with a different value at a later time.

• Input Dependency: When data is read,
modified and then again read at a later
time.

2. Indentify Loop Parallelization: Loops
are the regions where the program spends
most of its computing and execution time.
These loops are needed to be recognized
by the automatic compiler. The complier
recognizes the loops by performing a
careful program analysis. Parallelization
of the loops can be carried out if and only
if the iterations of a particular loop are
independent of each other.

3. Indentify Task Parallelization: A
program is divided into different parts
called tasks. Parallelization of these tasks
can be done if they are independent of
each other. Analysis of the program is
done to find out the independent tasks in
the program.

4. Indentify Vectorization: Vectorization is
a process of converting an algorithm form
its scalar implementation, which does an
operation for one pair of operands at a
time, to a vector process. In the vector
process, a single instruction can refer to a
vector. Vectorization adds a form of
parallelism to a program where one
instruction is applied to multiple pieces of
data. Benefit of vectorization is more
efficient processing and improved
application performance.

5. Partitioning: The design of a parallel
algorithm begins with discovering as
much parallelism as possible. Partitioning
is the process of dividing the data and
computations into small pieces. A good
partitioning divides both the data and
computations into small pieces. To
achieve this, either a computation-centric
approach or data-centric approach is
taken. Domain decomposition is the
approach in which data is divided into

pieces and then the determinism is done to
associate computations with the data.
Functional decomposition is a strategy in
which the computations are divided first
and then the determinism is done to
associate data items with the individual
components. Each of the pieces formed
due to decomposition is called a primitive
task.

6. Communication: After portioning the
next step is to determine communication
pattern between the primitive tasks. There
are two types of communication patterns:
local and global. When a task requires
input from a small no. of other tasks,
channels are created from the task
supplying the data to the task by inputting
the data. This explains local
communication. Whereas, global
communication takes place when a
remarkable number of primitive tasks
contribute to perform a computation.

7. Agglomeration: Agglomeration is the
process in parallel programming that
groups tasks into larger tasks in order to
simplify programming or increase
performance. It is done in situations where
the number of tasks exceeds the number of
available processors. The main goals of
agglomeration are to lower
communication overhead, maintain the
scalability and reduce software
engineering cost.

8. Mapping: The process of assigning tasks
to processors is called mapping. The two
main goals of mapping are to maximize
processor utilization and minimize inter-
process communication. Processor
utilization is maximized by distributing
the load evenly on each processor,
allowing all processors to begin and end
execution of tasks at the same time. Inter-
process communication decreases when
the two communicating tasks are mapped
to the same processor. These two goals are
conflicting and therefore finding an
optimal solution to the mapping problem
is difficult.

International Journal of Research in Advent Technology (E-ISSN: 2321-9637) Special Issue
National Conference “NCPCI-2016”, 19 March 2016

Available online at www.ijrat.org

168

All these issues are well described in
numerous books on the subject like Gregory V.
Wilson[2], Quinn Michael J.[3], Richard Gerber et
al[4]. Some other issues related with parallel
conversion are Division of code and
Synchronization, Processor Issues, Threading, Task
Distribution, Context Switching are addressed by
Barve and Joshi[5].

III. TECHNIQUES FOR
PARALLELIZATION

1. OpenMP: Open multi processing is an

API for writing a shared memory parallel
application in C, C++ and FORTRAN.
Open MP is easy to implement and it also
allows incremental parallelism. Open MP
uses a fork and join model of parallel
execution. It uses compiler directives for
parallelization. These directives are
embedded in the source code. It is not
used to check data dependency, data
conflicts, deadlocks or race conditions.
OpenMP is intended to support programs
that will run correctly both as parallel and
serial programs [6].

2. CUDA: CUDA is a platform for parallel
computing invented by NVIDIA. By using
the power of Graphics Processing Unit
(GPU), CUDA enables increases in
computing performance. With CUDA, no
assembly language is required. It allows to
run C, C++ or FORTRAN code directly
on GPU. The sequential part of the GPU
accelerated applications are run on the
CPU and the parallel part on GPU. To
achieve maximum performance, the
parallel part of an application should be
more as compared to its serial part[7].

3. MPI (Message Passing Interface): MPI
enables the execution of parallel programs
across a heterogeneous collection of
parallel and serial computers. It is the
most popular standard of message passing
library for parallel programming. The
message passing library enables different
processes to communicate with each other.
Writing parallel programs using MPI
allows us to port the programs to different
parallel computers. The message passing
model considers that the underlying

hardware is a collection of processors,
each having its own local memory, and an
interconnection network that support
message passing between the processors
[8].

4. OpenACC: The OpenACC toolkit
invented by NVIDIA offers a simple way
to accelerated scientific computing
without any significant programming
effort. Simply insert directives in C or
FORTRAN code and the OpenACC
compiler runs the code on the GPU.
OpenACC is simple, powerful and free.
With OpenACC, the existing code is kept
intact and delivers faster performance
when an accelerator is available in the
system. The example below shows how
OpenACC extends existing serial CPU
code or parallel code using approaches
like OpenMP [9].

5. OpenCL: OpenCL is the cross-platform
standard for parallel computing. It is an
open standard for parallel programming of
heterogeneous systems. It improves speed
and responsiveness for a wide spectrum of
applications. These applications include
gaming, entertainment, medical and
scientific software. OpenCL consists of
two APIs first C Platform Layer API, This
API is to select, query and initialize
computing devices. And another is C
Runtime API: this API to build and
execute kernels across multiple devices.
Task and data parallelism both are
supported by the OpenCL standard. It
utilizes a subset of ISO C99 with
extensions for parallelism. It defines a
configuration profile for embedded and
handheld devices [10].

6. Click Plus: Intel Click Plus is a reliable,
quick and easy way to improve
performance. It adds simple language
extensions to the C and C++ languages to
express data and task parallelism. Intel
Click Plus includes the following features
and benefits: Keywords are a simple and
powerful expression of task parallelism,
array notation, reducers, SIMD-Enabled
Functions [11].

International Journal of Research in Advent Technology (E-ISSN: 2321-9637) Special Issue
National Conference “NCPCI-2016”, 19 March 2016

Available online at www.ijrat.org

169

IV. REVIEW OF SERIAL TO
PARALLEL CONVERTER TOOLS

1. YUCCA: YUCCA (User Code Conversion

Application) is an automatic serial to
parallel code conversion tool introduced
by KPIT Technologies Ltd. Pune. It is a
user code conversion application. The tool
accepts input as a C source code file. The
output generated by the tool is a
transformed code. This code is a
multithreaded parallel code which has
pthread function and OpenMP construct.
The tool does both task and loop level
parallelization [12].

2. Par4All: This is an open source project
developed by HPC project. It is a project
that aims at simplifying parallel code
generation from sequential source code
written in C or FORTRAN language. It
aims at generating parallel code with
almost no manual help required. It is
based on the PIPS compiler framework.
Par4all is a script for users who are not
inserted in parallel programming but wish
to produce parallel code. This Par4all
script takes serial C or FORTRAN source
files and generates OpenMP, OpenCL,
CUDA output that can run on shared
memory multi-core processor or GPU[13].

3. Cetus: Cetus is a parallelizing compiler
for C. Cetus can run on any system that
support oracle, Java runtime environment,
standard edition or later. It was originally
developed by Prude University. It
provides an internal C parser and is
written in Java. Cetus uses the basic
techniques used for parallelization and
currently it implements reduction variable
recognition, privatization, and induction
variable substitution. The most recent
version of Cetus includes a GUI and also a
client server model. Cetus compiles and
run the sequential input and generates an
output which is the C code with OpenMP
constructs. It also shows the charts of
speedup and efficiency [14].

4. PLUTO: Pluto is parallelization tool that
uses polyhedral model. It transform serial
C program into parallel programs using

available parallelism. It implements loop
level parallelization. Pluto includes
OpenMP construct into the automatically
generated parallel code. The polyhedral
transformation used in Pluto earlier lacked
practicability and scalability. Pluto has
improved this polyhedral transformation
method and also solved the previous
problems by introducing a fully automatic
parallelization compiler [15].

5. Polaris compiler: Polaris is an automatic
parallelization tool for FORTRAN
programs. The objective of Polaris
compiler is automatic code parallelization
and to create and preserve the optimizing
compiler. The compiler includes all
optimization techniques required to
transform a serial program into a parallel
one that will run properly and efficient on
the target machine. These techniques are
automatic identification for parallelism
and data distribution. It uses various loop
dependency tests to generate efficient
parallel code. It uses some standard tests
like GCD test and equality test for linear
cross iteration dependency. It also uses
range test for non-linear cross iteration
dependency. Polaris compiler also has
some advanced capabilities that can
perform the tasks like variable
recognition, inter procedural analysis,
array privatization, data dependence
testing and symbolic program analysis
[16].

6. Intel C++ Compiler: Intel C++ compiler
increases performance by making efficient
use of multi-core. It makes building long
lasting applications easy. It is compatible
with famous compilers and operating
systems. Intel C++ compiler includes
various features like Intel Click Plus,
Auto-parallelization, OpenMP, Intel Many
Integrated Core Architecture (MIC), Auto-
vectorization, Inter-Procedural
Optimization (IPO), Profile Guided
Optimization (PGO), Processor Targeting
Optimization, Intel Graphics Technology
(GT), C++ Compliance and Pointer
Checker. It automatically generates a
multithreaded form of the applications

International Journal of Research in Advent Technology (E-ISSN: 2321-9637) Special Issue
National Conference “NCPCI-2016”, 19 March 2016

Available online at www.ijrat.org

170

where almost all the computations are
executed in simple loops. The Guided
Automatic Parallelization (GAP) feature
of Intel compiler provides advice evolving
better performance of the serially written
applications [17].

7. iPat/OMP: iPat is an interactive tool. It is
a parallelizing tool for OpenMP. The tool
helps the user in parallelizing serial codes
into parallelized version using OpenMP.
Emacs editor is required for the
implementation of the tool. It uses Omni
OpenMP compiler. iPat/OMP has four
types of capabilities:
1. Parallelism analysis: check the

dependencies accordingly decide
which section can be parallelized.

2. Directive creation: Including the
OpenMP directives for the section of
code that can be parallelized.

3. Program restructuring: Restructuring
of program or sections in order to
increase parallelism.

4. Execution time analysis: Including
calls that measure execution time.
The details about this tools can be
found in [18].

8. Vienna FORTRAN Compiler (VFC):
VFC is a parallelizing compiler for HPF
(High Performance FORTRAN) VFC
translates FORTRAN 95 or HPF+
programs to FORTRAN 90 SPMD
message passing (MPI) programs. VFC
execute most characteristics of HPF+ and
it also provides features that manage
irregular programs. VFC consist of a front
end that performs scanning and parsing of
the input program and it also outputs an
intermediate representation of the input
program. The analysis module of VFC
builds different abstractions of the
program such as the flow graph,
dependence graph and the call graph for
every program unit. The parallelization
module of VFC converts the input
program to a parallel SPMD program [19].

9. SUIF Compiler: SUIF (Stanford
University Intermediate Format) is a
framework for research on optimizing and
parallelizing compilers. SUIF has been

developed as a platform on which research
on compiler techniques is done for high-
performance machines. It is flexible,
modular, powerful and complete enough
to compile benchmark programs. SUIF
has been successfully used to perform
research on various concepts including
loop transformation, array data
dependence analysis, software pre-
fetching, scalar optimizations and
instruction scheduling. The SUIF system
consists of a parallelizer that automatically
searches for parallel loops and generate a
corresponding parallel code. To support
parallelization the system supplies many
features such as reduction variable
recognition and data dependence analysis
[20].

10. Omni OpenMP Compilers: Omni
compiler consists of a collection of a
libraries and programs which allows user
to build parallel code. The compiler is
used to translate FORTRAN and C
programs with OpenMP directives into
parallel code. This parallel code is then
appropriate for compiling with a native
compiler which is linked with the runtime
library with Omni OpenMP [21].

11. TRACO: TRACO is a loop
parallelization compiler. It is based on the
iteration space slicing framework (ISSF).
It is a source to source transformation of
the C code. The output generated by Traco
is a parallel code with OpenMP construct
Traco is developed in python. It is a
command line tool s[22].

12. CAPO: CAPO (Computer-Aided
Parallelizer and Optimizer) is a tool that
automatically inserts compiler directives to
enable parallel processing on shared
memory parallel machines. CAPO is
developed at NASA Ames Research
Center. The current version of CAPO takes
in serial parallel FORTRAN codes or
programs, performs inter-procedural data
dependency analysis and generates a code
with OpenMP directives. The success of
CAPO depends on accuracy of
interprocedural data dependency

International Journal of Research in Advent Technology (E-ISSN: 2321-9637) Special Issue
National Conference “NCPCI-2016”, 19 March 2016

Available online at www.ijrat.org

171

information. CAPO generates the compiler
directives in following three stages:

1) Identifying parallel loops
2) Constructing parallel regions

around parallel loops and
optimization of these parallel
regions

3) Automatically identifying
private, reduction, induction and
shared variables to insert
directives

Although CAPO generates directives
automatically, user interaction is still
important for producing parallel codes. A
graphical user interface is therefore
included in the CAPO tool so that a user
can interact with the parallelization
process [23].

V. COMPARISON OF SERIAL TO
PARALLEL CONVERTER TOOLSThe
tools presented in section III are compared on
the basis of language support for parallelism,
various techniques used in tools, support to
platform and other various features. Table 1
gives comparison of various tools on the basis
of language support for parallelism, various
techniques used in tools, support to platform.
And table 2 provides a comparison of the tools
on the basis of their properties. The meanings
of the columns in the table are as follows:

• F.I = Function Inlining
• A.P = Array Privatization
• R.V.R = Reduction Variable Recognition
• I.V.S = Induction Variable Substitution
• G.T = GCD Tests
• S.P = Scalar Privatization
• T.P = Task Parallelization
• L.P = Loop Parallelization
• P.M = Polyhedral Model
• V = Vectorization

International Journal of Research in Advent Technology (E-ISSN: 2321-9637) Special Issue
National Conference “NCPCI-2016”, 19 March 2016

Available online at www.ijrat.org

172

Table 1: Comparison of tools based on language, techniques and platform

Sr. No Tools Language

Support
Techniques

Used
Available
Platform

1 YUCCA C OpenMP, pthreads Linux
2 Cetus C OpenMP Supports all Linux

environments
3 Par4All C, FORTRAN OpenMP, OpenCL,

Cuda
For Debian and Ubuntu

4 Pluto C OpenMP Linux/Unix
5 Polaris Compiler FORTRAN77 OpenMP Linux
6 Intel C++

Compiler
C++ OpenMP, Guided Auto

Parallelism, Intrinsic,
Click Plus

Windows, Linux (not for
all variants), Mac OS,

Android
7 SUIF FORTRAN, C SPMD Linux
8 VFC HPF+ SPMD Linux
9 Traco C, C++ OpenMP/OpenACC Linux
10 iPat C, FORTRAN OpenMP Windows
11 Omni C,

FORTRAN77
OpenACC Ubuntu, Fedora, Mac OS

Table 2: Comparison of Tools Based on Available Features

Sr. No Tools F.I A.P R.V.R I.V.S G.T S.P T.P L.P P.M V
1 YUCCA � �
2 Cetus � � � � � �
3 Par4All � � � �
4 Pluto � � �
5 Polaris

Compiler
 � �

6 Intel C++
compiler

 � � �

7 SUIF �
8 VFC �
9 Traco �
10 iPat �
11 Omni �

173

 VI. PERFORMANCE COMPARISON OF
PLUTO AND PAR4ALL

 The experiment for the testing of Pluto and
Par4All was carried out on Ubuntu 14.04 LTS on
HP Core i7 Machines with 8MB on chip cache
and 4 GB RAM and processor speed 3.40 GHz
having 8 cores in total. For testing, matrix
multiplication program was used which generates
random matrix of NxM and computes their
multiplication. The performance of both the tools
is shown in figure 1 and 2 respectively

0

200

400

E
x

e
cu

ti
o

n
 T

im
e

Matrix Size

(Pluto)

8 Threads

4 Threads

2 Threads

Sequential

Figure 1. Time Taken by Pluto for parallel execution
of various matrix multiplication using 2-8 CPUs

0
100
200
300
400

E
x

e
cu

ti
o

n
 T

im
e

Matrix Size

(Par4All)

8 Threads

4 Threads

2 Threads

Sequential

Figure 2. Time Taken by Par4All for parallel

execution of various matrix multiplication using 2-8
CPUs

The performance of two tools Pluto and Par4All is
compared. As per the performance graphs, it is clear
that Pluto generated parallel code takes less time to
execute as compare to parallel code generated by
Par4All.

 VII. CONCLUSION

 The paper discusses the need of parallel
programming and also stresses on the need of tools
for parallel programming in recent era of computing.
The paper also presents a brief introduction of the

available techniques and tools for automatic
parallelization along with implementation issues. A
brief comparison of serial to parallel code converter
tools has been presented on the basis of techniques,
platform and features.

VIII. ACKNOWLEDGMENT

 It gives us great pleasure in presenting the
paper on “A Serial To Parallel C++ Source Code
Converter”.
 We would like to take this opportunity to
thank my internal guide Dr. A. K. Barve for giving us
all the help and guidance we needed. We are really
grateful to them for their kin support .Their valuable
suggestions were very helpful.
 We are also grateful to Prof. Sachin Sakhare,
Head of Computer Engineering Department,
Vishwakarma Institute Of Information Technology
for his indispensable support, suggestions.
 In the end our special thanks to Dr. A. K.
Barve for providing varies resources such as
laboratory with all needed software platforms,
continuous internet connection, for our project.

REFERENCES

[1]. Marry Hall, David Padua, Keshav Pingali;
“Compiler Research: The Next 50 years”;
Communication of the ACM, Vol. 52, No. 2, pp.
60-67, February 2009.

[2]. Gregory V. Wilson; “Practical Parallel
Programming”; Prentice Hall of India, New Delhi
2002.

[3]. Michael J. Quinn; “Paralle Programming in C
with MPI and OpenMP”; Tata McGraw-Hill
Publication, New Delhi 2003.

[4]. Richard Gerber Aart J.C. Bik Kevin B. Smith
Xinmin Tian; “The Software Optimization
Cookbook High-Performance Recipes for IA-32
Platforms” Second Edition; Intel Press 2006.

[5]. Barve, Amit and Joshi, Brijendra Kumar; “Issues
in Implementation of Parallel Parsing on Multi-
Core Machines”; International Journal of
Computer Science, Engineering and Information
Technology; pp. 51-57, Vol 4, No. 5, October
2014.

[6]. www.openmp.org/

[7]. http://www.nvidia.com/object/cuda_home_new.h
tml

[8]. http://www.mpi-forum.org/

[9]. https://developer.nvidia.com/openacc
[10]. https://www.khronos.org/opencl/
[11]. https://software.intel.com/en-us/intel-cilk-

plus
[12]. Priti Ranadive & Pranjali Modak, “Best To Be

or Not To Be... A Driver”, TechTalk@KPIT,
Volume 7, Issue 1, 2014.

174

[13]. http://www.par4all.org/
[14]. http://cetus.ecn.purdue.edu/
[15]. http://www.ece.lsu.edu/jxr/pluto/
[16]. http://polaris.cs.uiuc.edu/polaris/polaris-

old.html/
[17]. https://software.intel.com/en-us/intel-

compilers
[18]. http://sourceforge.net/projects/ipat/
[19]. http://www.hindawi.com/journals/sp/1999/30

4639/abs/
[20]. http://suif.stanford.edu/suif/suif2/
[21]. www.hpcs.cs.tsukuba.ac.jp/omni-compiler/
[22]. http://issf.sourceforge.net/
[23]. http://people.nas.nasa.gov/~hjin/CAPO/

