E-ISSN: 2321—9637
Volume 1, Issue 5, December 2013

International Journal of Research in Advent Tecimology

Available Online at:http://www.ijrat.org

DYNAMIC ACCESS CONTROL AND FILE
ASSURED DELETION FOR SECURED CLOUD
STORAGE

Mrs. Priyanka Nagtilak, Prof. Archana Lomte
Department of Computer Engineering
Bhivarabai Sawant Institute of Technology & Research (W)
Wagholi, Pune, Maharashtra, India.411027
Email- priyankaburgutel0@gmail.com

archanalomte@gmail.com

ABSTARCT:

This paper describes a system that supports high aifability of data, until the data should be expungd, at
which time it is impossible to recover the data. Tis design supports assured deletion of files. As vean now
outsource data backup to third-party cloud storageservices so as to reduce data management costsusiég
concerns arise in terms of ensuring the privacy andhtegrity of outsourced data. We design dynamic lié
assured deletion; a practical, implementable, andeadily deployable cloud storage system that focuses
protecting deleted data with policy-based file assed deletion. DFADE is built upon standard
cryptographic techniques, such that it encrypts owtourced data files to guarantee their privacy and
integrity, and most importantly, assuredly deletediles to make them unrecoverable to anyone, includg
those who manage the cloud storage, upon revocat®mf file access policies. In particular, the desigof
DFADE is geared toward the objective that it acts & an overlay system that works seamlessly atop toga
cloud storage services. This paper provides insighbf how to incorporate value-added security featas into
current data outsourcing applications.

Keywords: file; cloud storage; data services; prototype implementation.

1. INTRODUCTION

In this paper, we present DFADE, a secure overlaydc storage system that ensures dynamic file adsur
deletion and works seamlessly atop today’s clouwdage services. DFADE decouples the management of
encrypted data and encryption keys, such that ptetlydata remains on third-party (untrusted) clstatage
providers, while encryption keys are independentbintained by a key manager service, whose trusitinass
can be enforced using a quorum scheme [18]. DFABEemlizes time-based file assured deletion [5,(il4],
files are assuredly deleted upon time expiratiat) & more fine-grained approach called policy ddie assured
deletion, in which files are associated with mdexible file access policies (e.g., time expiratioaad/write
permissions of authorized users) and are assudetidyed when the associated file access policeeseanked and
become obsolete.

We propose a new policy-based file assured delet@heme that reliably deletes files with regard to
revoked file access policies. In this context, vesign the key management schemes for various lapnlation
operations. We implement a working prototype of MEAatop Amazon S3 [2]. Our implementation aims to
illustrate that various applications can benefianir DFADE, such as cloud-based backup systems. DFADE
consists of a set of API interfaces that we camexso that we can adapt DFADE into different datorage
implementations. We empirically evaluate the perfance overhead of DFADE atop Amazon S3, and using
realistic experiments, we show the feasibility dFADE in improving the security protection of datarage on
the cloud.

Cloud storage (e.g., Amazon S3 [2], MyAsiaCloud]]1dffers an abstraction of infinite storage spéoe
clients to host data, in a pay-as-you-go mannerTBlis, instead of self-maintaining data centemgrprises can

211

E-ISSN: 2321—9637
Volume 1, Issue 5, December 2013

International Journal of Research in Advent Tecimology

Available Online at:http://www.ijrat.org

now outsource the storage of a bulk amount of idigt content to those third-party cloud storageviolers so as
to save the financial overhead in data managemgatit from enterprises, individuals can also berfedim cloud
storage as a result of the advent of mobile devieas, smartphones, laptops). Given that mobildcgs have
limited storage space in general, individuals casvenaudio/video files to the cloud and make effectise of
space in their mobile devices. However, privacy ielgrity concerns become relevant as we now coarihird
parties to host possibly sensitive data. To protmaisourced data, a straightforward approach isagply
cryptographic encryption onto sensitive data withed of encryption keys, yet maintaining and pridgcsuch
encryption keys will create another security issDee specific issue is that upon requests of aaledif files,
cloud storage providers may not completely remdivil@ copies e.g., cloud storage providers maykeneultiple
file backup copies and distribute them over thaidléor reliability, and clients do not know the noen or even
the existence of these backup copies, and eveptiale the data disclosed if the encryption keys ar
unexpectedly obtained, either by accidents or bljcioas attacks. Therefore, we seek to achieve ms&curity
goal called file assured deletion, meaning thasfare reliably deleted and remain permanentlyconerable and
inaccessible by any party.

To achieve security goals, file assured deletidsuit upon a set of cryptographic key operatidrat are self-
maintained by a quorum of key managers that arep@ddent of third-party clouds. We address thelprolof
resource management for a large-scale cloud emaeahthat hosts sites. Our contribution centeratfining
distributed middleware architecture and presenting of its key elements, a gossip protocol thattsnear design
goals: fairness of resource allocation with respectosted sites, efficient adaptation to load gesnand
scalability in terms of both the number of machiaed sites. We formalize the resource allocatiablem as that
of dynamically maximizing the cloud utility underPO and memory constraints. While we can show that a
optimal solution without considering memory consttsis straightforward but not useful, we provate efficient
heuristic solution for the complete problem instead

The security concerns motivate us, as cloud clig¢atdevelop a secure cloud storage system thatde® file
assured deletion. However, a key challenge of mglduch a system is that cloud storage infrastrest are
externally owned and managed by third-party clowaviders, and hence the system should never asanye
structural changes in protocol or hardware levelsloud infrastructures. Thus, it is important &sigin a secure
overlay cloud storage system that can work sealylassp existing cloud storage services.

We evaluate the protocol through simulation and fte performance to be well aligned with our dasigals.
While we can now outsource data backup to thirdypeloud storage services so as to reduce datagaarent
costs, security concerns arise in terms of ensuttireg privacy and integrity of outsourced data. Wésign
DFADE; a practical, implementable, and readily dgpble cloud storage system that focuses on phogect
deleted data with policy-based file assured detefi-ADE is built upon standard cryptographic téghes, such
that it encrypts outsourced data files to guarathed privacy and integrity, and most importanthssuredly
deletes files to make them unrecoverable to any@mduding those who manage the cloud storage) upon
revocations of file access policies. In particuthg design of DFADE is geared toward the objedta it acts as
an overlay system that works seamlessly atop Am&&rone of today’s cloud storage services, andréaraly
show that DFADE provides policy-based file assudtetbtion with a minimal trade-off of performanceedvead.
Our work provides insights of how to incorporatdugaadded security features into current data autsog
applications.

2. CLOUD COMPUTING

Cloud computing is the long dreamed vision of cotimmuas a utility, where cloud customers can reigote
store their data into the cloud so as to enjoyaifielemand high quality applications and servicemfa shared
pool of configurable computing resources [2]. Tleadfits brought by this new computing model inclbadeé are
not limited to: relief of the burden for storagemagement, universal data access with independegtraehical
locations, and avoidance of capital expendituréhardware, software, and personnel maintenances[3tAs
Cloud Computing becomes prevalent, more and mansitsee information are being centralized into tieud,
such as emails, personal health records, compaagde data, and government documents, etc. Théhitctiata

212

E-ISSN: 2321—9637
Volume 1, Issue 5, December 2013

International Journal of Research in Advent Tecimology

Available Online at:http://www.ijrat.org

owners and cloud server are no longer in the samséett domain may put the outsourced unencryptedataisk
[4]: the cloud server may leak data informatiomt@uthorized entities [5] or even be hacked [6].

Application
Monitoring & -~) Collaboration
Content Communication

Platform

8,._.:.. g > — —
Identity o Queue L
Object Storage Runtime Database

Infrastructure

'@[
" Network

Block Storage

Compute

Tablets

Figure 2.1: Cloud Computing

3. POLICY BASED DELETION

We now generalize time-based deletion to policyedadeletion as follows. We associate each file with
single atomic file access policy (or policy for sfypor more generally, a Boolean combination ofhat policies.
Each (atomic) policy is associated with a cont},kand all the control keys are maintained bykiie manager.
Suppose now that a file is associated with a sipgley. Then similar to time-based deletion, the €ontent is
encrypted with a data key, and the data key i©iéurencrypted with the control key correspondinghi policy.
When the policy is revoked, the corresponding adriey will be removed from the key manager. Thwisen the
policy associated with a file is revoked and nogenholds the data key and hence the encrypte@coaf the
file cannot be recovered with the control key & fholicy. In this case, we say the file is assyreldlieted. The
main idea of policy-based deletion is to deletesfithat are associated with revoked policies.

The definition of a policy varies across applicatioln fact, time-based deletion is a special casker
our framework. In general, policies with other a&sceights can be defined. To motivate the use b€ypbased
deletion, let us consider a scenario where a coynpatsources its data to the cloud. We consider foactical
cases where policy-based deletion will be useful.

3.1 Storing files for tenured employeeskor each employee (e.g., Alice), we can defineaa-based policy “P:
Alice is an employee”, and associate this policthvail files of Alice. If Alice quits her job, thetie key manager
will expunge the control key of policy P. Thus, ndly including Alice can access the files associatét P on
the cloud, and those files are said to be deleted.

3.2 Storing files for contract-based employeé&sAn employee may be affiliated with the company doly a
fixed length of time. Then we can form a combinataf the user-based and time-based policies fol@raps’
files. For example, for a contract-based employed B/hose contract expires on 2010-01-01, we hawe tw
policies “P1: Bob is an employee” and “P2: validdye 2010- 01-01". Then all files of Bob are asat®il with
the policy combination P1 ~ P2. If either P1 ori®Pevoked, then Bob’s files are deleted.

213

E-ISSN: 2321—9637
Volume 1, Issue 5, December 2013

International Journal of Research in Advent Tecimology

Available Online at:http://www.ijrat.org

3.3 Storing files for a team of employeesThe company may have different teams, each of wihéshmore than
one employee. As in above, we can assign each geglioa policy combination Pil N Pi2, where Pil &hd
denote the user-based and time-based policiesatgply. We then associate the team’s files with disjunctive
combination (P11~ P12) V (P21 ~ P22) V - - -V (PNAN2) for employees 1, 2. . . N. Thus, the tedfités can
be accessed by any one of the employees, and eviiebeted when the policies of all employees oftdzen are
revoked.

4. OVERVIEW OF DFADE SYSTEM

We now overview the design of DFADE, a system firalvides guarantees of access control and assured
deletion for outsourced data in cloud storage. \Wesgnt the necessary components of DFADE, and thiate
design and security goals that it seeks to achieve.

Key Key Key
manager manager | - | manager
client

data [|§] ' IenErljpidl
source F]IE I ” Metadata

Y
data [b] ,{_rf'je
source LFile | wr;mj Cloud

Figure 4.1 The DFADE system. Each client interagth one or multiple key managers and uploads /rdoads
data files to / from the cloud.

Figure 4.1 illustrates an overview of the DFADEteys. The cloud hosts data files on behalf of a grofi
DFADE users who want to outsource data files todlmaid based on their definitions of file accessigies.
DFADE can be viewed as an overlay system atop tidenying cloud. It applies security protection ttee
outsourced data files before they are hosted onltuel.

5. DFADE SYSTEM ARCHITECTURE

metadata
Data e || 8l |
owner file
; (encrypted)
L F

E-ISSN: 2321—9637
Volume 1, Issue 5, December 2013

International Journal of Research in Advent Tecimology

Available Online at:http://www.ijrat.org

Figure 5.1 The DFADE System Architecture

5.1 Entities

As shown in Fig. 5.1, the DFADE system is compasitivo main entities:

» DFADE clients: A DFADE client (or client for short) is an interiathat bridges the data source (e.g. file
system) and the cloud. It applies encryption (detoy) to the outsourced data files uploaded to
(downloaded from) the cloud. It also interacts witie key managers to perform the necessary
cryptographic key operations.

« Key managers DFADE is built on a quorum of key managers [EHch of which is a stand-alone entity
that maintains policy-based keys for access coatrdlassured deletion.

The cloud, maintained by a third-party provideQyides storage space for hosting data files onlbeha
different DFADE clients in a pay-as-you-go manrigach of the data files is associated with a contluinaf file
access policies. DFADE is built on the thin-clonteiface [15], and assumes only the basic cloudatipas for
uploading and downloading data files. We emphatiz¢ we do not require any protocol and impleméaorat
changes on the cloud to support DFADE.

5.2 Deployment

In our current design, a DFADE client is deployedadlly with its corresponding data source as alloca
driver or daemon. Note that it is also possibleléploy the DFADE client as a cloud storage proXy $b that it
can interconnect multiple data sources. In proxglagnent, we can use standard TLS/SSL [9] to ptotiee
communication between each data source and the.prox

In DFADE, the set of key managers is deployed esrdralized trusted service, whose trustworthingss
enforced through a quorum scheme. We assume thdteth managers are centrally maintained, for exanipf
the system administrators of an enterprise thatogeDFADE for its employees. We note that thistcalized
control is opposed to the core design of Vanish, [dich proposes to use decentralized key managearetop
of existing P2P DHT systems. However, as discugs&ekction 2, there is no straightforward solutiordevelop
fine-grained cryptographic key management operatmrer a decentralized P2P DHT system. Also, theiska
implementation that was published in [12] is subjecSybil attacks [18], which particularly targ@HT systems.
In view of this, we propose to deploy a centralikegt management service, and use a quorum scheimprove
its robustness.

5. 3 Cryptographic Keys
DFADE defines three types of cryptographic keypratect data files stored on the cloud:

« Data key. A data key is a random secret that is generatddhaaintained by a DFADE client. It is used
for encrypting or decrypting data files via symneley encryption (e.g., AES).

e Control key. A control key is associated with a particular pglilt is represented by a public-private key
pair, and the private control key is maintained tw¢ quorum of key managers. It is used to
encrypt/decrypt the data keys of the files proetith the same policy. The control key forms tlasib
of policy-based assured deletion.

* Access key.Similar to the control key, an access key is asdedi with a particular policy, and is
represented by a public-private key pair. Howevwetjke the control key, the private access key is
maintained by a DFADE client that is authorizechtwess files of the associated policy. The accegs k
is built on attribute-based encryption [7], andnfisrthe basis of policy-based access control.

215

E-ISSN: 2321—9637
Volume 1, Issue 5, December 2013

International Journal of Research in Advent Tecimology

Available Online at:http://www.ijrat.org

Intuitively, to successfully decrypt an encryptdd &tored on the cloud, we require the correch dkaty,
control key, and access key. Without any of thesgskit is computationally infeasible to recoveraarsourced
file being protected by DFADE. The following explaihow we manage such keys to achieve our seqaéls.

5. 4 Security Goals
We formally state the security goals that DFADEksa® achieve in order to protect the outsourced files.

» Threat model. Here, we consider an adversary that seeks to canipeche privacy of two types of files
that are outsourced and stored on the cloudadiye files, i.e., the data files that the adversary is
unauthorized to access and (@dleted files, i.e., the data files that have been requestdsktdeleted by
the authorized parties. Clearly, FADE needs to erigpencrypt outsourced data files to ensure theit t
information is not disclosed to unauthorized parti€he underlying assumption is that the encryption
mechanism is secure, such that it is computatipriafeasible to recover the encrypted content witho
knowing the cryptographic key for decryption.

5.4.1 Security properties: Given our threat model, we focus on two specificusity goals that DFADE seeks
to achieve for fine-grained security control:

* Policy-based access controlA FADE client is authorized to access only the sfilwhose associated
policies are active and are satisfied by the client

* Policy-based assured deletionA file is deleted (or permanently inaccessiblejtsfassociated policies
are revoked and become obsolete. That is, everfiié @opy that is associated with revoked policies
exists, it remains encrypted and we cannot retribeecorresponding cryptographic keys to recover th
file. Thus, the file copy becomes unrecoverablatyone (including the owner of the file).

6. MATHEMATICAL MODULES

We now introduce the basic operations of how antligploads/downloads files to/from the cloud. Warist
with the case where each file is associated wilingle policy, and then explain how a file is asated with
multiple policies.

6.1 File Upload:

System=<Input, Output, Process>
Input:

No. of Files to be processed

}
Output:

No. of files uploaded successfully
}
Process :{ Key generation}
Figure 6.1 shows the file upload operation. Thentlfirst requests the public control key (ni, @&i)policy Pi from
the key manager, and caches (ni, ei) for subsequser#t if the same policy Pi is associated withrofifes. Then
the client generates two random keys K and Si,samdis {K} Si, Seii, and {F} K to the cloud2. Thehet client
must discard K and Si. To protect the integrityeofile, the client computes an HMAC signature orrgv
encrypted file and stores the HMAC signature togethith the encrypted file in the cloud. We assttiwg the
client has a long-term private secret value forHIMAC computation. Si, and decrypt {K} Si and her{€8 K.

216

E-ISSN: 2321—9637
Volume 1, Issue 5, December 2013

International Journal of Research in Advent Tecimology

Available Online at:http://www.ijrat.org

Storage cloud Data owner Key managet
_-"h—.___P:
h'‘-—"
e
€ I, o
a"'#-_“
P, K, S,
‘_,.-*"d_.

Figure 6.1 File Upload Operation

5.upload on cloud

user login .
4g>1.selectﬂe2.KeyGeneratmn o SKeyrmanage

4.key generation

Turing machine:

Figure 6.2 Turing Machine for File Upload Operation
6.2 File Download:

System=<Input, Output, Process>

Input:
{
No. of Files to be processed
}
Output:
{
No. of files downloaded successfully
}

Process :{ Key generation}

Figure 6.3 shows the file download operation. Tient fetches {K} Si, Seii, and {F} K from the clal
The client will first check whether the HMAC signad is valid before decrypting the file. Then thHeert
generates a secret random number R, computesiRegemds Seii - Rei = (SiR) ei to the key manageedoest
for decryption. The key manager then computes atarns ((SiR) ei) di = SiR to the client, which caow
remove R and obtain Si, and decrypt {K} Si and heff€} K.

217

E-ISSN: 2321—-9637
Volume 1, Issue 5, December 2013

International Journal of Research in Advent Tecimology

Available Online at:http://www.ijrat.org

Starage clond Data owner Key manager

P, K, S F

———

——|

LB, S
<< ion iy
-_“"'1.
SR
.

Figure 6.3 File Download Operation

Turing machine:

Download Succeful

5.
4)1.Requestfurdnwnuad2.GeﬂheKeyforDecnfp10n e 3Keyrﬂana

4 Dycrypted Key

Figure 6.4 Turing Machine for File Download Openati

218

E-ISSN: 2321—9637
Volume 1, Issue 5, December 2013

International Journal of Research in Advent Tecimology

Available Online at:http://www.ijrat.org

7. DESIGN PROCESS

Encrypted Confrol key

Client —— Select file —) DataFile 1 —— FNarypted Data Key 44 Key Manager 1

Lseiect file —— N Data File 2 ——— ENerypted Data Key) Kay Manager 2
-
- _'_'_._'_'_,_.-—'—'—"

e — Encrypied Control key

selectfile —) Data File n

ENcrypted Data Key —————————) KeyManagern

Encrypted File
Encrypted File Encrypted Contral key

Cloud Server

Figure 7.1: Process flow of access control andradsteletion

7.1 Policy-based access control
A FADE client is authorized to access only thesfilghose associated policies are active and aidiedti
by the client. It gives secrete key to the end €mefile uploading and downloading.

7.2 Policies Renewal

Is the term related to the access permission’s @ither user requests to the cloud manager to prakie
policies other than which are being allotted to /hien. For the blocked user’s(Fraud) in order toehascess to the
resources stored in the cloud server need’s to hagess permission’s which are being provided leydbud
manager when the blocked user goes for requestantiles.

7.3 Policy-based assured deletion:

A file is deleted (or permanently inaccessibfa)si associated policies are revoked and becorselete.
That is, even if a file copy that is associatechwévoked policies, it remains encrypted and wenoaretrieve the
corresponding cryptographic keys to recover the. ffhus, the file copy becomes unrecoverable bymamy
(including the owner of the file).

8. OBSERVATIONS

We first measure the time performance of our DFABX&totype. In order to identify the time overhedd o
DFADE, we divide the running time of each measunemeto three components:

e File transmission time, the uploading/downloadinggetfor the data file between the client and theudl
* Metadata transmission time, the time for uploadduy/nloading the metadata, which contains the Policy
information and the cryptographic keys associdféith the file, between the client and the Cloud.

219

E-ISSN: 2321—9637
Volume 1, Issue 5, December 2013

International Journal of Research in Advent Tecimology

Available Online at:http://www.ijrat.org

e Cryptographic operation time, the total time foryptographic operations, this includes the total
computational time used for performing AES and HMIAN the file, and the time for the client to
coordinate with the quorum of key managers on djpeyahe cryptographic keys.

9. EVALUATION

We now evaluate the empirical performance of oylé@mented prototype of DFADE atop Amazon S3. It is
crucial that DFADE does not introduce substantitfgrmance or monetary overhead that will lead tbig
increase in data management costs. In addition,ctiiptographic operations of DFADE should only kgrin
insignificant computational overhead. Therefore, experiments aim to answer the following questioitbat is
the performance and monetary overhead of DFADE®féasible to use DFADE to provide file assuredetien
for cloud storage? Our experiments use Amazon S8Q\Bervers that reside in Singapore for our cloiodage
backend. Also, we deploy the client and the key amers within a departmental network. We evaluat&DE
on a per-file basis, that is, when it operatesromdividual file of different sizes. We can proponally scale our
results for the case of multiple files.

9.1 TIME PERFORMANCE OF FADE

We first measure the time performance of our DFADBtotype. In order to identify the time overhedd o
DFADE, we divide the running time of each measunen&o three components:

1. File transmission time, the uploading/downloadinge for the data file between the client and tloaid.

2. Metadata transmission time, the time for uploatlidgwnloading the metadata, which contains the
policy information and the cryptographic keys assieel with the file, between the client and theudio

3. Cryptographic operation time, the total time foyptographic operations, which includes the total
computational time used for performing AES and HMAG the file, and the time for the client to

coordinate with the quorum of key managers on dpeyahe cryptographic keys. We average each of
our measurement results over 10 different trials.

9.1.1 Evaluation of Basic Design

We evaluate the time performance of the basic desidFADE, in which we use a single key managet an
do not involve ABE.

Performance of file upload/download operations:

In this experiment, we measure the running tim¢heffile upload and download operations for differile
sizes (including 1KB, 3KB, 10KB, 30KB, 100KB, 300KBMB, 3MB, and 10MB).

100 100

Fila fransmission —=— File transmission —<—
Metadata transmission --+ -- Matadata transmisson --—+--

10 F Caypto operations --0-- - 10
-0

L Crypic operations --0---
i 1 /

= 1F __,_-3"———,..-—/ = E
e e s
I e T T BN i
— 01 - =~ 01
s .a-’
.o” el
oo | B 0.01 e D
Lo | e IO m Pl
i |
0.001 & 0.001
1 10 100 1000 10000 1 10 100 1000 10000
File size (KB} File size (KB}
(a) Upload (b) Download

9.1 Performance of file upload / download operation
Figure 9.1 shows the results. First, the cryptolgi@apperation time increases with the file sizejntyadue to
the symmetric-key encryption applied to a largée. fNevertheless, we find that in all cases of fijgoad /
download operations, the time of cryptographic apens is no more than 0.2s (for a file size withdMB), and
accounts for no more than 2.6% of the file transioistime. We expect that DFADE only introducesrealt time
overhead in cryptographic operations as compareidetdile transmission time, where the latter isvitable even
without DFADE.

220

E-ISSN: 2321—9637
Volume 1, Issue 5, December 2013

International Journal of Research in Advent Tecimology

Available Online at:http://www.ijrat.org

Also, the metadata transmission time is alwaysratdu2s, regardless of the file size. This is etgumbcsince
the metadata file only stores the policy informatand cryptographic keys, both of which are indejean of the
data files. The file transmission time is compagabl the metadata transmission time for small fikswever, for
files larger than 100KB, the file transmission timecomes the dominant factor. For instance, toalor
download a 10MB file the sum of the metadata trassion time and the cryptographic operation timettflare
due to DFADE) account for 4.1% and 0.7% of theltitae, respectively.

Note that the upload and download operations ayenmetric and use different times to complete the
operations. Nevertheless, the performance overloda@FADE drops when the size of the data file being
protected is large enough, for example, on the imggascale.

10.CONCLUSION

We propose a cloud storage system called DFADEghvhims to provide assured deletion for files et
hosted by today’s cloud storage services. We ptdbendesign of policy-based file assured deletionywhich
files are assuredly deleted and made unrecovefaplanyone when their associated file access psliai@
revoked. We present the essential operations optagyaphic keys so as to achieve policy-basedafiisured
deletion. We implement a prototype of DFADE to destoate its practicality, and empirically study its
performance overhead when it works with Amazon ©8r experimental results provide insights into the
performance-security trade-off when DFADE is depldyn practice.

REFERENCES

[1] Yang Tang, Patrick P. C. Lee, John C. S. Lui, iR&kerlman, “Secure Overlay Cloud Storage with Asdgentrol and
Assured Deletion”, IEEE TRANSACTIONS AND DEPENDABLAND SECURE COMPUTING VOL.9 NO.6 ,2012.

[2] Amazon. Case Studies. http://aws.amazon.contisokicasestudies/#backup.

[3] Amazon. Smug Mug Case Study: Amazon Web Servibétp://aws.amazon.com/solutions/case-studieg/amg/, 2006.

[4] Amazon S3. http://aws.amazon.com/s3, 2010.

[5] M. Armbrust, A. Fox, R. Griffith, A. D. JosepR. Katz, A. Konwinski, G. Lee, D. Patterson, A. RahKi Stoica, and M.
Zaharia. A View of Cloud Computingomm. of the ACM, 53(4):50-58, Apr 2010.

[6] G. Ateniese, R. D. Pietro, L. V. Mancini, and Gsudik. Scalable and Efficient Provable Data Pssisa. InProc. of
SecureComm, 2008.

[7] J. Bethencourt, A. Sahai, and B. Waters. Ciphéfeticy Attribute-Based Encryption. IRroc. of IEEE Symp. on
Security and Privacy, May 2006.

[8] A. Boldyreva, V. Goyal, and V. Kumar. Identityabed Encryption with Efficient Revocation. Rroc. of ACM CCS
2008.

[9] T. Dierks and E. Rescorla. The transport laysusity (tls) protocol version 1.2, Aug 2008. RFC 624

[10] Dropbox. http://mww.dropbox.com, 2010.

[11] R. Geambasu, J. P. John, S. D. Gribble, T. Kolamd H. M. Levy. Keypad: Auditing File System fdobile Devices.
In Proc. Of EuroSys, April 2011.

[12] R. Geambasu, T. Kohno, A. Levy, and H. M. LeManish: Increasing Data Privacy with Self-Desting Data. In
Proc. Of USENIX Security Symp., Aug 2009.

[13] V. Goyal, O. Pandey, A. Sahai, and B. Water#tridute-Based Encryption for Fine-Grained Access t@unof
Encrypted Data. IiProc. of ACM CCS, 2006.

[14] P. Gutmann. Secure deletion of data from magrad solid-state memory. Proc. of USENIX Security Symp., 1996.

[15] JungleDisk. http://www.jungledisk.com/, 2010.

[16] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Myaand K. Fu. Plutus: Scalable Secure File ShapmdJntrusted
Storage. IrProc. of USENIX FAST, 2003.

[17] S. Kamara and K. Lauter. Cryptographic Cloudr&ge. InProc. of Financial Cryptography: Workshop on Real-Life
Cryptographic Protocols and Sandardization, 2010.

[18] LibAWS++. http://aws.28msec.com/, 2010.

[19] A. J. Menezes, P. C. van Oorschot, and S. Astare.Handbook of Applied Cryptography. CRC Press, Oct 1996.

[20] S. Nair, M. T. Dashti, B. Crispo, and A. S. Tahaum. A Hybrid PKI-IBC Based Ephemerizer Systdfi.P
International Federation for Information Processing, 232:241-252, 2007.

[21] Nasuni. Nasuni Announces New Snapshot Reteiigrttionality in Nasuni Filer; Enables Fail-SafeeMeletion in the
Cloud, Mar 2011. http://www.nasuni.com/news/pressases/nasuniannounces-new-snapshot-retentiondnalty-in-
nasuni-filerenables-fail-safe-file-deletion-in-tokud/.

221

E-ISSN: 2321—9637
Volume 1, Issue 5, December 2013

International Journal of Research in Advent Tecimology

Available Online at:http://www.ijrat.org

[22]C. Wang, Q. Wang, K. Ren, and W. Lou. Privacyspreing public auditing for storage security inud computing. In
Proc. of IEEE INFOCOM, Mar 2010.

[23] R. Perlman. File System Design with Assuredele InISOC NDSS, 2007.

[24] R. Perlman, C. Kaufman, and R. Perlner. Privaoyserving DRM. InDtrust, 2010.

[25] M. Pirretti, P. Traynor, P. McDaniel, and B. Wes. Secure Attribute-Based SystemsPiac. of ACM CCS, 2006.

[30] W. Wang, Z. Li, R. Owens, and B. Bhargava. Seaua Efficient Access to Outsourced DataAGM CCSW, Nov
20009.

[31] W. Stallings Cryptography and Network Security. Prentice Hall, 2006.

[32] Y. Tang, P. P. C. Lee, J. C. S. Lui, and R. PaniniFADE: Secure Overlay Cloud Storage with Fileuksd Deletion. In
Proc. Of ICST SecureComm, 2010.

[33] S. Yu, C. Wang, K. Ren, and W. Lou. AttributesBd Data Sharing with Attribute Revocation. Rroc. of ACM
ASIACCS, Apr 2010.

[34] M. Vrable, S. Savage, and G. M. Voelker. Cumsukilesystem backup to the clodCM Trans. on Sorage, 5(4), Dec
20009.

222

