
 E-ISSN: 2321–9637
 Volume 1, Issue 5, December 2013

 International Journal of Research in Advent Technology
 Available Online at: http://www.ijrat.org

 85

Experimental Analysis of Hybridized MTF-
TRANS-FC (H-M-T-FC) Algorithm

Debashish Rout
1

Department of Computer Science and Engineering, VSSUT, Burla, India1

debashish.rout1@gmail.com

1. Introduction
Data structure provides a way to store data in structure way efficiently, in the primary memory of computer. Various
operations such as search, insert and delete can be performed on a data structure. If the data items are unsorted and
stored in a linear list, each item can be searched by scanning the list of items one by one linearly. In linear search if
multiple elements are searched, the total search time can be reduced by making the data structure self-organizing. In
self-organization data structure the items can be re-organized after each operation to reduce the time of future
operations Thereby enhancing the performance.

1.1 List Accessing Problem

List Accessing problem or List Update problem is the method used in the self-organizing linear search. In List Update
problem a list (l) of records and a request sequence (σ) are taken as inputs. When a record is accessed from the list then
the list is reconfigured to reduce the future search cost. When a record is accessed from the list, some cost is provided for
that. List accessing problem is mainly implemented by single linked list. But it may be implemented through doubly
linked list and tree also.
1.2 Cost Model
In the list accessing problem, we have two different models based on operations and list type. They are Static list
accessing model and Dynamic list accessing model. The Static list accessing model is the one in which the number of
items in the list is fixed and only the access operation can be performed. The Dynamic list accessing model is the one in
which the size of the list varies dynamically and all the three operations i.e. insert, delete and access can be performed. In
our work, we have considered only the static model of list accessing problem and hence we consider only the access
operation. As one of the key issues is to find out the optimal access cost of elements on the list, we need a cost model
which is an efficient tool to measure the access cost incurred by the various list accessing algorithms. A number of cost
models have been developed and used so far but here we have considered only Full Cost Model (FCM) and Partial Cost
Model (PCM). In Full Cost Model, the cost of accessing an item in the ith position from the front of the list is i. In the
Partial Cost Model the cost of accessing an item in the ith position from the front of the list is (i-1) because we have to
make (i-1) comparisons before accessing the ith element in the list. So, the cost of accessing the first element in the list
would be 1 in FCM and 0 in PCM.We are illustrating both the models as follows. Suppose the list is 1, 2, 3 and the
request sequence is 1, 2, and 3. The costs of elements according to the various models are presented in below.

1.3 Application

List accessing algorithms are widely used in Data Compression. Other important applications of list update algorithms
are computing point maxima in computational geometry, resolving collisions in hash table and dictionary maintenance.
The List Accessing Problem is also of significant interest in the contest of self organizing data structures.

Elements Access cost in
PCM

Access Cost in
FCM

 1 0 1
 2 1 2
 3 2 3
 Total cost 3 6

 E-ISSN: 2321–9637
 Volume 1, Issue 5, December 2013

 International Journal of Research in Advent Technology
 Available Online at: http://www.ijrat.org

 86

1.4 List Accessing Algorithms

The algorithm which efficiently recognizes the list and reduces the cost for the access is called a list accessing
algorithm. List accessing algorithms can be of two types such as online algorithm and offline algorithm. In online
algorithm, the request sequence is partially known. In offline algorithm, the request sequence is fully known; online
algorithms can be further classified into two types such as deterministic and randomized. Deterministic algorithm is
one which produces the same output always for a given request sequence or the algorithm passes through same states
for a given request sequence. Some of the popular deterministic algorithms for the list accessing problem are Move-
To-Front (MTF), Transpose (TRANS) and Frequency Count (FC).
MTF: After accessing an item, it is moved towards the front of the list without changing the order of other items in
the list.
TRANS: After accessing an element, it is exchanged with its proceeding element.
FC: There is a counter for each item which counts the frequency of each item of the list according based on the
requests from the request sequence. The list is arranged in the non-increasing order of frequency count of items in the
list. In randomized online algorithm, while processing the request sequence, the algorithm makes some random
decision at some step. Some well known randomized algorithms are SPLIT, BIT, COMB and TIME-STAMP.

1.5 Literature Review

List update problem was first studied by McCabe in 1965 with the concept of relocatable records in serial files. He
also introduced two list accessing algorithms Move-To-Front (MTF) and Transpose (TRANS). Rivest has examined a
class of heuristics for maintaining the sequential list in optimal order with respect to the average time required to
search for a specified element with an assumption of fixed probability of each search in his experimental study. He has
shown that MTF and Transpose heuristic are optimal within a constant factor. Hester and Hirschberg have done a
comprehensive survey of all permutation algorithms that modified the order of linear search lists with an emphasis on
average case analysis. Sleator and Tarjan in their seminar paper have formally introduced the concept of competitive
analysis for online deterministic list update algorithms such as MTF, TRANS and FC using amortized analysis and
potential function method. MTF is proved to be 2-competitive where as FC and TRANS are not competitive. Irani
proposed first randomized online list update algorithm known as SPLIT which is 1.932-competitiv. Albers, Von-
Stengel, and Werchner proposed a simple randomized online algorithm-COMB that achieves a 1.6-competitive, the
best randomized algorithm in literature till date. Albers introduced the concept of look ahead in the list update problem
and obtained improved competitive ratio for deterministic online algorithms. Reingold and Westbrook have proposed
an optimal offline algorithm which runs in time O(2ll!n) where l is the length of the list and n is the length of request
sequence. Bachrach et al. have provided an extensive theoretical and experimental study of online list update
algorithm in 2002. The study of locality of reference in list accessing problem was initiated by Angelopoulos in 2006,
where he proved MTF is superior to all algorithms. Relatively less work has been done on the offline algorithms for
the list accessing problem. For analyzing the performance of online algorithm by competitive analysis an optimal
offline algorithm is essential. Ambühl in 2000 proved that off-line list update is NP-hard by showing a reduction from
the Minimum Feedback Arc Set Problem. In 2004, Kevin Andrew and David Gleich showed that the randomized BIT
algorithm is 7/4-competitive using a potential function argument. They introduced the pair-wise property and the
TIMESTAMP algorithm to show that the COMB algorithm, a Combination of the BIT and TIMESTAMP algorithms,
is 8/5-competitive. In 2009, in one of the paper a survey has been done on online algorithms for self organizing
sequential search.
1.6 Our Contribution
In this paper, we have proposed a Hybridized algorithm, which we popularly call as H-M-T-FC.We have also
performed empirical study and comparative performance analysis of H-M-T-FC with MTF,TRANS and FC using
three data sets such as Calgary Corpus, Canterbury Corpus. Our experimental results show that H-M-T-FC
outperforms for all request sequences for the two datasets, Calgary Corpus and Canterbury Corpus.
1.7 Organization of paper

 E-ISSN: 2321–9637
 Volume 1, Issue 5, December 2013

 International Journal of Research in Advent Technology
 Available Online at: http://www.ijrat.org

 87

The paper has been introduced in section 1H-M-T-FC algorithm is discussed in section 2. Proposed algorithms are
discussed in section 3. Section 4 shows experimental analysis of the algorithm. The paper is concluded in section 5
followed by a set of references.

2. H-M-T-FC Algorithm
In this section, we have developed a hybridized algorithm by combining three basic List Accessing Algorithms.
Then total access cost of H M-T-FC is calculated by using Calgary Corpus dataset.
3. Our proposed Algorithms
3.1 Concept and Ideas
H M-T-FC Algorithm: Upon an access of item x in the list, generate a random number for the item x; if the
random number is between 0-0.33 apply MTF, if 0.33-0.66 applies TRANS, if 0.66-1 applies FC.

3.2 Pseudo Code

3.3 Illustration of HM-T-FC algorithm
The hybrid algorithm uses the concept of probability to reduce the total access cost. Let the list is 123 and request
sequence is 112323. Whenever we access 1, cost is 1 and then a random number is generated for the element 1, i.e.
0.2.As the random number less than 0.33, then MTF algorithm is applied here. Then the list configuration changed
according to the MTF algorithm i.e. discussed earlier. Likewise all the items from the request sequence are served
and the total access cost is calculated.

Inputs:
l: size of the List L
n: size of the request sequence σ
Outputs:
CH M-T-FC: Cost of H M-T-FC Algorithm
Notations:
Pi:-Position of ith item in the list, 1 ≤ i ≤ l
σj:-j

th scanned item in the request sequence, 1≤ j ≤ n
C (σj):-Access cost σj in the list L
R(σj):-Random number of σj in between o and 1
Algorithms
Initialize CH M-T-FC=0;
 for j=1 to n
 {
 read the request σj in the σ;
 Scan σj in the L;
 x=σj;

 Let Pi be the position of x in L
 C(x) =Pi;

 CH M-T-FC=CH M-T-FC +C(x);
 if R(x) < 0.33
 MTF is applied.
 else if R(x) >0.66
 TRANS is applied
 else
 FC is applied
 }

 E-ISSN: 2321–9637
 Volume 1, Issue 5, December 2013

 International Journal of Research in Advent Technology
 Available Online at: http://www.ijrat.org

 88

4. Experimental Analysis

4.1 Experimental Setup

The proposed algorithm H-M-T-FC is tested with respect to two large well known datasets called as Calgary Corpus
and Canterbury Corpus, which are extensively used for data compression. We performed 4 experiments. The goal of
the first experiment was to remove all the spaces from the text files of Calgary Corpus and Canterbury Corpus. The
second experiment was to obtain distinct characters from the file created through first experiment and this file will be
used as input both for list and request sequence. The third and fourth experiment was to implement MTF, TRANS, FC
and H-M-T-FC respectively. The source code is implemented through “MATLAB 7.10.0(R2010a)” and windows
environment. RAM size is 1 GB and processor speed is 1.80 GHz.

4.2 Input Dataset

The Calgary corpus is a collection of (mainly) text files that serves as a popular bench mark for testing the performance
of (text) compression algorithm and can also be used for access cost performance testing. The corpus contains 9
different types of files and overall 17 files. In particular it contains books, papers, numeric data, pictures, programs and
object files. This was developed in the late 1980s, and during the 1990s became something of a de facto standard for
lossless compression evaluation. The collection is now rather dated, but it is still reasonably reliable as a performance
indicator. It is still available so that older results can be compared.
Canterbury Corpus collection is the main benchmark for comparing compression methods. The Calgary collection is
provided for historic interest, the Large corpus is useful for algorithms that can't "get up to speed" on smaller files, and
the other collections may be useful for particular file types. This collection was developed in 1997 as an improved
version of the Calgary corpus. The files were chosen because their results on existing compression algorithms are
"typical", and so it is hoped this will also be true for new methods. There are 11 files in this corpus.
Each file was used to generate 2 different request sequences. The first sequence was generated by parsing the files into
“words” (‘word’ parsing). A word is defined as the longest string of non space characters. For some of the non text files
in the corpus (e.g. pic), the parsing does not yield a meaningful sequence, hence results are ignored. The second
sequence is generated by reading the file as a sequence of bytes (Byte Parsing).
4.3 Experimental Performance
The input to each algorithm is a byte parsing of each of the file. The LS is created when the RS are parsed. A table is
created for byte parsing. The table contains the number of items in the request sequence and the number of items in the
list sequences that are generated for each file. The cost of MTF, TRANS, FC and H-M-T-FC are computed and
recorded for each file as shown in table.
4.4 Experimental Results
For our experiments we have considered bytes of the file as request sequence and list. In order use files for our
experiment we have used the files of Calgary Corpus and Canterbury Corpus. From the files of Calgary corpus and
Canterbury Corpus, with the help of our program main.m we have omitted all the spaces used in the Calgary corpus file
and Canterbury Corpus and it is represented in the following table.

 E-ISSN: 2321–9637
 Volume 1, Issue 5, December 2013

 International Journal of Research in Advent Technology
 Available Online at: http://www.ijrat.org

 89

Table 4.1.1 Access cost incurred by MTF, TRANS, FC and HM-T-FC for Calgary Corpus with Byte Parsing

Table 4.1.2 Access cost incurred by MTF, TRANS, FC and HM-T-FC for Canterbury Corpus with Byte
Parsing

Dataset |LS| |RS| CMTF CTRANS CFC CHM-T-FC
Max No of
Iteration

book1 81 768771 9770030 7341592 20816076 9402428 10
book2 96 610856 8053681 6615032 14173760 7996905 10
bib 81 111261 2197756 1666207 1980467 2185119 10
progp 89 49379 716228 623538 794317 716050 10
progl 87 71646 871903 741409 1036350 870006 10
paper4 80 13286 178311 151385 304101 174959 10
paper6 80 13286 178311 151385 304101 176125 10
paper2 91 82199 1063525 830825 1988314 1030870 10
paper3 84 46526 614682 492691 1092907 608543 10
pic 513216 1604276 1401356 1980293 1605197 513216 10

Dataset |LS| |RS| CMTF CTRANS CFC CHM-T-FC

Max No
of
Iteration

alice29 74 152089 2025917 1517934 3566682 1950375 10
asyoulik 68 125179 1908414 1433172 2020409 1843168 10
lcet10 84 426754 5570790 4284198 8677053 5415092 10
plrabn12 81 481861 6473411 4648224 7094677 6076150 10
ptt5 159 513216 1609438 1405539 2046355 1607827 10
grammar.lsp 76 3721 46330 42537 66271 44797 10
kennedy.xls 256 1029744 21557619 17987714 24215710 14885712 10

 E-ISSN: 2321–9637
 Volume 1, Issue 5, December 2013

 International Journal of Research in Advent Technology
 Available Online at: http://www.ijrat.org

 90

Fig:-4.1.1 Cost incurred by MTF and HM-T-FC against for Calgary Corpus

Fig: - 4.1.2 Cost incurred by MTF and HM-T-FC against for Calgary Corpus

0

5000000

10000000

15000000

20000000

25000000

A
C

C
E

S
S

 C
O

S
T

--
--

--
--

--
--

--
--

>
>

>

INPUT DATASET FOR LIST AND REQUEST SEQUENCE

Calgary Corpus Dtaset Using Byte Parsing

MTF VS H-M-T-FC

CMTF

CHM-T-FC

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

40000000

A
C

C
E

S
S

 C
O

S
T

--
--

--
--

--
--

--
--

--
>

>

INPUT DATASET FOR LIST AND REQUEST SEQUENCE

CANTERBURY DATASET USING BYTE PARSING

MTF VS H M-T-FC

CMTF

CHM-T-FC

 E-ISSN: 2321–9637
 Volume 1, Issue 5, December 2013

 International Journal of Research in Advent Technology
 Available Online at: http://www.ijrat.org

 91

 5. Conclusion
 List Accessing Algorithm take two parameter as input i.e. List and Request Sequence. we have proposed a
Hybridized algorithm, which we popularly call as H-M-T-PCM.We have also performed empirical study and
comparative performance analysis of H-M-T-FC with MTF,TRANS and FC using three data sets such as Calgary
Corpus, Canterbury Corpus. Our experimental results show that H-M-T-FC outperforms for all request sequences for
the two datasets, Calgary Corpus and Canterbury Corpus.
Acknowledgement:-
This work is during my M.TECH career under supervision of Rakesh Mohanty, Lecturer, Department of Computer
Science and Engineering, VSSUT, Burla.

 Reference-

1. J. McCabe, “On serial files with relocatable records”, Operational Research, vol. 12, pp.609-618, 1965.
2. lG. Jr. Schay, F.W. Dauer-“A Probabilistic Model for a Self Organizing File System”, SIAM J.of Applied Mathematics, (15)

874-888, 1967.
3. P.J Burvile and J.F.C. Kingman “On a model for storage and search” –J. of Applied Probability, 10:697-701, 1973.
4. R. Rivest-“On Self Organizing Sequential Search Heuristics”, Communications of the ACM, 19, 2:63-67, 1976.
5. J.R. Bitner” Heuristics that dynamically organize data structures”- SIAM J. of Computing, 8(1):82-110, 1979.
6. G.H. Gonet, J. I, Munro and H. Suwanda, “Towards self organizing linear search”-FOCS, 169-174, 1979.
7. G.H. Gonet, J. I, Munro and H. Suwanda, “Exegenesis of self organizing linear search”, SIAM Journal of Computing, Vol.

10, no.3, pp.613-637, 1981.
8. D. D. Sleator and R. E. Tarjan, “Amortized efficiency of list update paging rules”, Commun. ACM, vol. 28 no. 2, pp.202-

208, 1985
9. J. H. Hester, D. S. Hirschberg” Self organizing linear search” – ACM Computing Surveys, 17(3): 295-312, 1985.
10. J.L. Bently and C. C. McGeoch, “Amortized analysis of self-organizing sequential search heuristics”, CACM, vol.

28, pp. 404-411, 1985.

