
International Journal of Research in Advent Technology, Vol.12, No.3, September 2024

E-ISSN: 2321-9637

Available online at www.ijrat.org

1

doi: 10.32622/ijrat. 1203202403



Abstract— As computational problems grow in

complexity and scale, advancements in graph processing

frameworks and parallel computing systems become

increasingly crucial. This paper provides a comprehensive

survey of recent developments in these areas, focusing on

scalable and efficient systems for both graph processing and

parallel computing. We analyze key frameworks such as

Ligra, Pregel, and BLADYG, evaluating their efficiency,

scalability, and applicability to various graph processing

tasks and parallel computing environments. Additionally, we

address gaps in existing frameworks and systems, including

challenges in handling highly dynamic graphs, the need for

refined efficiency metrics, and the integration of user-level

and kernel-level management. We explore emerging trends in

the field, such as advancements in dynamic graph processing,

the development of comprehensive benchmarking

techniques, and innovative operating system architectures

like the Multi kernel model. By providing a detailed

overview of current advancements and identifying areas for

further research, this survey aims to guide future efforts and

contribute to the development of more efficient and scalable

frameworks for graph processing and parallel computing.

Index Terms— Distributed Systems, Efficiency, Graph

Processing, Multicore Operating Systems, Scalability,

User-Level Threads.

I. INTRODUCTION

Parallel computing has emerged as a powerful solution to

address the limitations of CPU-based algorithms, particularly

for computational problems that demand rapid processing of

large datasets [25]. These problems span across diverse fields

such as natural sciences, information technology, and

structural mechanics, where the sheer scale and complexity

of the tasks often render traditional multi-core CPU

algorithms insufficient. The advent of massive parallel

processors, notably the Graphics Processing Unit (GPU), has

revolutionized the field by offering impressive parallel

performance, capable of handling thousands of threads

simultaneously. Originally developed to meet the demands of

real-time, photorealistic graphics in video games, GPUs have

Manuscript revised on September 30, 2024 and published on October

10, 2024

Niketa Penumajji, Software Engineer at CivicPlus Manhattan, Kansas,

United States.

become indispensable in scientific computing, achieving

significant speedups over classic CPU-based solutions for a

wide range of parallelizable tasks. The success of parallel

computing hinges on a deep understanding of the underlying

hardware and programming models. GPU computing also

introduces additional challenges, such as memory latency

[26], parallel memory access patterns, and synchronization,

all of which must be carefully managed to implement

efficient parallel algorithms. In parallel with the rise of

general parallel computing, graph processing has become

increasingly vital due to the growing importance of

graph-structured data across various fields [21]. The size and

complexity of these graphs, representing everything from

social networks to molecular structures, have skyrocketed,

demanding advanced processing frameworks. Traditional

data-parallel computing systems, such as MapReduce [22],

are often inadequate for graph processing due to their

inability to efficiently handle iterative graph algorithms. This

limitation has led to the development of specialized graph

processing frameworks like Pregel[6], Spark[28], and

PowerGraph [27], each optimized for different scenarios and

design goals. However, a one-size-fits-all solution is elusive,

requiring trade-offs between conflicting goals, such as

memory efficiency and processing speed. As the demand for

processing large-scale graphs continues to grow,

understanding the strengths and limitations of various graph

processing frameworks becomes crucial for optimizing

performance and selecting the right tools for specific

applications. In this paper, we aim to explore and synthesize

the latest advancements in scalable and efficient systems for

both parallel computing and graph processing. Given the

rapid evolution of these fields and their critical importance

across a wide range of applications, our motivation is to

provide a comprehensive overview that highlights the key

frameworks, algorithms, and architectural considerations that

drive performance improvements. By examining the

strengths and limitations of various approaches, we seek to

guide researchers and practitioners in selecting the most

appropriate solutions for their specific computational needs,

ultimately contributing to the ongoing development of more

powerful and efficient computing systems.

II. GRAPH PROCESSING FRAMEWORKS

In the realm of graph processing and parallel computing,

several key frameworks and algorithms have been developed

to address the challenges of scalability, efficiency, and

performance. Ligra [1] is one such framework, designed

specifically for shared-memory parallel/multicore machines.

It simplifies graph traversal algorithms by providing routines

A Survey on Efficient and Scalable Graph processing

Frameworks and Architectures

Niketa Penumajji

International Journal of Research in Advent Technology, Vol.12, No.3, September 2024

E-ISSN: 2321-9637

Available online at www.ijrat.org

2

doi: 10.32622/ijrat. 1203202403

for mapping over edges and vertices, which leads to

performance levels that are close to highly optimized code.

Ligra's lightweight nature and support for two distinct data

types make it a robust choice for efficient graph processing in

a shared-memory environment.

Moving to large-scale graph processing on clusters, Pregel

[6] offers a vertex-centric model that is inspired by the Bulk

Synchronous Parallel (BSP) model. It excels in handling

massive graphs, particularly in contexts like web and social

networks, by supporting message passing and fault tolerance.

Pregel's architecture is designed to tackle the practical

challenges posed by large graphs, making it a powerful tool

for distributed graph processing.

BLADYG [20] addresses the complexities of handling

large dynamic graphs through a block-centric approach.

Implemented on the Akka framework, BLADYG is designed

to efficiently process incremental changes without needing a

complete restart, making it highly effective for distributed

k-core decomposition and graph partitioning tasks. Its ability

to scale and manage dynamism is a significant advantage in

environments where graph structures are frequently updated.

For dense graphs, the Filtering algorithm [4] presents a

novel approach to reducing input size in a distributed manner.

By leveraging the MapReduce framework, it enables the

solution of large graph problems on a single machine,

significantly speeding up computations. This technique is

particularly useful in scenarios where dense graph structures

pose computational challenges.

When it comes to optimizing classic graph algorithms like

Breadth-First Search (BFS), the Scalable BFS algorithm [17]

demonstrates impressive performance on multicore

processors. It showcases high processing rates and scalability

on large-scale graphs, making it competitive with

supercomputing systems, and ensuring that BFS can be

efficiently executed even on extensive graph datasets.

Additionally, fast parallel algorithms for BFS and

st-connectivity [18], as explored on the Cray MTA-2, further

highlight the advances in parallel graph algorithms. These

algorithms tackle the inherent challenges of parallelism in

graph processing, providing experimental evidence of their

effectiveness across different graph classes.

Moreover, frameworks like PowerGraph [27] have been

pivotal in distributed graph-parallel computation.

PowerGraph introduces abstractions to handle the irregular

structures of natural graphs, optimizing data layout and

computation for power-law graphs in distributed

environments. Its design allows for the efficient execution of

graph algorithms, offering significant performance

improvements over other distributed systems like GraphLab

and Pregel.

Lastly, Resilient Distributed Datasets (RDDs),

implemented in Spark [28], provide a robust solution for

fault-tolerant in-memory computations on large clusters.

RDDs are particularly valuable for iterative algorithms and

interactive data mining, offering significant performance

gains over traditional systems like Hadoop, especially in the

context of big data analytics.

These frameworks and algorithms collectively represent the

advancements in scalable and efficient graph processing and

parallel computing, each addressing specific challenges and

offering unique solutions for large-scale data processing

tasks.

III. PARALLEL COMPUTING ARCHITECTURES AND

EFFICIENCY METRICS

In exploring the diverse architectures and efficiency metrics

that underpin parallel computing, several innovative models

and systems have been proposed to address the growing

demands of scalability, adaptability, and performance in

contemporary hardware environments. The Multikernel

model [7] introduces a paradigm shift by treating a machine

as a network of independent cores. In this model, traditional

operating system (OS) functionalities are distributed across

processes that communicate via message-passing rather than

shared memory. This approach is exemplified by the

implementation of the Barrelfish OS, which demonstrates

remarkable scalability and adaptability, making it a

promising solution for modern multicore processors.

Expanding on the theme of scalability, the Factored

Operating System (FOS) [12] is designed to manage

manycore systems effectively. FOS emphasizes scalability

through space-sharing and message-passing, distinguishing

itself from traditional OS architectures, including

microkernel and distributed operating systems. By

addressing the specific challenges posed by high core counts,

FOS offers a robust framework for managing the

complexities of manycore processors.

The Threads system [13] offers a practical solution for

concurrent programming by providing abstractions that

facilitate thread management alongside system concepts such

as I/O, interrupts, and exceptions. This system is particularly

notable for its low-cost implementation, which adapts

efficiently to varying processor counts, ensuring that

concurrent programs can scale effectively across different

hardware configurations.

In the realm of data-intensive scalable computing (DISC)

systems, efficiency is a critical concern. Anderson and

Tucek, in their examination of Efficiency in DISC Systems,

[2] highlight the inefficiencies that plague current systems

and argue for a reevaluation of efficiency metrics. They

emphasize the importance of addressing reliability, energy

consumption, and cost issues to enhance the overall

performance and scalability of DISC systems.

User-level thread management [3] represents another

significant advancement in parallel computing. By

combining the benefits of user-level and kernel-level threads,

this approach introduces a new kernel interface and

user-level thread package that effectively addresses critical

section handling and processor allocation. This innovation

allows for more efficient thread management and better

resource utilization in parallel computing environments.

Processor scheduling [10] is another crucial aspect of parallel

computing, with studies comparing different scheduling

approaches. The examination of Processor Scheduling in

shared-memory multiprocessors reveals that dynamic

scheduling generally outperforms static methods. Notably,

the static "run to completion" scheme is shown to have

advantages over round-robin scheduling, highlighting the

importance of selecting appropriate scheduling strategies for

optimizing performance.

International Journal of Research in Advent Technology, Vol.12, No.3, September 2024

E-ISSN: 2321-9637

Available online at www.ijrat.org

3

doi: 10.32622/ijrat. 1203202403

Finally, the COST metric [9] offers a valuable tool for

evaluating the scalability of big data platforms relative to

single-threaded performance. By identifying performance

gaps and emphasizing the need for improved baselines and

benchmarks, the COST metric underscores the importance of

continuous improvement in scalable systems. It serves as a

critical measure for tracking progress in the development of

efficient and scalable big data platforms. These various

models, systems, and metrics collectively contribute to the

advancement of parallel computing, each addressing specific

challenges related to scalability, efficiency, and performance.

Together, they form a comprehensive framework for

understanding and improving the architectures that power

modern computing environments.

IV. COMMUTATIVITY AND PARALLEL PROCESSING

In the domain of parallel computing, understanding and

optimizing the behavior of processes and operations is

essential for achieving scalable and efficient systems.

Commutativity analysis plays a crucial role in this context, as

it focuses on ensuring that operations can be reordered or

executed concurrently without conflicts, which is vital for

scalability.

The COMMUTER tool [8] represents a significant

advancement in this area, as it automates the analysis of

interface commutativity. By generating conditions and test

cases, COMMUTER ensures that implementations are

conflict-free, thereby supporting scalable designs. The tool

leverages symbolic execution to account for all possible

behaviors, meticulously checking implementations to

guarantee that operations can commute effectively, thus

enabling more robust and scalable parallel systems.

Alongside commutativity analysis, process control [11] in

multi programmed systems is another key factor that

influences performance in parallel computing environments.

A detailed examination of Process Control in

Multiprogrammed Systems reveals the substantial impact

that controlling the number of runnable processes can have

on system performance. By optimizing the number of active

processes, the study shows that significant performance gains

can be achieved, particularly in multi programmed parallel

systems where resource contention and scheduling

complexities are common. The paper also highlights areas for

future research, particularly in optimizing process schedulers

and kernel operations, which could further enhance system

performance by fine-tuning how processes are managed and

executed in parallel computing environments.

Together, these advancements in commutativity analysis

and process control contribute to the broader goal of building

scalable and efficient parallel systems. By automating the

detection of commutative operations and refining process

management strategies, these approaches help to overcome

some of the key challenges associated with parallel

computation, paving the way for more effective and

high-performing systems.

V. GAPS AND OPEN QUESTIONS

The field of parallel computing is continually evolving, yet

several critical gaps and open questions remain, each

highlighting areas where further research and innovation are

necessary to advance the state of the art. Scalability and

Dynamic Adaptation are particularly challenging in highly

dynamic environments, where existing frameworks often

struggle to keep pace with continuous changes. Although

approaches like BLADYG’s incremental updates represent

significant progress, there is still a need to develop methods

that can handle ongoing adaptations more efficiently.

Enhancing the adaptability of frameworks to evolving graph

structures will be crucial for ensuring their relevance and

effectiveness in real-world applications. Another pressing

issue lies in Efficiency Metrics and Benchmarking. The

metrics currently in use may not fully capture the complexity

and performance of modern systems. The development of

comprehensive benchmarks, such as the COST metric, marks

a step forward in evaluating system performance. However,

future research must refine these metrics and establish

standardized benchmarks that provide a more nuanced and

accurate assessment of efficiency across different systems.

The Integration of User-Level and Kernel-Level

Management presents another set of challenges. While

hybrid models that combine the strengths of user-level

threads with kernel support are emerging, they still face

difficulties in addressing critical section issues and processor

allocation policies. Continued research in this area is

essential for developing more effective and scalable thread

management strategies that can leverage the benefits of both

user-level and kernel-level approaches. In the realm of

operating systems, the Multikernel and Distributed Operating

Systems models, such as the Multikernel model and Factored

Operating Systems (FOS), offer innovative solutions for

managing manycore systems. However, these models are not

without their challenges, particularly in terms of scalability

and completeness. To fully realize their potential, further

research must focus on improving these models, addressing

their current limitations, and adapting them to the

increasingly complex hardware configurations of modern

computing environments. Commutativity and Parallel

Processing is another area where ongoing advancements are

needed. Tools for commutativity analysis and testing, like the

COMMUTER tool, are evolving, yet there remains

significant room for improvement. Future work should aim to

enhance these tools, integrate them more deeply into broader

system design practices, and ensure their effectiveness across

a variety of parallel processing scenarios. Finally, the trend

towards Domain-Specific Graph Processing highlights the

importance of tailoring frameworks to specific applications.

As computational demands become more specialized, there is

a growing need for frameworks and algorithms designed with

particular domains in mind. Future research should focus on

developing specialized algorithms that leverage

domain-specific knowledge to optimize performance and

address the unique computational challenges posed by

different fields. Each of these gaps and open questions

underscores the complexity of parallel computing and the

ongoing need for research and innovation. By addressing

these challenges, the field can continue to evolve, offering

International Journal of Research in Advent Technology, Vol.12, No.3, September 2024

E-ISSN: 2321-9637

Available online at www.ijrat.org

4

doi: 10.32622/ijrat. 1203202403

more robust, efficient, and scalable solutions for a wide range

of applications.

VI. EMERGING TRENDS

Emerging Trends in parallel computing reflect significant

shifts in how researchers and practitioners are addressing

contemporary challenges. Scalability in Dynamic

Environments is becoming a major focus, with advancements

such as those seen in BLADYG demonstrating notable

progress. This trend is driven by the need to manage graphs

that undergo frequent changes more effectively. Future

research should build on these developments to enhance

scalability and ensure that frameworks can adapt seamlessly

to dynamic environments where data evolves continuously.

Advanced Benchmarking Techniques are increasingly

crucial as the demand for precise performance evaluation

grows. Techniques like the COST metric represent a shift

towards more comprehensive and robust benchmarking.

Emerging research should prioritize the creation of metrics

and benchmarks that capture a full spectrum of system

efficiency, providing a clearer picture of performance and

enabling more accurate comparisons between different

systems. Hybrid Thread Management Models are gaining

traction as researchers explore ways to combine the benefits

of user-level and kernel-level thread management. This area

of development aims to balance performance with flexibility

while addressing critical issues related to critical sections and

processor allocation. Future work should investigate new

hybrid models that offer enhanced performance and

adaptability for concurrent programming. The exploration of

Innovative OS Architectures, such as the Multikernel model

and Factored Operating Systems (FOS), signifies a move

towards distributed and message-passing approaches to

operating system design. These new architectures aim to

improve scalability and performance by distributing

traditional OS functionalities. Continued research should

refine these models to address their limitations and adapt

them to modern, complex hardware configurations.

Enhanced Commutativity Tools are also a notable trend,

driven by the increasing importance of commutativity in

parallel processing. Tools like COMMUTER are evolving to

address the challenges of ensuring conflict-free parallel

operations. Future developments should focus on improving

these tools, ensuring their effectiveness across diverse

parallel processing scenarios, and integrating them more

deeply into system design practices. Finally, there is a

growing emphasis on Specialized Graph Processing

Algorithms tailored to specific domains. This trend reflects

the need for algorithms optimized for particular applications

and contexts. Future research should concentrate on

developing domain-specific graph processing techniques that

leverage specialized knowledge to optimize performance and

tackle unique computational challenges.

These emerging trends highlight the ongoing evolution in

parallel computing, with each area representing a crucial step

towards more efficient, scalable, and adaptable computing

solutions.

VII. CONCLUSION

As we navigate the rapidly evolving landscape of parallel

computing, several key advancements and emerging trends

are shaping the future of high-performance systems and

algorithms. This survey has highlighted significant progress

in various areas, each contributing to a more scalable,

efficient, and versatile computational environment The

survey underscores the dynamic and multifaceted nature of

parallel computing research. The integration of novel

frameworks, advanced architectures, and emerging trends

illustrates the continuous evolution of the field, driving

forward the capabilities and performance of computational

systems. The ongoing exploration of these areas will be

crucial in addressing the future demands of high-performance

computing and ensuring that emerging technologies can

effectively meet the diverse needs of various applications.

REFERENCES

[1] Shun, Julian, and Guy E. Blelloch. "Ligra: a lightweight graph
processing framework for shared memory." Proceedings of the 18th

ACM SIGPLAN symposium on Principles and practice of parallel

programming. 2013
[2] Anderson, Eric, and Joseph Tucek. "Efficiency matters!." ACM

SIGOPS Operating Systems Review 44.1 (2010): 40-45.

[3] Anderson, Thomas E., et al. "Scheduler activations: Effective kernel
support for the user-level management of parallelism." ACM

Transactions on Computer Systems (TOCS) 10.1 (1992): 53-79.

[4] Lattanzi, Silvio, et al. "Filtering: a method for solving graph problems
in mapreduce." Proceedings of the twenty-third annual ACM

symposium on Parallelism in algorithms and architectures. 2011.
[5] Baumann, Andrew, et al. "Your computer is already a distributed

system. Why isn't your OS?." HotOS. Vol. 9. 2009.

[6] Malewicz, Grzegorz, et al. "Pregel: a system for large-scale graph
processing." Proceedings of the 2010 ACM SIGMOD International

Conference on Management of data. 2010.

[7] Baumann, Andrew, et al. "The multikernel: a new OS architecture for
scalable multicore systems." Proceedings of the ACM SIGOPS 22nd

symposium on Operating systems principles. 2009.

[8] Clements, Austin T., et al. "The scalable commutativity rule:
Designing scalable software for multicore processors." ACM

Transactions on Computer Systems (TOCS) 32.4 (2015): 1-47.

[9] McSherry, Frank, Michael Isard, and Derek G. Murray. "Scalability!
but at what {COST}?." 15th Workshop on Hot Topics in Operating

Systems (HotOS XV). 2015.

[10] Zahorjan, John, and Cathy McCann. "Processor scheduling in shared
memory multiprocessors." Proceedings of the 1990 ACM

SIGMETRICS Conference on Measurement and Modeling of

Computer Systems. 1990.
[11] Tucker, Andrew, and Anoop Gupta. "Process control and scheduling

issues for multiprogrammed shared-memory

multiprocessors." Proceedings of the twelfth ACM symposium on

Operating systems principles. 1989.

[12] Wentzlaff, David, and Anant Agarwal. "Factored operating systems

(fos) the case for a scalable operating system for multicores." ACM
SIGOPS Operating Systems Review 43.2 (2009): 76-85.

[13] Doeppner, Thomas W. "Threads: A system for the support of

concurrent programming." Technical Report (1987).
[14] Lumsdaine, Andrew, et al. "Challenges in parallel graph

processing." Parallel Processing Letters 17.01 (2007): 5-20.

[15] Boldi, Paolo, and Sebastiano Vigna. "The webgraph framework I:
compression techniques." Proceedings of the 13th international

conference on World Wide Web. 2004.

[16] Gamsa, Benjamin, et al. "Tornado: Maximizing locality and
concurrency in a shared memory multiprocessor operating system."

(1999).

[17] Agarwal, Virat, et al. "Scalable graph exploration on multicore
processors." SC'10: Proceedings of the 2010 ACM/IEEE International

Conference for High Performance Computing, Networking, Storage

and Analysis. IEEE, 2010.

International Journal of Research in Advent Technology, Vol.12, No.3, September 2024

E-ISSN: 2321-9637

Available online at www.ijrat.org

5

doi: 10.32622/ijrat. 1203202403

[18] Bader, David A., and Kamesh Madduri. "Designing multithreaded

algorithms for breadth-first search and st-connectivity on the Cray

MTA-2." 2006 International Conference on Parallel Processing
(ICPP'06). IEEE, 2006.

[19] Erwig, Martin. "Inductive graphs and functional graph
algorithms." Journal of Functional Programming 11.5 (2001):

467-492.

[20] Aridhi, Sabeur, Alberto Montresor, and Yannis Velegrakis.
"BLADYG: A graph processing framework for large dynamic

graphs." Big data research 9 (2017): 9-17.

[21] An Evaluation and Analysis of Graph Processing Frameworks on Five
Key Issues

[22] Elser, Benedikt, and Alberto Montresor. "An evaluation study of

bigdata frameworks for graph processing." 2013 IEEE International
Conference on Big Data. IEEE, 2013.

[23] Zhou, Shijie, et al. "Hitgraph: High-throughput graph processing

framework on fpga." IEEE Transactions on Parallel and Distributed
Systems 30.10 (2019): 2249-2264.

[24] Zhao, Yue, et al. "Evaluation and analysis of distributed graph-parallel

processing frameworks." Journal of Cyber Security and
Mobility (2014): 289-316.

[25] Navarro, Cristobal A., Nancy Hitschfeld-Kahler, and Luis Mateu. "A

survey on parallel computing and its applications in data-parallel
problems using GPU architectures." Communications in

Computational Physics 15.2 (2014): 285-329.

[26] Analysis of Multithreaded Architectures for Parallel Computing
[27] PowerGraph: Distributed Graph-Parallel Computation on Natural

Graphs

[28] Zaharia, Matei, et al. "Resilient distributed datasets: A
{Fault-Tolerant} abstraction for {In-Memory} cluster computing." 9th

USENIX symposium on networked systems design and implementation

(NSDI 12). 2012.

[29] Träff, Jesper Larsson. "An experimental comparison of two distributed
single-source shortest path algorithms." Parallel Computing 21.9

(1995): 1505-1532.
[30] Yoo, Andy, et al. "A scalable distributed parallel breadth-first search

algorithm on BlueGene/L." SC'05: Proceedings of the 2005

ACM/IEEE Conference on Supercomputing. IEEE, 2005.
[31] Seidel, Raimund. "On the all-pairs-shortest-path problem in

unweighted undirected graphs." Journal of computer and system

sciences 51.3 (1995): 400-403.
[32] Gazit, Hillel, and Gary L. Miller. "An improved parallel algorithm that

computes the BFS numbering of a directed graph." Information

Processing Letters 28.2 (1988): 61-65.
[33] Khorasani, Farzad, et al. "CuSha: vertex-centric graph processing on

GPUs." Proceedings of the 23rd international symposium on

High-performance parallel and distributed computing. 2014.
[34] Zhou, Shijie, Charalampos Chelmis, and Viktor K. Prasanna.

"High-throughput and energy-efficient graph processing on

FPGA." 2016 IEEE 24th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM). IEEE,

2016.

AUTHORS PROFILE

Niketa Penumajji, She is a Software Engineer at CivicPlus with a Master’s

degree in Computer Science. My professional journey has been deeply

rooted in developing innovative software solutions, but my passion for
research drives me beyond my boundaries of my day-to-day work. In my

spare time, I immerse myself in exploring emerging technologies,

algorithmic challenges, and theoretical aspects of computing.

