
International Journal of Research in Advent Technology (E-ISSN: 2321-9637) Special Issue 
National Conference “NCPCI-2016”, 19 March 2016 

Available online at www.ijrat.org 
 

226 

 

Methods of kernel Tracing 
 

Prof. Laxmi Bewoor, Parool, Priya Kumari, Shristi A. Mishra, Sheetal Chawla 
Department of Computer Engineering 

Vishwakarma Institute of Information Technology, 
Savitribai Phule Pune University,Pune 

Abstract—Kernel tracing is essential for extracting appropriate recurring runtime execution patterns and several inter process 
communication patterns for a system. There have been tools developed to understand process execution at kernel levels, but 
extracting the relevant information by manually analyzing the traces is a time consuming process. This has motivated us to 
review all the current methods of kernel tracing and find the most suitable of all utilities available. This would involve 
understanding of the kernel events . We would use Ltt-ng as a tool to generate the traces in Linux Kernel. The main objective is 
to improve performance of the applications and reduce the workload. Also we can observe various types of kernel events and 
their effect on the system.By performing this analysis, the user will be able to view the kernel processes as well as their 
execution patterns.This survey basically compares Ltt-ng with other utilities available for tracing the linux kernel. 
 
Index Terms—Frequent pattern mining,kernel tracing,Scheduling,Data Mining,operating systems,Multicore systems 
 
1 INTRODUCTION 

HE kernel is a part of operating system that is responsible for 
controlling execution of processes like creation, termination, 
suspension, communication.It also allocates main memory for 
the execution of the process.Linux kernel has an extensive 
tracing infrastructure that is quite useful for 
debugging.Tracing of kernel is important to uncover useful 
information like performance issues,to identify bottlenecks in 
execution of processes and it can further be extended for 
optimizing the kernel.There are various tracing tools 
developed to inspect the Linux kernel , because manual 
inspection of the logs or traces is time consuming.For the 
Linux kernel, various tools and commands are available for 
generating the traces like top that provides a snapshot of 
currently running processes that can be sorted using 
parameters like CPU usage or memory usage. Another utility 
is ’strace’ that helps to record the interrupts, system calls and 
signals that a process receives.There is also an inbuilt Linux 
tracer like ’ftrace’ which is ”function tracer” but provides 
services beyond it. It is used for event tracing and other 
functions like analyzing latencies.Yet another utility available 
is ’ktrace’ which generates traces in an output file. The output 
file contains I/O , signals and system calls. Here, in this 
survey, we compare these tools with the Linux Trace 
Toolkit(Ltt-ng) , which is an open source tracing tool that not 
only traces kernel processes, but also traces the user 
processes.A session needs to be created for which the traces 
and logs will be generated. These traces can further be 
analysed to understand, in deep, the execution patterns of 
processes.This analysis can be done by mining the kernel trace 
data.While performing mining inter-dependencies between the 

processes and time varying characteristics of processes should 
be taken into consideration. 
 
2 METHODS OF KERNEL TRACING 
2.1 Tracing using ktrace 
Ktrace is a utility included with certain versions of BSD Unix 
and Mac OS X that traces kernel interaction with a program 
and dumps it to disk for the purposes of debugging and 
analysis. Traced kernel operations include system calls, 
processing, and I/O. The aim of ktrace is to provide the user 
with the state of the system on the occurrence of specific 
events. Ktrace comprises of two components, user level 
module and system level module. The kernel level module is 
the actual tracing module whereas the user level module acts 
as the front end of the tracing framework. 
2.1.1 User Module 
The user module provides a user interface. It interacts with the 
kernel module using device driver software. It passes the 
following information to the kernel module 
1. Event Mask : It is a mask for the list of eventsthat the 
user wants to be traced. 
2. Variable Mask : It is a mask for the list ofvariables 
that the user wants to be traced. 3.Pid : It is the pid of an 
already running process which the user wants to be traced. 
2.1.2 Kernel Module 
The kernel module obtains the the tracing information from 
the user module with the help of a device driver software.At 
the occurrence of an event to be traced, the kernel module has 
to store the values of all the required variables. So the basic 
tracing framework is such as, the user module passes the 
tracing options to the kernel module.Then the data logged by 
the kernel module is continuously transferred to each user 

T 



International Journal of Research in Advent Technology (E-ISSN: 2321-9637) Special Issue 
National Conference “NCPCI-2016”, 19 March 2016 

Available online at www.ijrat.org 
 

227 

 

module which happens continuously till the time the tracing 
goes on. 
2.2 Use of strace 
Strace is a tool which is used to trace system calls and 
signals.It is a diagnostic and debugging utility for Linux. It is 
used to observe and study the interactions between processes 
and the Linux kernel, which include system calls, signal 
deliveries, and changes of process state. The operation of 
strace is made possible by the kernel feature known as 
’ptrace’. The most common use of strace is to start a program 
using strace, which prints a list of system calls made by the 
program. This is useful if the program is continually crashing 
many times, or does not behave as expected; for example 
using strace may reveal that the program is attempting to 
access a file which does not exist or cannot be read. 

As strace is specifically used for only detailing the system 
calls, it cannot be used to detect as many problems as a code 
debugger such as GNU Debugger (gdb). It is, however, easier 
to use than a code debugger, and is an extremely useful tool 
for system administrators. The following is an example of 
typical output of the strace command: 

Fig. 1: Output of strace 
2.3 Debugging the kernel using Ftrace 
Ftrace is a tracing utility built directly into the Linux kernel. 
One of the advantages that Ftrace brings to Linux is the ability 
to monitor what is happening inside the kernel. As such, this 

makes finding problem areas or simply tracking down bugs 
more manageable. Ftrace has the ability to show the events 
that lead up to a crash, which gives a better chance of finding 
exactly what caused it and can help the developer in creating 
the correct solution. 
2.3.1 Setting up Ftrace 
The API to interface with Ftrace is located in the Debugfs file 
system.Typically, that is mounted at /sys/kernel/debug. For 
more ease we can create a /debug directory and mount it there. 
We can choose our own location for Debugfs.When Ftrace is 
configured, it will create its own directory called tracing 
within the Debugfs file system. The action on the terminal is 
shown below: 

[˜]# cd /sys/kernel/debug/tracing [tracing]# 
2.3.2 Function tracing 
Ftrace uses the -pg option of gcc to have every function in the 
kernel call a special function mcount.To find out which tracers 
are available,we can simply cat the available tracers file in the 
tracing directory. 

[tracing]# cat available_tracers 
To enable the function trace we have to put the following 
command 

[tracing]#echo function current tracer 
[tracing]#catcurrent tracerfunction 

Difference between LTTng and ftrace is that in ftrace 
there is no availability of dynamic tracepoints and that live 
monitoring can be done using LTTng which is not possible 
with ftrace. 
2.4 Top utility 
Top provides a closer look at processor activity in real time. It 
displays a list of the most CPUintensive tasks on the system 
and can provide an interactive interface for manipulating 
processes. It can sort the tasks by CPU usage, memory usage 
and runtime. 
2.4.1 Options with top 
-d Specifies the delay between screen updates. 
-p Monitor only processes with given process id. This flag can 
be given up to twenty times. This option is neither available 
interactively nor can it be put into the configuration file. 

 



International Journal of Research in Advent Technology (E-ISSN: 2321-9637) Special Issue 
National Conference “NCPCI-2016”, 19 March 2016 

Available online at www.ijrat.org 
 

228 

 

Fig. 2: Output of top 
2.5 Linux Trace Toolkit 
Linux Trace Toolkit , an open source tracing framework for 
Linux allows extensive and transparent reporting of 
process,event,descriptor and operating system activity. 
Thousands of kernel-event records can be traced every second. 
Each kernel event has a multi-feature ordered pair containing, 
operating system sub-system involved with executing the 
event, process record which caused the event, the event type, 
the address or descriptor for any resource , and the time at 
which the event occurred. LTTng allows the user to see 
thoroughly , information about the processes and events that 
were running during the trace period, including when context 
switches occurred, how long the processes were blocked for, 
and how much time the processes spent executing vs. how 
much time the processes were blocked,the amount of memory 
allocated etc..Sample values for the attributes are shown in 
fig.3 

 
Fig. 3: Trace Attributes with sample values 

A brief description of the sample values: 
• Syscall Entry:A system call is ready to start 

execution in the kernel mode.The Linux kernel 
contains a centralized mechanism to invoke system 
calls and this central point corresponds to the system 
call entry event. 

• Syscall Exit:A system call is ready to return to the 
user mode.The return from a system call also takes 
place through a central mechanism and it corresponds 
to the system call exit event 

• Page Alloc:A page of memory is assigned by the 
linux kernel. 

• Page Exit:A page of memory is freed by the linux 
kernel. 

• Schedule In:The scheduler is invoked by the linux 
kernel.The actual point is the beginning of the 
context switch function in the linux kernel. 

• Schedule Out:The scheduler’s job is finished.The 
actual point is the end of the context switch function 
in the linux kernel. 

• Free Memory:It denotes the amount of free memory 
of the entire system. 

• Total Memory:It denotes the total 
memory of the system. 

LTTng is a set of software components.These components 
allow interaction between the Linux kernel and user 
applications.It also controls the tracing sessions i.e enabling or 
disabling of events,starting or stopping of tracing, and more. 
Those components are clusterd into the following packages: 

LTTng-tools: libraries and command line interface to 
control tracing sessions. 
LTTng-modules: Linux kernel modules for tracing the kernel. 
LTTng-UST: user space tracing library. 

The data gathered after tracing the Linux kernel or a user 
space application which is initially in CTF(Common Trace 
Format) can be viewed using: 

• babeltrace is a command line utility which converts 
trace formats. It supports the format used by LTTng, 
CTF, as well as a basic text output which may be 
greped. 

• Trace Compass is an Eclipse plugin used to 
visualize and analyze various types of traces, 
including LTTng’s. It also comes as a standalone 
application. 

2.5.1 Advantages of using LTTng 
• LTTng can be used for analyzing the system where 

delays occur. 
• To see how processes interact with respect to 

scheduling, interrupts, synchronization primitives, 
etc. 

• It can be used to log program execution details from 
a patched Linux kernel and then perform various 
analyses on them, using console-based and graphical 
tools. 

2.5.2 Why LTTng? 
The unique features of LTTng is that it produces correlated 
kernel and user space traces.These traces have lowest 
overhead as compared to other solutions. The trace files are 
produced in the CTF format, an optimized file format for 
production and analyses of multi-gigabyte data. LTTng is 
developed by a community of passionate developers and has 
been actively used since 10 years. It is currently available on 
all major desktop, server, and embedded Linux distributions. 

The main interface for tracing control is a single 
command line tool named lttng. This lttng can create several 
tracing sessions, enable or disable events on the fly, filter them 
efficiently with custom user expressions, start or stop tracing, 
and do much more. Traces can be recorded on disk or sent 
over the network, kept totally or partially, and viewed once 
tracing becomes inactive or in real-time. 

 
3 CONCLUSION 
Kernel tracing is an important process to derive suitable 
recurring, run-time execution patterns and different inter-
process communication patterns for a system. There are 
various methods of kernel tracing using utilities like ’ktrace’, 



International Journal of Research in Advent Technology (E-ISSN: 2321-9637) Special Issue 
National Conference “NCPCI-2016”, 19 March 2016 

Available online at www.ijrat.org 
 

229 

 

’strace’, ’ftrace’ discussed in the paper. Moreover, there are 
tools developed to inspect the Linux kernel, because the 
manual inspection of the logs/traces is pretty time consuming. 
The Linux Trace Toolkit(LTT), is an efficient, open source 
tracing framework for Linux, that allows extensive and 
transparent reporting of processes, events, descriptors and 
operating system activities. The gathered data can be viewed 
using two tools - Babeltrace and Trace Compass. This data can 
be analysed by the system programmer in order to optimize 
the scheduler by improving its performance and reducing the 
workload on the system. 
 
REFERENCES 
[1] G. Anderson, T. Marwala, and F. V. Nelwamondo, 

“Use of data mining in scheduler optimization,” 
[2] C. LaRosa, L. Xiong, and K. Mandelberg, “Frequent 

pattern mining for kernel trace data,” 
[3] J. Han, H. Cheng, D. Xin, and X. Yan, 

“Frequent pattern mining: Current status and future 
directions,” 

[4] Xiaonan, “Application of data mining in scheduling of 
single machine system,” 

[5] G. N. Matni and M. R. Dagena, “Operating system level 
trace analysis for automated problem identification,” 

[6] E. Budilovsky, “Kernel based mechanism for high 
performance i/o,tel aviv university, apr 2013,” 

[7] A. C. C. Aggarwal, M. A. Bhuiyan, and M. AlHasan, 
“Frequent pattern mining algorithms: A survey frequent 
pattern mining, 2014. isbn: 978-3-319-07820-5,” 

[8] S. Nasreen, M. A. Azamb, K. Shehzada, U. Naeemc, 
and M. A. Ghazanfara, “Frequent pattern mining 
algorithms for finding associated frequent patterns for 
data streams: A survey the 5th international conference 
on emerging ubiquitous systems and pervasive 
networks (euspn- 
2014),” 

[9] P. Shendge and T. Gupta, “Comparitive study of apriori 
and fp growth algorithms, indian journal of reasearch. 
volume : 2, issue : 3, march 2013,” 

[10] P. Kulkarni, Knowledge Innovation Strategy. Pune: 
Bloomsbury Publication, 2015. 

[11] “Lttng is an open source tracing framework for linux..” 
https://lttng.org/. 

[12] “Lttng.” https://en.wikipedia.org/wiki/ LTTng. 
[13] “System monitoring tools.” 

http://www.cyberciti.biz/tips/ top-linux-monitoring-
tools.html. 

[14] “Top.” http://man7.org/linux/ man-
pages/man1/top.1.html. 

[15] “Linux / unix command: top.” 
http://linux.about.com/od/commands/ l/blcmdl1top.htm. 

[16] “ftrace - function tracer.” https: 
//www.kernel.org/doc/Documentation/ trace/ftrace.txt. 

[17] “Ftrace.” http://elinux.org/Ftrace. 


