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Abstract- Suspension bridges are long and flexible structures most vulnerable to dynamic loading.  In this 
regard, continuum models are found to be more appropriate because of its ability to model dynamic problems 
with sufficient generality. This study compares the responses of linear and non-linear vibrations on continuum 
suspension bridge models. A continuum model with vertical vibration alone is then taken up for the study and 
the equation of motion is formulated. The governing differential equations were rendered dimensionless to 
identify the key parameters that control the dynamic response. The resulting eigenvalue problem was solved 
using MATLAB to obtain the modal characteristics of the structure. A parametric study was carried out to study 
the effect of the identified key parameters on the modal characteristics of the structure. Finite element modelling 
and analysis on an example problem is performed in MIDAS/Civil to find out the effect of hanger spacing on 
the modal characteristics. The natural frequencies of hangers were determined to study if they participate in the 
vibration or not.  
 The study revealed that the effect of hanger flexibility has very less significant role in the controlling 
the dynamic response of suspension bridges unless higher modes are considered with a relatively stiff girder. 
The effect of hanger spacing was found to have a very less role in controlling the vibrational characteristics.  
Hangers are found to have much higher natural frequency than the fundamental modes of vibration of the 
structure and hence the assumption of massless hangers is hence validated. 
Index Terms- Suspension Bridges; Continuum Models; Vibration; Dynamic Response; Parametric Study 
 
 
1. INTRODUCTION 

  
Suspension bridges belong to the family of cable 
supported bridges and are distinguished by their 
ability to span very long distances. In Suspension 
bridges, bridge deck is supported onto main cables 
running between pylons by means of vertical or 
inclined hangers. These are the slenderest among all 
bridges and dominating type of bridge used for long 
span. They have been used from very old time and 
can be traced back to the time when creeper or rope 
suspended walkways were used by primitive man. An 
Iron chain bridge across Pan-Po River in China in 
A.D. 65 is the oldest known metal bridge. A similar 
record is found in Assam in India.  Stiffened 
suspension bridges with wrought iron chains are 
originated in Europe in the 16th century and were 
developed in the 18th century.Today they represent 
more than 20 of all the longest bridges in the world 
(Harazaki, 2000). Akashi-Kaykio in Japan (completed 
in 1998) is the current longest suspension bridge with 
a central span of 1990.8 m. It is a three span 
suspension bridge having a total span of 3911.1 m. 

 As the suspension bridges are very long and 
flexile structures, the vibration analysis become very 
significant in predicting the behavior of bridge under 
the various dynamic loads such as vehicle live load, 
wind load and earthquake load. Among them, the 
response of such bridges to aerodynamic load was 
subjected to a huge amount of research after the 
infamous collapse of Tacoma Narrows Bridge in 1940 
due to a wind of just 65 kmph. The bridge failure is 
attributed to the interaction between structure and 

wind, due to which it experienced a combined vertical 
and torsional motion. Negative damping caused these 
self-exited oscillations (Bleich,1950). The bridge had 
only been accounted for static pressure due to wind, 
the aerodynamic effects has been disregarded. 
Dynamic analysis become essential for the design of 
new bridges as well as for the structural health 
monitoring of existing bridges. It is also essential in 
designing vibration control systems for suspension 
bridges. The present study will be dedicated to 
identify the effect of key parameters to the modal 
characteristics such as natural frequency and mode 
shapes of Suspension bridges as they are going to 
govern the behavior under forced vibration. 

 
 

2. METHODOLOGY 
 

2.1. Model considered and Assumptions for Linear 
Vibrations 
 
A model with three span (with each span simply 
supported at ends) suspension bridge with loaded 
backstays is used for the analysis (Luco, 2010) as 
given in figure. 1. It consists of a main cable between 
two pylons of equal height, a stiffening girder, 
uniformly spaced suspenders and two anchorages. 
This model is chosen so that it can be easily extended 
to single suspended span with unloaded backstays. 
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2.1.1. Assumptions 
 
To simplify the complexity of the problem and for a 
rational mathematical model, several assumptions are 
made as follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(i) The main cables are assumed to be uniform, 
elastic and perfectly flexible and are 
anchored at both ends. 

(ii)  The static sag is small so that the mass of 
cable per unit span can be taken as a 
constant. 

(iii)  The horizontal component of cable tension is 
assumed to be constant throughout the span. 

(iv) The stiffening girder is modelled as flexural 
member with uniform flexural rigidity. Shear 
deformations, axial deformations and rotary 
inertia and any camber of the girder are 
neglected. 

(v) The hangers are assumed to be massless, 
elastic, vertical and continuously and 
uniformly distributed without carrying any 
shear. 

(vi) The initial dead loads are carried entirely by 
the cable without causing any stress in the 
girder. Under such a condition the cable 
adopts a parabolic profile under initial dead 
load.    

(vii)  The displacements from the static 
configuration is less and the additional 
horizontal component of cable tension h(t) is 
much smaller compared to static horizontal 
component of cable tension H. 

(viii)  The initial static tension in suspenders is 
sufficiently high to prevent slackening due to 
small vertical vibrations. 

 
The first assumption eliminates the flexural 

rigidity of cable and allows the cable to carry loads 
only by tension. The second assumption will enable 

adding the mass per unit length of deck slab and cable 
directly, which otherwise would have become a 
function of distance from support and made the 
governing differential equations non-linear. This 
assumption is valid for small sag to span ratios of less 
than 1/8. The third assumption of constant horizontal 
tension throughout the span in cable is justifiable 
since no external load considered on cable having a  

 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 

Horizontal component. The fifth assumption of 
massless hangers is considered by assuming that the 
frequency of vibration of hangers is much above the 
lower frequencies of vibration of the structure so that 
their mass will not play any role. The sixth 
assumption is justified by the fact that the cables with 
hangers will be laid first and the deck will be hung on 
to the suspenders as precast segments as a usual 
construction practice. Though the real cable profile is 
between a catenary and a parabola, it is acceptable to 
assume the parabolic profile as it leads to greater 
mathematical simplicity. The second last assumption 
is supported by the fact that the external loads will be 
carried both by cable and girder and hence will induce 
an additional tension in cable which can only be a 
small fraction of that caused by initial dead load. This 
will reduce the governing differential equations of 
motion to linear differential equations. The last 
assumption is due to the fact that large-scale 
oscillations of the structure may arise from the 
slackening of the hangers and will give rise to 
nonlinear behavior of the bridge. Hence it is assumed 
that the amplitude of vibration is well within the 
amplitude initiating slackening.  
 
 
2.2. Equation of Motion 
 
The equation of motion of the girder for each span l i 
(i=1, 2, 3) will be of the form, 

2 2 2

2 2 2

( )
     ,  ( 0   )           (1.a)cic ic i i

c c is ie i i
i i

w w z z
m H h m g f f x l

t x x

∂ ∂ + ∂− − = + + < <
∂ ∂ ∂

     ,  ( 0   )           (1.a)c c is ie i im H h m g f f x l− − = + + < <                                            Eq. (1.a) 

Fig. 1. Suspension bridge with loaded backstays 
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2 4

2 4
        ,  ( 0   )                 (1.b)did id

d d d d is ie i i
i

w w
m E I m g f f x l

t x

∂ ∂+ = − + < <
∂ ∂

 

                ,  ( 0   )                 (1.b)d d d d is ie i im E I m g f f x l+ = − + < <                                          Eq. (1.b) 

Where,  
mc and md are the m ass of the cable and girder per 
unit length. 
wic and wid are the vertical displacements of cable and 
girder from initial static configuration. 
H is the dead load horizontal component of cable 
tension. 
h(t) is the horizontal component of incremental cable 
tension. 
zi (xi) is the dead load parabolic profile of the each 
segment of cable. 
EdId is the uniform flexural stiffness of the stiffening 
girder. 
fis(x,t) is the distributed force in the suspenders. 

(x,t) & (x,t) are the distributed external force 

acting on the cable & deck. 
 
The displacements and external forces are 

considered positive downwards. Tensile force is 
considered positive.  
The boundary conditions of at the ends of each span 
are,

           ''(0, ) (0, ) (0, ) 0                           ic id idw t w t w t= = =                          
Eq. (2.a)                        

''( , ) ( , ) ( , ) 0                              ic i id i id iw l t w l t w l t= = =                       Eq. (2.b) 

The equations of motion can now be expressed in the 
matrix form as, 
 
   [ ]{ ( )} +[ ]{ ( )} [ ]{ ( )} { ( )}                              (22)M Y t C Y t K Y t F t+ =&& & Eq. (3) 

 
The above vetor has a dimension of (6Nx1). For 
undamped free vibration, the forcing function and 
damping matrix will become zero and the natural 
frquencies in terms of normalised natural frequencies 
can be obtained by solving the eigen value 
problem.The mass matrix in Eqn. (22) is mass 
normalised matrix [M] of size (6Nx6N) and is given 
by,   
 

1

2

3

[ ] [0] [0]

[ ] [0] [ ] [0]                                            (23)

[0] [0] [ ]

M

M M

M

 
 =  
  

   Eq. (4)

      

Where, 
[ ] [ ]

[ ]                                          (24)

[ ] [ ]

d

i i

d d

I m I

M

m I m I

α
 
 =  
  

M

LLL M LLL

M

Eq. (5) 

In which [I] is a unit matix of size (NxN). 
 
The (6Nx6N) normalised stiffness matrix [K] is given 
by  

 

11 12 13

21 22 23

31 32 33

[ ] [ ] [ ]

[ ] [ ] [ ] [ ]                                            (25)

[ ] [ ] [ ]

K K K

K K K K

K K K

 
 =  
  

   

Eq. (6)

 

Where, 
 

[ ] [ ]
[ ]    ( 1,2,3)                                      (26)

[ ] [ ]
icc icr

ii
irc irr

K K
K i

K K

 
= = 
 

        Eq. (7) 

 

12
12 21

[ ] [0]
[ ] [ ]                                         (27.a)

[0] [0]
T k

K K
 

= =  
 

  Eq. (7.a) 

 

13
13 31

[ ] [0]
[ ] [ ]                                         (27.b)

[0] [0]
T k

K K
 

= =  
 

   Eq. (7.b) 

 

23
32 32

[ ] [0]
[ ] [ ]                                     

[0] [0]
T k

K K
 

= =  
       Eq. (7.c)

 

In which, 
 

                      

2 2 2[ ] [ ] [ ] [ ]                                d H h
icc inm inm i nmK k k kµ λ α= + +

     Eq. (8)
 

 

2[ ] [ ] [ ]                                            (28.b)d
icr irc inmK K kµ= =

       Eq. (9)
 
 

2 2[ ] [ ] [ ]                                          (28.c)d s
irr inm inmK k kµ χ= +

     Eq. (10)
 
 

And, 
 

2
12 1 2[ ] [ ]                                                (29.a)h

nmk kλ α α=        
Eq. (11.a)

 

 
2

13 1 3[ ] [ ]                                                (29.b)h
nmk kλ α α=       

Eq. (11.b)
 

 
2

23 2 3[ ] [ ]                                                (29.c)h
nmk kλ α α=         

Eq. (11.c)
 

 

 

 

2.3. Dimensionless Terms 

 
2.3.1. Relative mass distribution,  

 
This parameter reflects the relative mass distribution 
of cable and girder. Relative mass distribution value 
will approach 1, if the girder is much heavier than the 
cable. It will have a value of 0.5 if the cable and 
girder have same self-weight per unit length. 
 
 
2.3.2. Dimensionless Cable Stiffness, λ2  

 
The second one is the Irvine-Caughey non-
dimensional cable parameter (Irvine and Caughey, 
1974) which is dependent on the cable stiffness. It is 
dependent on the total length of the cable and hence is 
the only one parameter which differentiates between a 
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Eq. (13) 

single span suspension bridge with unloaded 
backstays and cable fixed at support. 
 

2.3.3 Dimensionless Girder Stiffness, µ2    
 
The third parameter, µ2 reflects the relative bending 
stiffness of the girder. It was introduced by Steinman. 
This parameter will have higher value if the flexural 
rigidity of the stiffening girder is more but will be 
lesser for longer spans.  

2.3.4. Dimensionless Hanger Stiffness, χ
 2 

 
The dimensionless hanger stiffness, χ

2 relates the 
stiffness of suspenders to the total weight of the 
bridge. 
 
2.3.5. Sag Ratio, hs/f 
 
The parameter, hs /f affects the stiffness distribution in 
hangers. hs is the length of the longest hanger. Also 
the cable sag f is dependent on the horizontal 
component of dead load tension in cable.  

2.3.6. Side span Ratio, α 
 
The ratio of side span to the main span, α will come 
into play for three span suspension bridge alone, as a 
suspension bridge with unloaded backstay has its 
equation of motion of the center span uncoupled from 
the side span. 
 
 
2.4. Non-linear Analysis 

The concept of tangent stiffness matrix, used in 
conjunction with the standard modal superposition 
method, provides a systematic approach to the 
nonlinear dynamic analysis of suspension bridges. 
Tangent stiffness matrix of a bar at any loaded 
configuration is given by     

[k]t= [k]o + [k]g                                               Eq. (12) 

[k]g =  Q/L * 

l-l 2 -lm -ln l-l2 lm ln 

-lm l-m2 -mn lm m2-l  mn 

-ln -mn l-n2 ln mn n2-l 

l-l 2 lm ln l-l2 -lm -ln 

lm m2-l mn -lm l-m2 -mn 

ln mn n2-l -ln -mn l-n2 

in which, [k]o = ordinary stiffness matrix in which Lo 
= the unloaded length of the member, L = the 
deformed   length of the member, [k]g = geometric 
stiffness matrix, Q = Axial force, positive if tensile, l, 
m , n = direction cosines.  

 

3. FINITE ELEMENT MODEL  

MIDAS/Civil 2015 is used in the present study to 
model the suspension bridge. This widely used 
commercial Finite element package is superior in 
modelling and analysis of suspension bridges 
compared to its competent softwares like SAP2000, 
Sofistik, Lusas etc. The software offers unique 
modelling and analysis features. This software is used 
for the present study is due to the ease of modeling 
with suspension bridge wizard function and  its ability 
to perform Eigen value analysis considering the 
geometric stiffness induced due to initial dead load 
cable tension.  

Table 1. Element Material Properties 

Element Material Young’s 
Modulus 
(kN/m2) 

Density 
(kN/m3) 

Cable High 
Strength 
Steel Wire 

2x108 82.67 

Hanger High 
Strength 
Steel Wire 

1.4x108 78.5 

Deck Structural 
Steel 

2.1x108 78.5 

Pylon Structural 
Steel 

2.1x108 78.5 

Table 2. Element Sectional Properties 

Element Area, A 
(m2) 

Moment of 
Inertia, Izz 
(m4) 

Cable 0.283 0* 
Hanger 5.7x10-4/m 0* 
Deck 0.5395 3.2667 
Pylon 0.169 0.1143 
Pylon 
Transverse 
Beam 

0.105 0.0913 

* perfectly flexible 
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4. RESULTS 

Natural frequencies for different modes in linear 
vibration and non-linear vibration are obtained by 
solving equations using MATLAB and tabulated 
below. Based on these results, a parametric study is 
conducted. 
 

Table 3. Natural frequencies for linear motion 
(Symmetric Modes) 

Mode Symmetric modes 
I II III IV 

(a) µ2 = 1 x 10 -3 

1 2.169 2.162 2.161 2.149 
2 3.135 3.119 3.117 3.093 
3 4.504 4.461 4.456 4.391 
4 5.645 5.583 5.573 5.478 
5 7.072 7.013 7.010 6.928 
6 8.534 8.410 8.391 8.204 
7 12.070 11.898 11.873 11.588 
8 12.273 12.154 12.147 11.991 
 (a) µ2 = 10 x 10 -3 
1 2.512 2.508 2.507 2.500 
2 4.131 4.128 4.127 4.122 
3 5.163 5.139 5.135 5.100 
4 9.332 9.331 9.330 9.328 
5 13.034 13.032 13.032 13.029 
6 16.915 16.898 16.894 16.863 
7 26.986 26.733 26.670 26.051 
8 27.509 27.164 27.126 26.361 

 
Table 4. Natural frequencies for linear motion 

(Antisymmetric Modes) 
 

Mode Antisymmetric Modes 
I II III IV 

(a) µ2 = 1 x 10 -3 
1 2.039 2.034 2.033 2.024 
2 3.164 3.155 3.154 3.140 
3 4.303 4.268 4.262 4.207 
4 6.982 6.889 6.875 6.735 
5 7.072 7.014 7.010 6.929 
6 10.213 10.054 10.035 9.806 
7 12.245 12.130 12.123 11.971 
8 14.089 13.844 13.877 13.529 
 (b) µ2 = 10 x 10 -3 
1 2.362 2.361 2.360 2.358 
2 4.184 4.180 4.180 4.174 
3 6.424 6.421 6.421 6.416 
4 12.803 12.802 12.801 12.799 
5 13.034 13.032 13.032 13.029 
6 21.637 21.556 21.536 21.372 
7 27.498 27.148 27.110 26.327 
8 32.950 32.270 32.105 29.853 

Table 5. Natural frequencies for non-linear motion 

Mode Symmetric Asymmetric 
1 0.77 0.60 
2 0.92 1.14 
3 1.60 1.28 
4 1.80 2.11 
5 2.61 2.62 
6 2.62 3.15 
7 3.75 4.41 
8 4.66 4.65 

 
 
4.1. Parametric Study 
 
The parametric variation did not show any particular 
trend for each natural frequency and hence cannot be 
used directly to predict the natural frequency by using 
curve fitting technique. 

 
4.1.1. Effect of χ2 on Natural Frequencies 

The decrease in the hanger flexibility has less 
pronounced variation in the lower modes of vibration 
for both three span suspension bridge and suspension 
bridge with unloaded backstays.  

 4.1.2. Effect of µ2 on Natural Frequencies 

The increase in the relative girder stiffness increases 
the natural frequency. But this increment is more in 
case of unloaded backstay when compared to three 
span suspension bridge at higher modes of vibration 
and become more pronounced for higher values of µ

2.  

 
4.1.3. Effect of hs/f on Natural Frequencies 

The variation of natural frequency to the parameter 
hs/f  is obtained by comparing Case II and Case III in 
Table 3 and Table 4. In fact it is possible to comment 
on the effect of pre-stressing and tower height. Pre-
stressing will decrease the sag and hence increase the 
value of hs /f . hs is in fact the length of the hanger at 
tower location. Hence the increase in the value of hs /f 
indicates an increase in tower height. Thus an 
increased value  hs /f  indicates an additional pre-
stressing or increased tower height.   

4.1.4. Effect of α1,3 on Natural Frequencies 
 
The general trend of increasing  value is to decrease 
the natural frequency and is considerable at higher 
mode shapes. As the girder stiffness parameter value 
increases, the natural frequency was also found to 
increase and is highly pronounced at µ² of the order 
1x10-1 at higher modes. The effect of λ²  is to increase 
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the natural frequency, at its higher values, for 
symmetric mode shapes. 
 
4.1.5. Effect of  on Natural Frequencies 
 
Relative mass distribution parameter,  has a very 
less effect in controlling the dynamic behavior of both 
the suspension bridge models for lower modes even 
when non-dimensional girder stiffness values is high. 
 

 
 

 
 

 
 

Fig. 2. Natural frequency v/s Girder stiffness 

 

 

 

      Fig. 3. Natural frequency v/s Side span ratio 

 

 

        Fig. 4. Natural Frequency v/s relative mass 
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Table 6. Natural frequency for various hanger spacing 

Mode 
Hanger Spacing (m) 

30 25 20 15 10 5 
1 0.499 0.502 0.502 0.512 0.532 0.503 

2 0.939 0.943 0.943 0.962 1.045 0.895 

3 0.973 0.978 0.978 0.997 1.179 0.902 

4 1.173 1.182 1.188 1.195 1.231 1.176 

5 1.454 1.461 1.464 1.488 1.591 1.313 

6 1.537 1.551 1.566 1.597 1.692 1.462 

7 1.573 1.579 1.592 1.603 1.899 1.576 

8 2.025 2.039 2.059 2.054 2.130 1.712 

9 2.095 2.096 2.101 2.128 2.234 2.038 

10 2.122 2.125 2.128 2.173 2.355 2.088 

11 2.207 2.218 2.247 2.225 2.567 2.130 

12 2.430 2.433 2.445 2.469 2.895 2.134 

 

5. CONCLUSIONS 

A simplified model used for the free vertical vibration 
analysis of Suspension Bridges is reviewed. The 
hanger flexibility has a very less effect on the 
dynamic behaviour of suspension bridges and can be 
disregarded for models requiring less number of 
modes. The increase in tower height and additional 
pre-stressing of main cable is found to increase the 
natural frequency. Some of the natural frequencies 
were found immune to cable stiffness and are 
identified as those corresponding to anti-symmetric 
mode shapes. The natural frequencies found to reduce 
with increase in side span length. The relative mass 
distribution has very less effect in the observed range 
of values adopted. 

For the first vertical or torsional mode of 
symmetric or anti symmetric vibrations, the result of 
the nonlinear calculation shows only a slight deviation 
from that of the linear one in the domain of practical 
vibrational displacement. For higher modes, the 
deviation between linear and nonlinear calculations 
grows significantly. Also, when two modes (one 
torsional and one vertical) exhibit very closely spaced 
frequencies, the coupling is very strong and the 
energy initially imparted to one of these modes can, in 
general, be continuously exchanged between the two 
during the nonlinear motion. This contrasts with the 
linear solution, which predicts that the two modes are 
uncoupled. 

Hanger spacing have a very less effect in the 
vibrational characteristics.  The assumption of 
massless hanger is justified by the finding that their 
natural frequencies lies much above the lower natural 
frequencies of the structure. 
 

ACKNOWLEDGEMENT 

I would like to thank Prof. P Asha Varma for all the 
technical insight and help. I would also like to thank 
Mr. Swaroop V K for his invaluable support and 
guidance for completing the work. 
 

REFERENCES 

 
[1] Ahmed M. Abdel-Ghaffar; Lawrence I. Rubin 

(1983): Nonlinear Free Vibrations of 
Suspension Bridges: Theory. J. Eng. Mech.  
@ ASCE .109:pp,313-329. 

[2] Ahmed M. Abdel-Ghaffar; Lawrence I. Rubin 
(1983): Nonlinear Free Vibrations of 
Suspension Bridges: Application. J. Eng. 
Mech.  @ ASCE .109:pp,330-345. 

[3] Bleich F.; McCullough C. B; Rosecrans R.; 
Vincent G. S. (1950): The mathematical 
theory of vibration in suspension bridges. 
Washington: the US Government Printing 
Office. 

[4] Chatterjee. P. K; Datta T. K; Surana C. S 
(1994): Vibration of Suspension Bridges 
Under Vehicular Movement. J. Struct. Eng. @ 
ASCE 120:pp,681-703. 

[5] Choi D; Gwon S; Yoo H; Na H (2013): Non-
linear Static Analysis of Continuos Multi span 
Suspension Bridges. International Journal of 
Steel structures 13,pp 103-115. 

[6] Dickey. R. W (1968): The Suspension Bridge 
Deflection Equations. Journal of 
Mathematical Analysls And Applications, 24, 
pp202-211. 

[7] Domenic. A. Coletti (2002): Analytical and 
Field Investigation of Roma Suspension 
Bridge. J. Bridge Eng. @ ASCE .7,pp156-
165.  

[8] Gregor.P.Wollmann (2001): Preliminary 
Analysis of Suspension Bridges. J. Bridge 
Eng. @ ASCE.6,pp227-233. 

[9] Jewel Sarker; Dr. Tanvir (2013): Optimum 
Dimensions of Suspension Bridges 
considering Natural period. IOSR journal of 
Mech & Civil Engg :vol 6:pp 67-76. 

[10] Josef malik (2006):  Non-Linear Models of 
Suspension Bridges. J.Math.Anal.Appl. 320 

[11] Jose Turmo; J. Enrique Luco (2010): Effect 
of Hanger Flexibility on Dynamic Response 
of Suspension Bridges. J. Eng. Mech. @ 
ASCE  136:pp1444-1459. 

[12] Kim M. Y;Kwon S. D; Kim N.I (2000): 
Analytical and numerical study on free 
vertical vibration of shear-flexible suspension 
bridges. Journal of Sound and Vibration, 
238(1), pp 65–84. 

[13] Luca Sgambi (2012): Genetic Algorithms for 
the Dependability Assurance in the Design of 
a Long-span Suspension Bridge. Computer-



International Journal of Research in Advent Technology (E-ISSN: 2321-9637) Special Issue 
International Conference on Technological Advancements in Structures and Construction 

“TASC- 15”, 10-11 June 2015 

33 
 

Aided Civil and Infrastructure Engineering 
27, pp 655–675. 

[14] Luco J. E; Turmo J. (2010): Linear vertical 
vibrations of suspension bridges: A review of 
continuum models and some new results. Soil 
Dynamics and Earthquake Engineering, 30, pp 
769–781. 

[15] MATLAB® Primer © COPYRIGHT 1984–
2014 by The MathWorks, Inc. 

[16] Mehmet Çevika; Mehmet Pakdemirlib 
(2005): Non-linear vibrations of suspension 
bridges with external excitation. International 
Journal of Non-Linear Mechanics 40:pp901–
923. 

[17] MIDAS IT, MIDAS/Civil – Analysis 
Reference, (2012) 

[18] Naif B Almutairi,; Hassan M. F; Terro. M 
(2006): Control of Suspensioon Bridge Non-
linear vibrations due to moving loads. J. Eng. 
Mech. @ ASCE 132,pp659-670. 

[19] Serap Altın; Kubilay Kaptan; Semih S. 
Tezcan (2012): Dynamic Analysis of 
Suspension Bridges. Open Journal of Civil 
Engineering, 2,pp 58-67. 

[20] Wei-Xin Ren; George E Blandford (2004): 
Roebling Suspension Bridge I : Finite 
Element model and Free vibration Response. 
J. Bridge Eng.@ ASCE 9,pp110-118. 

[21] Zhang. J; Prader. J; Moon. F; Aktan A. E 
(2013): Experimental Vibration Analysis for 
Structural Identification of a Long-Span 
Suspension Bridge. J. Eng. Mech. @ ASCE 
139,pp748-759. 

 

 

 

 

 

 

 

 


