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ABSTRACT—

Collective behavior refers to how individuals behag when they are exposed in a social network
environment. In this article, we examine how we capredict online behaviors of users in a network, gien
the behavior information of some actors in the netark. Many social media tasks can be connected toeh
problem of collective behavior prediction. Since amnections in a social network represent various kids
of relations, a social-learning framework based orsocial dimensions is introduced. This framework
suggests extracting social dimensions that repregethe latent affiliations associated with actors, ad then
applying supervised learning to determine which diransions are informative for behavior prediction. It
demonstrates many advantages, especially suitablerflarge-scale networks, paving the way for the stly
of collective behavior in many real-world applicatons.

Keywords—Social Networking Sites, Social Dimensions, Relaid earning, Edge-Centric Clustering.

1.INTRODUCTION

This study of collective behavior is to understamolw individuals behave in a social networking
environment. Oceans of data generated by socialamik@ Facebook, Twitter, Flicker, and YouTube i
present opportunities and challenges to study cdle behavior on a large scale. In this work, Wwe to learn
to predict collective behavior in social media.plarticular, given information about some indivicsjadtow can
we infer the behavior of individuals in the saméwogk? A social-dimension based approach has bleewrs
effective in addressing the heterogeneity of cotiors presented in social media. However, the netsvin
social media are normally of large size, involvithgusands of millions of actors. The scale of thasvorks
entails scalable learning of models for collectrehavior prediction.

To address the scalability issue, we propose ae-edgtric clustering scheme to extract sparse lsocia
dimensions. With sparse social dimensions, the geeg approach can efficiently handle networks dfions
of actors while demonstrating a comparable praatigtierformance to other non-scalable methods. Boeidia
facilitate people of all walks of life to connectéach other.

In the initial study, modularity maximization is exploited to extract social dimensions. With huge number

of actors, the dimensions cannot even be held in memory. In this work, we propose an effective edge
centric approach to extract sparse social dimensions. The advancement in computing and communication
technologies enables people to get together and share information in innovative ways. Social networking
sites (a recent phenomenon) empower people of different ages and backgrounds with new forms of
collaboration, communication, and collective intelligence.

Sparsifying social dimensions can be effectivelimiaating the scalability bottleneck. In this wonke propose
an effective edge-centric approach to extract sparxial dimensions. We prove that with our prodose
approach, sparsity of social dimensions is guaeghte
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Figure 1. Contacts of One User in Facehook

2. COLLECTIVE BEHAVIOR LEARNING

The recent boom of social media enables the stfidyltective behavior in a large scale. Here, bétragan
include a broad range of actions: join a group,nechto a person, click on some ad, become intxtest
certain topics, date with people of certain tyge, ®/hen people are exposed in a social hetwork@mwent,
their behaviors are not independent [1, 9]. Thathisir behaviors can be influenced by the behavadrtheir
friends. This naturally leads to behavior correlatbetween connected users.
This behavior correlation can also be explainedhbgnophily Homophily [4] is a term coined in 1950s to
explain our tendency to link up with one anotherways that confirm rather than test our core beglief
Essentially, we are more likely to connect to otheharing certain similarity with us. This phenomerhas
been observed not only in the real world, but &sonline systems [3]. Homophily leads to behaworrelation
between connected friends. In other words, frigndssocial network tend to behave similarly. Tahkarketing
as an example, if our friends buy something, thebetter-than-average chance we’ll buy it too.
In this work, we attempt to utilize the behaviorretation presented in a social network to pretfietcollective
behavior in social media. Given a network with babiainformation of some actors, how can we infee t
behavior outcome of the remaining ones within tme network? Here, we assume the studied behavioreo
actor can be described with K class labels {c1, ; ¢K}. For each label, ci can be 0 or 1. Fotanse, one user
might join multiple groups of interests, so 1 dersathe user subscribes to one group and 0 otherwisavise,
a user can be interested in several topics simedtasly or click on multiple types of ads. One sagkcase is K
= 1. That is, the studied behavior can be descriipec single label with 1 and 0 denoting corresjgnd
meanings in its specific context, like whether at wne user voted for Barack Obama in the presalent
election.

The problem we study can be described fornzlfollows:
Suppose there are K class labels Y = {c1, ... , cBijen network A = (V,E, Y ) where V is the vertsat, E is
the edge set ar¥: = V are the class labels of a ver ¥ = V7 and given known values of Yi for some
subsets of vertices / how to infer the values of Yi (or a probabilitgtenation score over each label) for the
remaining vertices
vV=v-vt?
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Note that this problem shares the same spirit #sirmnetwork classification [5]. It can also be sitered as a
special case of semi-supervised learning [10] &atiomal learning [2] when objects are connectethiwi a

network. Some of the methods, if applied direatlgdcial media, yield limited success [6], becarmenections
in social media are pretty noise and heterogeneous.

In the next section, we will discuss the connectieterogeneity in social media, briefly review ttacept of
social dimension, and anatomize the scalabilitytéitons of the earlier model proposed in [6], whinotivates
us to develop this work.

Table 1: Social Dimension Representation
Actors | Affiliation-1 ~ Affiliation-2 -~ Affiliation-k
1 0 l 08
2 0.5 0.3 0

3. SOCIAL DIMENSIONS
Connections in social media are heterogeneBasple can connect to their family, colleagueslege

classmates, or some buddies met online. Some ¢ ttedations are helpful to determine the targétsthvior
(labels) but not necessarily always so true. Fstaimce, Figure 1 shows the contacts of the firgtcauon
Facebook. The densely-knit group on the right gdmostly his college classmates, while the upptrdorner
shows his connections at his graduate school. Me#ewvat the bottom left are some of his high-sdhnends.
While it seems reasonable to infer that his collelgesmates and friends in graduate school arelikety to be
interested in IT gadgets based on the fact thatifiee is a fan of IT gadget (as most of them arprimg in
computer science), it does not make sense to patgdlgis preference to his high-school friendsa imutshell,
people are involved in different affiliations andnnections are emergent results of those affilistiorhese
affiliations have to be differentiated for behavawediction.

However, the affiliation information is not readigvailable in social media. Direct application @flective
inference[ 5] or label propagation [11] treats tummnections in as a social network homogeneodsiis is
especially problematic when the connections imgigvork are noisy. To

address the heterogeneity presented in connectienbave proposed a framewo&ogDin) [6] for collective
behavior learning.

The frameworkSocDimis composed of two steps: 1) social dimension etitr]a, and 2) discriminative
learning. In the first step, latent social dimensicare extracted based on network topology to capte
potential affiliations of actors. These extractedial dimensions represent how each actor is iratin diverse
affiliations. One example of the social dimensi@presentation is shown in Table 1. The entries stimwv
degree of one user involving in an affiliation. Thesocial dimensions can be treated as featurstafs for the
subsequent discriminative learning. Since the nekwse converted into features, typical classifierccls as
support vector machine and logistic regression lmaremployed. The discriminative learning procedaiié
determine which latent social dimension correlatgh the targeted behavior and assign proper weight
Now let’s re-examine the contacts network in Figlr®©ne key observation is that when actors arenig@hg to
the same affiliations, they tend to connect to eaitier as well. It is reasonable to expect peoplh@ same
department to interact with each other more fretjueHence, to infer the latent affiliations, weetkto find out
a group of people who interact with each other nfoequently than random. This boils down to a dtzds
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community detection problem. Since each actor ceolve in more than one affiliations, a soft clustg
scheme is preferred.

In the instantiation of the frameworBocDim modularity maximization [7] is adopted to extrasdcial
dimensions. The social dimensions correspond totdpeeigenvectors of a modularity matrix. It hasie
empirically shown that this framework outperforntber representative relational learning methodsadaial
media. However, there are several concerns abewddability ofSocDimwith modularity maximization:

 The social dimensions extracted according to favdy maximization are dense. Suppose there ardllibn
actors in a network and 1, 000 dimensionsl areetad. Suppose standard double precision humbenssead,
holding the full matrix alone requires 1M x 1K x=88G memory. This large-size dense matrix posemyho
challenges for the extraction of social dimensiassvell as the subsequent discriminative learning.

» The modularity maximization requires the compotabf the top eigenvectors of a modularity matwixich is
of size n x n where n is the number of actors imetwork. When the network scales to millions ofoast the
eigenvector computation becomes a daunting task.

» Networks in social media tend to evolve, with ne@mbers joining, and new connections occurringvéen
existing members each day. This dynamic natureetfarks entails efficient update of the model follective
behavior prediction. Efficient online up-date of@nvectors with expanding matrices remains a angdle

Consequently, it is imperative to develop scalabkthods that can handle large-scale networksieftiy
without extensive memory requirement. In the nedtisn, we elucidate an edge-centric clusteringesthto
extractsparsesocial dimensions. With the scheme, we can upiietesocial dimensions efficiently when new
nodes or new edges arrive in a network.

4. ALGORITHM—EDGECLUSTER
In this section, we first show one toy exampleliigsirate the intuition of our proposed edge-centtustering
schemeEdgeClusterand then present one feasible solution to hdadie-scale networks.

4.1 Edge-centric view

As mentioned earlier, the social dimensions extdcbased on modularity maximization are the top
eigenvectors of a modularity matrix. Though thewwsk is sparse, the social dimensions become dense,
begging for abundant memory space. Let’s look atttly network in Figure 2. The column of modularity
maximization in Table 2 shows the top eigenvecfdhe modularity matrix. Clearly, none of the eetriis zero.
This becomes a serious problem when the networlaredg into millions of actors and a reasonable large
number of social dimensions need to be extracté@. digenvector computation is impractical in thése
Hence, it is essential to develop some approadh thadt the extracted social dimensions are sparse.

The social dimensions according to modularity mazation or other soft clustering scheme tend tagasa
non-zero score for each actor with respect to edfilfation. However, it seems reasonable thatribhenber of
affiliations one user can participate in is uppenimed by the number of

connections. Consider one extreme case that an lzetoonly one connection. It is expected thatshgrobably
active in only one affiliation. It is not necessaoyassign a nonzero score for each affiliationsulsing each
connection represents one dominant affiliation.ewpect the number of affiliations of one actordsmore than

his connections.
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Instead of directly clustering the nodes of a nekwnto some communities, we can take an edge-cevigw,
i.e., partitioning the edges into disjoint setststitat each set represents one latent affiliafi@n.instance, we
can treat each edge in the toy network in Figues ®ne instance, and the nodes that define eddestases.
This results in a typical feature-based data forasain Figure 3. Based on the features (conneatees) of
each edge, we can cluster the edges into two seis &igure 4, where the dashed edges represent one
affiliation, and the remaining edges denote anotféliation. One actor is considered associatethvane
affiliation as long as any of his connections isigised to that affiliation. Hence, the disjoint edgusters in
Figure 4 can be converted into the social dimerssamthe last two columns for edge-centric clustein Table
2. Actor 1 is involved in both affiliations undéri$ EdgeClustescheme.

In summary, to extract social dimensions, we clustigges rather than nodes in a network into disjaéts.sTo
achieve this, k-means clustering algorithm can pelied. The edges of those actors involving in iplét
affiliations (e.g., actor 1 in the toy network) dileely to be separated into different clustersei\though the
partition of edge-centric view is disjoint, theibdtions in the node-centric view can overlap. Eactor can be
involved in multiple affiliations.
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Table 2: Social Dimensions) of the Toy Example
Figure 5: Density Upperbound of Social Dimensions

In addition, the social dimensions based on edgé#riceclustering arguaranteed to be spars€his is because
the affiliations of one actor are no more thandbenections he has. Suppose we have a networkmvitiges,
n nodes and k social dimensions are extracted. €aeh node vi has no more than min(di, k) non-eaitoies
in its social dimensions, where di is the degreranfe vi. We have the following theorem.

Theorem 1Supposé social dimensions are extracted from a network witedges and nodes. The density
(proportion of nonzero entries) of the social dirsiens extracted based on edge-centric clusterifgpisnded
by the following formula:
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Moreover, for networks in social media where thelenalegree follows a power law distribution, the eipp
bound in Eq. (1) can be approximated as follows:

a-11 (n—l_l'] ot ()
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Note that the upperbound in Eq. (1) is network Bmewhereas Eq.(2) gives an approximate upperbdona
family of networks. It is observed that most powkaw distributions occurring in nature have
4 < a3 [8]. Hence, the bound in Eq. (2) is valid most oé time. Figure 5 shows the function in terms
of a and k. Note that when k is huge (close to 10,0GB% social dimensions becomes extremely
spars_{ = 10~2) In reality, the extracted social dimensions gpically even sparser than this upperbound
as shown in later experiments. Therefore, with echgeric clustering, the extracted social dimensiane

sparse, alleviating the memory demand and fadilgagfficient discriminative learning in the secostege.
4.2 K-means variant

As mentioned above, edge-centric clustering essbntreats each edge as one data instance witbniding
nodes being features. Then a typical k-means clagtalgorithm can be applied to find out disjop#rtitions.
One concern with this scheme is that the total remab edges might be too huge. Owning to the pdaer
distribution of node degrees presented in socialawks, the total

number of edges is normally linear, rather tharasguwith respect to the number of nodes in thevordt That
is, m = O(n). This can be verified via the propestof power law distribution. Suppose a networkwitnodes
follows a power law distribution as

plr) =Czx =, T2 Tmin>0

wherea is the exponent and C is a normalization constant.
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Input: data mstances {z;|l < i< m}
mumber of clusters k
Output: {idzr;}
l. construct a mapping from features to mstances
2. initialize the centroid of cluster {C;|1 < j < k}

1. repeat

4. Reset {MazxSim;}, {idz;}

5, for =1k

6. identify relevant mstances S; to centroid C;
T for i m S;

8. compute sim(i,C;) of instance i and C;
0, if sim(i, C;) > MazSim;

10. MazSim: = sim(i, Cj)

11. idr; = J;

12. for 1=1:m

13. update centroid Cidx,
14. until no change mn idr or change of objective < ¢

Figure 6: Algorithm for Scalable K-means Variant

Then the expected number of degree for each nd8¢ is
o — 1
Elr] = —— Tmin

2] = ——
where X, is the minimum nodal degree in a network. In tgalive normally deal with nodes with at least one
connection, so %, >=1. Thea of a real-world network following power law is moally between 2 and 3 as
mentioned in [8]. Consider a network in which &letnodes have non-zero degrees, the expected nwhber
edges is

o — 1

Em]|=——

f
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i
Unlessa is very close to 2, in which case the expectativerges, the expected number of edges in a netisork
linear to the total number of nodes in the network.

Still, millions of edges are the norm in a largedscsocial network. Direct application of some 8mip k-means
implementation cannot handle the problem. E.g.,kimeans code provided in Matlab package requines t
computation of the similarity matrix between allirgeof data instances, which would exhaust the mgrob
normal PCs in seconds. Therefore, implementatidh an online fashion is preferred.

On the other hand, the edge data is quite spadsstarctured. As each edge connects two nodegindtwork,

the corresponding data instance has exactly ordyrtan-zero features as shown in Figure 3. Thiss#fyatan
help accelerate the clustering process if exploitegbly. We conjecture that the centroids of k-ngeahould
also be feature-sparse. Often, only a small ponibthe data instances share features with theadnfThus,
we only need to compute the similarity of the ceidis with their relevant instances. In order tacifhtly
identify the instances relevant to one centroidpwigdd a mapping from the features (nodes) to imsta (edges)
beforehand. Once we have the mapping, we can adsifyify the relevant instances by checking tha-nero
features of the centroid. By taking care of the tmacerns above, we thus have a k-means variantFagure 6
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to handle clustering of many edges. We only keeaor of MaxSim to represent the maximum similarit
between one data instance with a centroid. In @acdtion, we first identify the set of relevant

Input: network data, labels of some nodes

Output: labels of unlabeled nodes

L. convert network mnto edge-centric view as in Figure J

1. perform clustering on edges via algonthm m Figure 6

J. construct social dimensions based on edge clustering

4. build classifier based on labeled nodes’ social dimensions

5. use the classifier to predict the labels of unlabeled anes
hased on their social dimensions

Figure T: Scalable Learning of Collective Behavior

instances to a centroid, and then compute the aiitidls of these instances with the centroid. Bhisids the
iteration over each instance and each centroidclwkniould cost O(mk) otherwise. Note that the cadtro
contains one feature (node) if and only if any edfi¢hat node is assigned to the cluster. In effexist data
instances (edge) are associated with few (muchttems k) centroids. By taking advantage of the uest
instance mapping, the cluster assignment for athimces (lines 5-11 in Figure 6) can be fulfilladd(m) time.
To compute the new centroid (lines 12-13), it c@3(m) time as well. Hence, each iteration costs XX{me
only. Moreover, the algorithm only requires thetfga-instance mapping and network data to resid@am
memory, which costs O(m + n) space. Thus, as lenthe@ network data can be held in memory, thisteting
algorithm is able to partition the edges into difj@ets. Later as we show, even for a network wiilions of
actors, this clustering can be finished in tensofutes while modularity maximization becomes ingpical.

As a simple k-means is adopted to extract sociakedsions, it is easy to update the social dimessibthe
network changes. If a new member joins a network @amew connection emerges, we can simply assign th
new edge to the corresponding clusters. The updhteentroids with new arrival of connections iscals
straightforward. This k-means scheme is especigipficable for dynamic large scale networks.

In summary, to learn a model for collective behavige take the edge-centric view of the networkadand
partition the edges into disjoint sets. Based @nettige clustering, social dimensions can be cartettuThen,
discriminative learning and prediction can be acglished by considering these social dimension®eatufes.
The detailed algorithm is summarized in Figure 7.
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