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Abstract- Suspension bridges are long and flexible strustumest vulnerable to dynamic loading. In this
regard, continuum models are found to be more gate because of its ability to model dynamic peois
with sufficient generality. This study compares tegponses of linear and non-linear vibrations amtinouum
suspension bridge models. A continuum model withiced vibration alone is then taken up for thedstand
the equation of motion is formulated. The governdiffjerential equations were rendered dimensiontess
identify the key parameters that control the dymamisponse. The resulting eigenvalue problem wbh®do
using MATLAB to obtain the modal characteristicstloé structure. A parametric study was carriedtowwtudy
the effect of the identified key parameters onrtitalal characteristics of the structure. Finite @letmodelling
and analysis on an example problem is performddIDAS/Civil to find out the effect of hanger spagion
the modal characteristics. The natural frequenaidsgngers were determined to study if they padita in the
vibration or not.

The study revealed that the effect of hanger lfiéigy has very less significant role in the corifirg
the dynamic response of suspension bridges unlgherhmodes are considered with a relatively sfiftier.
The effect of hanger spacing was found to haverg Mss role in controlling the vibrational charxistics.
Hangers are found to have much higher natural &eqy than the fundamental modes of vibration of the
structure and hence the assumption of massles&itwmisghence validated.

Index Terms- Suspension Bridges; Continuum Models; VibratiognBmic Response; Parametric Study

1. INTRODUCTION wind, due to which iexperienced a combined vertical
and torsional motion. Negative damping caused these

Suspension bridges belong to the family of cableelf-exited oscillations (Bleich,1950). The bridigad

supported bridges and are distinguished by theimly been accounted for static pressure due to,wind

ability to span very long distances. In Suspensiothe aerodynamic effects has been disregarded.

bridges, bridge deck is supported onto main cabléynamic analysis become essential for the design of

running between pylons by means of vertical onew bridges as well as for the structural health

inclined hangers. These are the slenderest amdng mbnitoring of existing bridges. It is also essdnitie

bridges and dominating type of bridge used for londesigning vibration control systems for suspension

span. They have been used from very old time aratidges. The present study will be dedicated to

can be traced back to the time when creeper or rofentify the effect of key parameters to the modal

suspended walkways were used by primitive man. Atharacteristics such as natural frequency and mode

Iron chain bridge across Pan-Po River in China ishapes of Suspension bridges as they are going to

A.D. 65 is the oldest known metal bridge. A similargovern the behavior under forced vibration.

record is found in Assam in India. Stiffened

suspension bridges with wrought iron chains are

originated in Europe in the T6century and were 2. METHODOLOGY

developed in the 1Bcentury.Today they represent

more than 20 of all the longest bridges in the @orl2.1. Model considered and Assumptions for Linear

(Harazaki, 2000). Akashi-Kaykio in Japan (completed/ibrations

in 1998) is the current longest suspension bridile w

a central span of 1990.8 m. It is a three spafA model with three span (with each span simply

suspension bridge having a total span of 3911.1 m. supported at ends) suspension bridge with loaded
As the suspension bridges are very long andackstays is used for the analysis (Luco, 2010) as

flexile structures, the vibration analysis becoreeyv given in figure. 1. It consists of a main cableviedn

significant in predicting the behavior of bridgeden two pylons of equal height, a stiffening girder,

the various dynamic loads such as vehicle live Jloadiniformly spaced suspenders and two anchorages.

wind load and earthquake load. Among them, th&his model is chosen so that it can be easily elden

response of such bridges to aerodynamic load wés single suspended span with unloaded backstays.

subjected to a huge amount of research after the

infamous collapse of Tacoma Narrows Bridge in 1940

due to a wind of just 65 kmph. The bridge failuse i

attributed to the interaction between structure and
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adding the mass per unit length of deck slab abteca
2.1.1.Assumptions directly, which otherwise would have become a
function of distance from suppornd made the
To simplify the complexity of the problem and for agoverning differential equations non-linear. This
rational mathematical model, several assumptioas aassumption is valid for small sag to span ratiokes$
made as follows: than 1/8. The third assumption of constant horizbnt
tension throughout the span in cable is justifiable
since no external load considered on cable having a
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Horizontal component. The fifth assumption of

()  The main cables are assumed to be unifornmassless hangers is considered by assuming that the
elastic and perfectly flexible and arefrequency of vibration of hangers is much above the
anchored at both ends. lower frequencies of vibration of the structuretsat

(i) The static sag is small so that the mass dheir mass will not play any role. The sixth
cable per unit span can be taken as assumption is justified by the fact that the calblh
constant. hangers will be laid first and the deck will be gum

(i)  The horizontal component of cable tension i¢0 the suspenders as precast segments as a usual
assumed to be constant throughout the spanconstruction practice. Though the real cable peasl

(iv) The stiffening girder is modelled as flexuralbetween a catenary and a parabola, it is accept@able
member with uniform flexural rigidity. Shear assume the parabolic profile as it leads to greater
deformations, axial deformations and rotarynathematical simplicity. The second last assumption
inertia and any camber of the girder ards supported by the fact that the external loadshei
neglected. carried both by cable and girder and hence willioed

(v) The hangers are assumed to be massless) additional tension in cable which can only be a
elastic, vertical and continuously andsmall fraction of that caused by initial dead lo&bis
uniformly distributed without carrying any will reduce the governing differential equations of
shear. motion to linear differential equations. The last

(vi) The initial dead loads are carried entirely byassumption is due to the fact that large-scale
the cable without causing any stress in thescillations of the structure may arise from the
girder. Under such a condition the cableslackening of the hangers and will give rise to
adopts a parabolic profile under initial deadnonlinear behavior of the bridge. Hence it is assdim
load. that the amplitude of vibration is well within the

(vi) The displacements from the static@mplitude initiating slackening.
configuration is less and the additional
horizontal component of cable tensibft) is ] .
much smaller compared to static horizontaf-2- Equation of Motion
component of cable tensith
(vii) The initial static tension in suspenders isThe equation of motion of the girder for each shan
sufficiently high to prevent slackening due to(i=1, 2, 3) will be of the form,
small vertical vibrations. v, H %W +37) bazz_ _ cp e p
' . o t2 6xi2 '6>§2_ Mok ©
The first assumption eliminates the flexural
rigidity of cable and allows the cable to carrydsa (0< x< }) Eqg. (1.a)
only by tension. The second assumption will enable
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o2 [Kaf [K2} [K
[Ksd [Ksd [Kgh Eq. (6
(0< %< k) Eq. (1.0) Where, % ©
Where,
m. and my are the m ass of the cable and girder pe[Kii]=HE‘FC§ %E‘CH (i=1,2,3) Ea. (7)
unit length. e Lo
w;. andwy are the vertical displacements of cable and
girder from initial static configuration. [Kysl =[K )" :{[ku] [0]} Eq. (7.a)
H is the dead load horizontal component of cable ! (01 [9]
tension.
h(t) is the horizontal component of incremental cable 1 _[Tkeg [0] Eq. (7.b)
tension. (Kag =[Kai " = 0] [0]
Z (%) is the dead load parabolic profile of the each
segment of cable. [kod [O]
Eglq is the uniform flexural stiffness of the stiffegin [Kazl =[Ksd " :{ [(2)] [0]}
girder. Eq. (7.c)
fis(x,t) is the distributed force in the suspenders. In which,
FiExt) & fE(x.t) are the distributed external force
acting on the cable & deck.
Kiccl = ki% kiHn A% kﬂ
The displacements and external forces ar[e )= ki) L i =47 b Eq. (8)
considered positive downwards. Tensile force is
considered positive. [Kier] =l Kirel = £4 Kfird Eq. (9)
The boundary conditions of at the ends of each span
are, ,, [Kir] = 2% ko] + x5l Eq. (10)
WC(Ort):Wd (O,t): W:j (O,t): 0 Eq (Za) J
We(h,D) = wg (1D =wg (D=0 Eq. (2.b) And,
The equations of motion can now be expressed in the ) h
matrix form as, [zl = A%aa knnd Eqg. (11.a)
. . _ _ Y h
[IMKMC O & (VF B RO H{ )t Eq. (3) [kl =A%a@fka] Eqg. (11.b)
The above vetor has a dimension of (6Nx1). Fofky) =A%aa ik Eq. (11.)
undamped free vibration, the forcing function and
damping matrix will become zero and the natural
frquencies in terms of normalised natural frequesicci
can be obtained by §o|ylng the eigen valu92'3. Dimensionless Terms
problem.The mass matrix in Eqn. (22) is masSs
normalised matrix [M] of size (6Nx6N) and is given
by, 2.3.1.Relative mass distributiorm,,
(M [0 [O] Eq.(4) This parameter reflects the relative mass distidout
[M]=| [0] [MJ] [0] of cable and girder. Relative mass distributionueal
[0] [0] [M4 will approach 1, if the girder is much heavier thha
cable. It will have a value of 0.5 if the cable and
Where, girder have same self-weight per unit length.
I Comgll
Mi]=a [] : md[] Eq. (5)
L S 2.3.2.Dimensionless Cable Stiffness,
mlll = my
In which [I] is a unit matix of size (NxN). The second one is the Irvine-Caughey non-

dimensional cable parameter (Irvine and Caughey,

The (6Nx6N) normalised stiffness matrix [K] is give 1974) which is dependent on the cable stiffnesis It
by dependent on the total length of the cable andéhenc

the only one parameter which differentiates betwaeen
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single span suspension bridge with unloadeth which, [k]o = ordinary stiffness matrix in whidto
backstays and cable fixed at support. = the unloaded length of the member, L = the
deformed length of the member, [k]g = geometric
stiffness matrix, Q = Axial force, positive if tales |,

2.3.3Dimensionless Girder Stiffnegs m . n = direction cosines

The third parameter,” reflects the relative bending
stiffness of the girder. It was introduced by Stegm.
This parameter will have higher value if the fleadur
rigidity of the stiffening girder is more but wilbe
lesser for longer spans.

3. FINITE ELEMENT MODEL

MIDAS/Civil 2015 is used in the present study to
model the suspension bridge. This widely used
commercial Finite element package is superior in

The dimensionless hanger stiffnesg, relates the mModelling and analysis of suspension bridges

stiffness of suspenders to the total weight of theompared to its competent softwares like SAP2000,
bridge. Sofistik, Lusas etc. The software offers unique

modelling and analysis features. This softwaresisdu
for the present study is due to the ease of maglelin
with suspension bridge wizard function and itdigbi

The parametehs/f affects the stiffness distribution in to perfo_rm .Elgen yalue analysis pqr_13|der|ng the
hangershs is the length of the longest hanger. AISOgeometrlc_stn‘fness induced due to initial deaddloa
the cable sagf is dependent on the horizontalCable tension.

component of dead load tension in cable.

2.3.4 Dimensionless Hanger Stiffneg3,

2.3.5.Sag Ratiphyf

Table 1. Element Material Properties
2.3.6 Side span Ratia;

Element | Material Young's| Density
The ratio of side span to the main sparwill come MOdUIZUS (kN/m?’)
into play for three span suspension bridge aloseg a i (kN/m’)
suspension bridge with unloaded backstay has its Cable High 2x10 82.67
equation of motion of the center span uncouplethfro Strength
the side span Steel Wire
Hanger | High 1.4x10 | 78,5
Strength
, , Steel Wire
2.4. Non-linear Analysis Deck Structural | 2.1x10 78.5
The. concept _of tangent stiffness matrix, useq. in Pylon SStterﬁ::tural 2 1x10 785
conjunction with the standard modal superposition Steel

method, provides a systematic approach to the
nonlinear dynamic analysis of suspension bridges.

Tangent stiffness matrix of a bar at any loaded Table 2. Element Sectional Properties

configuration is given by Element | Area, A | Moment of
(m?) Inertia, 1,
[K]t= [K]o + [K]g Eq. (12) (m*)
~ . Cable 0.283 0
[Klg= Q/L Hanger 5.7x10m [ 0
‘—”2 | | b2 | Deck 0.5395 3.2667
oAmoAnHEdmein Pylon 0.169 0.1143
) i’ Pylon
Am--m®-mn - Im I mn Transverse 0.105 0.0913
Beam
- -mn - In mn
" perfectly flexible
2 Im In 2 -Im  -In
m m1 mn -m |-n? -mn
n mn -l -n  -mn |-n? Eq. (13)
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4. RESULTS

Natural frequencies for different modes in linear

Table 5. Natural frequencies for non-linear motion

vibration and non-linear vibration are obtained by
solving equations using MATLAB and tabulated
below. Based on these results, a parametric stady i

conducted.

Table 3. Natural frequencies for linear motion

(Symmetric Modes)

Mode Symmetric modes
Lo [
(@) ¥ =1x10°
1 2.169 2.162| 2.161 2.149
2 3.135 3.119| 3.117 3.093
3 4.504 4.461| 4.456 4.391
4 5.645 5.583| 5.573 5.478
5 7.072 7.013| 7.010 6.928
6 8.534 8.410| 8.391 8.204
7 12.070| 11.898 11.873 11.588
8 12.273| 12.154 12.14f 11.991
(@) f =10 x 10°
1 2.512 2.508| 2.507 2.500
2 4,131 4.128| 4.127 4,122
3 5.163 5.139| 5.135 5.100
4 9.332 | 9.331| 9.330 9.328
5 13.034| 13.032 13.032 13.029P
6 16.915| 16.898 16.894 16.863
7 26.986| 26.733 26.670 26.051
8 27.509| 27.164 27.126 26.361
Table 4. Natural frequencies for linear motion
(Antisymmetric Modes)
Mode Antisymmetric Modes
L [ m v
(@) £ =1 x 10°
1 2.039 2.034 2.033 2.024
2 3.164 3.155 3.154 3.140
3 4.303 4.268 4.262 4.207
4 6.982 6.889 6.875 6.73%
5 7.072 7.014 7.010 6.929
6 10.213| 10.054 10.03pb 9.80p
7 12.245| 12.130 12.128 11.971
8 14.089| 13.844 13.87y 13.529
(b) ¥ =10 x 10°
1 2.362 2.361 2.360 2.358
2 4,184 4.180 4.180 4,174
3 6.424 6.421 6.421 6.416
4 12.803| 12.802 12.801L 12.799
5 13.034| 13.032 13.032 13.029
6 21.637| 2155 21.536 21.372
7 27.498| 27.148 27.110 26.327
8 32.950| 32.270 32.10b 29.853

Mode | Symmetricc Asymmetrig
1 0.77 0.60
2 0.92 1.14
3 1.60 1.28
4 1.80 2.11
5 2.61 2.62
6 2.62 3.15
7 3.75 4.41
8 4.66 4.65

4.1. Parametric Study

The parametric variation did not show any particula
trend for each natural frequency and hence carsot b
used directly to predict the natural frequency byng
curve fitting technique.

4.1.1.Effect ofy® on Natural Frequencies

The decrease in the hanger flexibility has less
pronounced variation in the lower modes of vibnatio
for both three span suspension bridge and suspensio
bridge with unloaded backstays.

4.1.2 Effect ofx® on Natural Frequencies

The increase in the relative girder stiffness inses

the natural frequency. But this increment is mare i
case of unloaded backstay when compared to three
span suspension bridge at higher modes of vibration
and become more pronounced for higher values.of

4.1.3 Effect of Bf on Natural Frequencies

The variation of natural frequency to the parameter
hJ/f is obtained by comparing Case Il and Case Il in
Table 3 and Table 4. In fact it is possible to canin
on the effect of pre-stressing and tower heighe- Pr
stressing will decrease the sag and hence incthase
value ofhg/f . hgis in fact the length of the hanger at
tower location. Hence the increase in the valubs ff
indicates an increase in tower height. Thus an
increased value hg /f indicates an additional pre-
stressing or increased tower height.

4.1.4 Effect ofa; 30n Natural Frequencies

The general trend of increasimgvalue is to decrease
the natural frequency and is considerable at higher
mode shapes. As the girder stiffness parameteevalu
increases, the natural frequency was also found to
increase and is highly pronounceduatof the order
1x10™ at higher modes. The effect 5f is to increase

30



International Journal of Research in Advent Tecbggl(E-ISSN: 2321-9637) Special Issue
International Conference on Technological Advanaaiien Structures and Construction
“TASC- 15", 10-11 June 2015

the natural frequency, at its higher values, fo
symmetric mode shapes. First Normalized frequency

4.1.5 Effect ofm, on Natural Frequencies ?

w/m

Relative mass distribution paramet#,; has a very
less effect in controlling the dynamic behavioiboth
the suspension bridge models for lower modes eve o
when non-dimensional girder stiffness values ishig

0.2 0.25 0.3 0.35 0.4 0.45

——— CASE 1 —— CASE 2 CASE 3 CASE 4
First Normalized Frequency
£ > L 10th Normalized Frequency
30 ) G—
0.0001 0.001 0.01 0.1 ~ lg — e
n2 3 0
02 025 03 035 04 045
——CASE 1 CASE 2 —— CASE 3 —— CASE 4 a
——— CASE 1 —— CASE 2 CASE 3 CASE 4
Second Normalized
Frequency Fig. 3. Natural frequency v/s Side span ratio
20
E o . .
> 0.0001 0.001 0.01 0.1 First Normalized frequency
2 ::‘ 1
—— CASE 1—— CASED CASE 3 CASE 4 3
05 0.6 0.7 038 09
m_d
12th Normalized Frequency
——— CASE 1 —— CASE 2 CASE 3 CASE 4
_ 50
3 0
0.0001 0.001 0.01 0.1 .
12th Normalized Frequency
12
2 £ 8
——CASE 1 case 2K casE 3 ——casE 4 >~ 2
3 0
05 0.6 0.7 038 09
Fig. 2. Natural frequency v/s Girder stiffness m_d
——— CASE 1 —— CASE 2 CASE 3 CASE 4

Fig. 4. Natural Frequency v/s relative mass
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