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Abstract— Meningioma is one of the most frequent tumors an@rows on the surface of the brain. This
pushes the brain leading to stress changes in thealin causing it to shift from its region. On a broaler
scale, two methods of estimation of brain shift areised. One is the non-linear model and the other is
linear model. Linear model is further optimized to produce better results. Better accuracy and its cke
estimation of the shift makes non-linear model a hiter approach.
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1. INTRODUCTION

Tumor growth can cause brain deformation and chatrgss distribution in the brain which leads taifbshift.
Therefore important achievements in engineeringgehaen achieved by mathematical modeling and camput
simulation of brain shift. Soft tissue deformatioodeling has received increasing attention in tieenbdical
imaging community [1].

The surgical simulation research goals are to maddlsimulate deformable tissues for applicati@ugiiring
real-time interaction. Medical applications for netidg and simulation include simulation-based firagn skills
assessment and operation planning [1] Image guidiexivention systems can help surgeons improve the
clinical outcomes of surgery. Modeling and simwatare particularly important in certain areashsas tumor
growth, oedema, hematomas and craniotomy motionkirg and segmentation. However, soft tissue
simulations are often plagued by imprecise geomdtrformation, unknown constitutive laws, boundary
conditions and distributed forces [1].

Several approaches have been developed to addassdeformation. Recently, biomechanical modelgeha
been developed that estimate displacements. Theselsnare based on physical brain deformation hod t
require measurements after deformation. Tissuerahefiton simulation usually starts with segmentatibrthe
target geometry from a medical image, which is thesed to reconstruct a representation of the target
geometry’s boundary surface. Some models can niwd@ responses to strain and stress. Some suchlsnod
are linear and assume that the stress and stridtiorship is linear, while others assume a noedmn
relationship. Linear models assume that the braéponse to stress and strain is similar to thalastic or
solid materials [2].

Computer Aided Therapy (CAT) requires a better usideding of the characteristics of brain cancer
progression based on phenotypic cancer profildsetbfrom imaging, histopathology and other souredsich
can ultimately help determine predictive factorcanhcer invasiveness. Significant tools for undeding such
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cancer profiles are statistical atlases. In bramdr patients, such atlases have the potentiadgistasurgical and
treatment planning [3].

[

Figure 1: A contrast enhanced CT scan of the bdeEmonstrating the appearance of a meningioma {€yuwikipedia)

The decision of whether and how to best treat énkiramor is based on multiple factors, includingesand
location of the tumor, tumor type, symptoms, growdte and age of the patient (among others). Irergén
there are two basic options: surgical removal autiation. In both cases (surgical and radiatioghsntation
has an impressive impact on Image Guided Surg&$8)and CAT systems. Brain MRIs that reveal tunaoes
difficult to segment because of brain tissue defdiom caused by tumor mass effect or volume expardi.

To model and estimate deformation of brain strgtuwe focused on one type of brain tumor, mening®m
because they are a good representative of braiorsum general and possess several attractive akaistics

[51 [7].

2. MENINGIOMA
Meningioma is the most frequent tumor of neuroeetowl origin in humans. It is usually benign [6].
Meningiomas arise from a layer of tissue (the mge#) that covers the brain and spine. Meningiomas on
the surface of the brain (or spinal cord) and theeepush the brain away rather than growing froithiw.
Meningiomas represent about 25 percent of all tsnmiginating in the head. Meningiomas are oftewsl|
growing, increasing in size only 1-2 mm per yeheréfore we can assume that the tumor growth sate2i mm
per year, and their growth behavior can most cjobeldescribed as linear, so we can assume thagtioavth
rate is linear [5] [7].

It is generally a sporadic tumor. They show an peeiedly high recurrence rate. Also, completely aeed
low-grade tumors can recur. Recurrence and muiipliare correlated with the formation of a peritual
edema. On the cytogenetic level, it is the beslistutumor in humans. Corresponding to their oritfiey grow
extracerebrally and outside the medulla, mostlpldidng, rather than infiltrating, the neural pareyma and
are very common tumors, with an approximate anmatience of 1 in 16,000 [6]. Pressure induced lon t
tissue by the tumor and edema is proportional écatiided volume [8].
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Figure 2 Block diagram method for estimation of brain defation [7]

3. MATERIALS AND METHODS
1. Preprocessing

Because MRI images only elucidate tumoral brairntamg, the ability to predict soft tissue deformati@nd
therefore tumoral brain anatomy during tumor grgwtha primary requirement for reliable treatmelft.
displacements within the brain can be computed; ta® be used to simulate tumors in healthy atlpges

The atlas data were registered non-rigidly withiggatdata to reduce misalignment errors. The ngiotriB-
spline method was used to register atlas datag@étient dataset, as detailed in “Eq. (1)". Figgh®ws the
results of the registration process for cases &84, which had tumors in the right parietal, rigarietal and
right frontal lobes, respectively.
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Where i =[x/n] — 1, j =[y/ n]-1, and k = [z/ g-1, denote the index of the CP cell containingy(xz) and u, v
and w, which are relative positions of (x, y, z)tlmee dimensions. Bhrough B are cubic B-splines “Eq. (1)”

(91 [7].

In order to specify brain tissue displacement, @mital landmarks are defined in both patient datd a
registered as shown in Figure 3. Landmarks, suctenssicle borders and the brain midline, are chadese to
tumor regions so that deformation can be effegtitrelcked as the tumor shifts these landmarks [7].

After segmentation, 3D models of surfaces of tt@rbparenchyma and tumors were created [7].

A necessary step in obtaining the numerical mofl¢he brain is the creation of a computational gwithich in
most practical grids is a finite element mesh. Bseaof the long computation time requirements, eestith
low-order elements must be constructed that areowiputationally costly. Many algorithms are avalgafor
fast and accurate automatic mesh generation usirahedral elements [1] [7].

Column (a) column (b) column (¢)

Figure 3: Registration of atlas data with patiestadcase 2, 3, and 4) left column patient dataltaidtlas data right column registered data
[7].

Figure 4: Segmented MRIs of the patient head useluilding patient specific brain mesh. The tursegmentation is indicated by whit
green color [7].
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2. Non-Linear model

Brain shift behaves in a non-linear manner andadsleted as a viscoelastic material. Nonlinear modieisely
approximate real shift, and in comparison withéinenodels they achieve more accurate results,dug higher
computational costs. Brain shifts can be detecyetthé following non-linear methods.

2.1 DR method

Dynamic Relaxation (DR) is an explicit iterative timed for obtaining the steady state solution. h ba used

for finding the deformed state for a discretisedittmuum mechanics problem. The method relies on the
introduction of an artificial mass dependent darmgpierm in the equation of motion, which attenuates
oscillations in the transient response, increatliegconvergence towards the steady state solution.

The DR method is especially attractive for hightnhnear problems (including both geometric and eriat
nonlinearities) solved using the finite element met Because of its explicit nature there is nadrfee solving
large systems of equations. All quantities canrbatéd as vectors, reducing the implementation texitp and

the memory requirements. Although the number aofitens to obtain convergence may be quite large, t
computation cost for each iteration is very low,king it a very efficient solution method for noriar
problems [14].

The DR method is combined with the Total Lagrangfarmulation of the Finite Element method, for
computing intra-operative organ deformations. ktludes a number of iteration parameters which nast
estimated. These parameters are especially haedtimate for a nonlinear problem, as their optinales
(which ensure the fastest convergence rate) chaéungieg the iteration process [13, 14].

The estimation is done using an estimated valudetoad, which might not lead to the optimum vabfi¢he

iteration parameter. A simple and efficient metlodestimating the value of the minimum Eigen vadluging

the iteration process was proposed. As the itaratprogress, the estimated minimum Eigen value exgas

fast to its optimal value. This leads to a venjogfht DR procedure, while eliminating the need $eparate
simulations for parameter estimation. The proposgtimation method involves only vectors, presering

computational advantages of an explicit method.s€Heatures make the proposed DR a perfect candioiat
parallel implementation on a Graphics Processing (BPU), which offers very high computation povatra

low cost [14].

The proposed adaptive method was applied to contmaie shift estimations using non-linear biomedbaln
models. The simulations prove the high computatieffeciency of the adaptive method [13, 14].

The proposed method offers fast convergence, catipoal efficiency and the possibility to contrdiet
accuracy of the results. These characteristics nitake ideal method for solving image registratfmoblems
using bio-mechanical models. A GPU implementatidntte algorithm can perform complex brain shift
simulations in less than 2s [14].

2.2 Ogden-based Hyper-viscoelastic constitutive model

To model deformations induced by tumors more pedgisthe Ogden-based Hyper-viscoelastic constigutiv
model was used in the following Equations 2 and 3{t12, 7]:
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Table 1: Nonlinear brain tissue model parameters
Instantaneous response k=1 k=2
characteristic time characteristic time

10 =842[Pa]

=5 2=5
a7 t1=5[s] 12=50[s]

gl=0.450 g2=0.365

Where W is the strain energy, A,, A3 (directions 1, 2, 3 corresponding to x, y, z) pr@acipal extensions and
their values are 1 for no deformation, greater thefor extension and smaller than 1 for compressiois a
material coefficient without physical meaning. Madue ofa was found to be -4.7, see Table 1[1, 11, 7], tand
denote time. “Eq. (3)” describes viscous resporigbetissuey is the instantaneous shear modulus in the un-
deformed stater, are characteristic relaxation times. Stress-strali@tionships are obtained by differentiating
the energy function W with respect to strains [1,, dnd 7].

The stress-strain rate relationships are non-lirexad the stiffness of the brain in compressiomigh higher
than in extension. To compute the external fofoe ttimor growth rate was used. An interesting oquesece of
the basic model assumptions is that the profilthefconcentration of tumor cells depends on thie @ tthe
growth rate “Eq. (4)" [17, 15, and 7]:

de _ ple,—c)
dt e,

3

(4)

In which c(x, t) designates the tumor cell denaitjocation x and time t angdenotes the net proliferation rate.
This computation makes our method more accurateapeoper force calculation for each patient. Bfere,
brain displacement due to tumor growth can be nredsoy this method. Displacement by tumor is defias a
homogenous force applied to the brain that musgfgahe following condition [16, 7]:

[f(ext)+di(o—Alc(r)=0 5)

Where f (ext) is external force, is internal stress, ¢ (t) is tumor growth modetl anis coupling factor. A
coupling factor was chosen that minimizes the dtativie difference between the model and the real
deformations: 1.4 N mm/Cells [17, 7]. This equatisnthe differential version of the law proposed by
Wasserman [16, 7] and can be locally interpretech asssue internal pressure proportional to theotum
concentration.
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2.3 Deformable Surface Approach

Deformable surfaces are used to generate modéledirain surface in the pre- and the intra-opesastage.
Color encoding after efficient distance calculatiorther enhances the visual impression. The ovexak flow

of the deformable surface approach consists of &eps: surface generation, surface registratitstarte
computing and visualization. Surface generationsisie of an iterative process which requires a smar
approximation of the brain surface. Therefore, & feertices are specified in a slicing view, whiate ahen
connected using a Delaunay tetrahedrization methimh-convex parts of the target object are modéigd
interactively deleting some of the tetrahedra. fmahe boundary surface of the tetrahedral compgethe
approximation required by the deformable surfacedute The distortions caused by the actual braift sh
should to be taken into account. Otherwise thesteggion is severely falsed. In order to avoid ¢henpensation
of the deformation phenomenon those vertices ackigad from the registration which is directly teld to the
location of the brain shift. They are defined biemactively specifying a maximum distance betweeriiees to
be considered. However, this requires a deformaifathe brain which is larger than the registrateror that
has to be compensated. As this is not the caseost situations, an additional manual rigid pre-ségtion is
provided. To visualize the brain shift, annotatergwertex of one brain surface with the distatideas moved
away from the other surface, the distance, we hadetermine by following equation:

dix, V)= min.|x— yl: ©)

In order to calculate this distance we would havedmpute the smallest distance of the regardedwér each
of the triangles, which is quite expensive. Theauitgsy values are used to color-code the registerethces.
Either the whole distance value spectrum is mappetifferent colors ranging from blue to red, otheeshold
is visualized using two colors. It appeared to beful to draw one brain surface colorized and du®sd one in
a transparent way. This technique provides a gismdlimpression of the brain shift [18].

3. Linear model

Linear models assume that the stress and straitioe$hip is linear and brain’s response to staeskstrain is
similar to that of elastic or solid materials satietchanical model is more reliable than the elastdel.
The energy of the brain’s deformation caused bgrastly applied forces is given by

W= J'of .Frfﬂ+jFIuer

where F = F(x, y, z) is the total force appliediie brain, external force obtained frdinis the brain, u is the
displacement vector, ards the strain vector that can be defined as ;

F_(EJH du o E)HJ_«:)H E)u+8u du : E}n)
dr dy oz ox oy dy o ox oz
8)
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In case of linear elasticity with no initial stees or strains the stress vectorrglates to the strain vector by the
linear equatiors = De, where D is the elasticity matrix describing thatemial properties and is described by
below equation:

_ - )
T 0 0 0
1-v 1-v
r r
AW 0 0 0
1-v 1-v
sl S 0 0 0
_ El-v) (1-v 1-v
- |.r].+'|r’)'{1—2'lr’J 0 0 0 1-2v 0 0
2(1-v)
1—2v
0o 0 0 =
21—v)
0 0 0 0 0 1“_"“_
2(1—v)
- < 9

The value of D can be obtained by two material patars: Young’'s modulus(E) that relates tensionsiretch
in the main orthogonal directions, and the Poigstios ), which represent the ratio of the lateral corttoac
due to longitudinal stress in a given plane [7].

4. Optimized Linear Model

Tumor sizes and brain anatomy can change the Inaidel parameters, called Poisson ratio and Young’s
modulus from different patient to patient and fdfedtent tumor. Therefore, to obtain the best mqulameters
optimization process is utilized in combinationtwihe conventional linear model to obtain the Ipesameters

for each patient. Meningioma tumors from differpatients are analyzed. The cost function was defasethe
mean square difference of distance between therlaridposition manually selected in the real image énd
their corresponding estimated positions in the rhddedmarks were selected in a non-uniform masmneund

the tumor contour focusing on the areas with ladgebormations. One half of the landmarks are usethén
optimization process and the other half were useefror calculation. The Matlab optimization tatiopze the
following cost function:

M

1 )
ME M ZEJ‘}E —Xp)

e
(10)

Where M is the number of landmarks, XiE is thermated landmark position and XiD is the correspogdin
landmark position the in real data [7].

4. DISSCUSSION

The linear models have low computational complexétyd are easy to implement but have relativelyemor
estimation error than non-linear models, whichraoge complex, and time consuming. They provide rigak
formulations that sufficiently describe brain tissoehavior and are simpler to implement and ruatixaly fast.
Tumor sizes and brain anatomy can change the Ibnattel parameters. Therefore, to obtain the bestemod
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parameters optimization process is utilized in ci@tion with the conventional linear model to oht#ie best
parameters for each patient. From the biomechapimiait of view linear model is confronted to cliaicdata.
The need to take into account large deformatiossdae studied.

Accuracy rates were 92% in the optimized linear eh@hd 95% in the non-linear model but the computat
time of the linear model is three times less thanlinear model. Brain shift behaves in a non-lineanner and
is modeled as a viscoelastic material. Nonlineadet®closely approximate real shift. The advantaije®on-
linear method make it the best method to estimedlshift. The need to reduce computational ceistaild be
taken into account.

5. CONCLUSION

In estimation of brain deformation, model selectaod optimization of model parameters are impor&ieps
toward obtaining accurate and reliable resultseHa®e computed the deformation of brain tissueltiegufrom
meningiomas. We used tumor growth model to compheeexternal forces and we choose the tumor seeds
manually in the regions that tumor exists in resthd Linear models have lower computational costdbs less
accuracy compared to that of non-linear. Non-lineadels estimate the shift at a much closer lendl lzave
95% accuracy which makes it a better model to led @isr the estimation of brain shift and the sikée tumor

for removal.
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