FEKETE-SZEGÖ INEQUALITY FOR CERTAIN SUBCLASSES OF ANALYTIC FUNCTIONS

NARINDER KAUR
Khalsa College, Patiala
(e-mail: k.narinder089@gmail.com)

Abstract

We introduce some classes of analytic functions, its subclasses and obtain sharp upper bounds of the functional $\left|a_{3}-\mu a_{2}^{2}\right|$ for the analytic function $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n},|z|<1$ belonging to these classes and subclasses.

KEYWORDS: Univalent functions, Starlike functions, Close to convex functions and bounded functions.

MATHEMATICS SUBJECT CLASSIFICATION: 30C50

1. Introduction : Let $\boldsymbol{\mathcal { A }}$ denote the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the unit disc $\mathbb{E}=\{z:|z|<1 \mid\}$. Let \boldsymbol{S} be the class of functions of the form (1.1), which are analytic univalent in \mathbb{E}.

In 1916, Bieber Bach ([1], [2]) proved that $\left|a_{2}\right| \leq 2$ for the functions $f(z) \in \boldsymbol{\mathcal { S }}$. In 1923, Löwner [10] proved that $\left|a_{3}\right| \leq 3$ for the functions $f(z) \in \boldsymbol{S}$..

With the known estimates $\left|a_{2}\right| \leq 2$ and $\left|a_{3}\right| \leq 3$, it was natural to seek some relation between a_{3} and $a_{2}{ }^{2}$ for the class $\boldsymbol{\mathcal { S }}$, Fekete and Szegö[4] used Löwner's method to prove the following
well known result for the class \boldsymbol{S}.

$$
\begin{gather*}
\text { Let } f(z) \in \boldsymbol{\mathcal { S }} \text {, then } \\
\left|a_{3}-\mu a_{2}^{2}\right| \leq\left[\begin{array}{c}
3-4 \mu, \text { if } \mu \leq 0 \\
1+2 \exp \left(\frac{-2 \mu}{1-\mu}\right), \text { if } 0 \leq \mu \leq 1 \\
4 \mu-3, \text { if } \mu \geq 1
\end{array}\right. \tag{1.2}
\end{gather*}
$$

The inequality (1.2) plays a very important role in determining estimates of higher coefficients for some sub classes $\boldsymbol{\mathcal { S }}$ ([3], [9]).

Let us define some subclasses of \boldsymbol{S}.
We denote by S^{*}, the class of univalent starlike functions
$g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n} \in \mathcal{A}$ and satisfying the condition
$\operatorname{Re}\left(\frac{z g(z)}{g(z)}\right)>0, z \in \mathbb{E}$.
We denote by \mathcal{K}, the class of univalent convex functions
$h(z)=z+\sum_{n=2}^{\infty} c_{n} z^{n}, z \in \boldsymbol{\mathcal { A }}$ and satisfying the condition
$R e \frac{\left(\left(z h^{\prime}(z)\right)\right.}{h^{\prime}(z)}>0, z \in \mathbb{E}$.
A function $f(z) \in \boldsymbol{A}$ is said to be close to convex if there exists $g(z) \in S^{*}$ such that
$\operatorname{Re}\left(\frac{z f^{\prime}(z)}{g(z)}\right)>0, z \in \mathbb{E}$.
The class of close to convex functions is denoted by C and was introduced by Kaplan [7] and it was shown by him that all close to convex functions are univalent.
$S^{*}(A, B)=\left\{f(z) \in \mathcal{A} ; \frac{z f^{\prime}(z)}{f(z)} \prec \frac{1+A z}{1+B z},-1 \leq B<\right.$
$A \leq 1, z \in \mathbb{E}\}$
$\mathcal{K}(A, B)=\left\{f(z) \in \mathcal{A} ; \frac{\left(z f^{\prime}(z)\right)^{\prime}}{f^{\prime}(z)}<\frac{1+A z}{1+B z},-1 \leq B<\right.$
$A \leq 1, z \in \mathbb{E}\}$
It is obvious that $S^{*}(A, B)$ is a subclass of S^{*} and $\mathcal{K}(A, B)$ is a subclass of \mathcal{K}.

We introduce a new subclass as $\{f(z) \in$ $\boldsymbol{A} ;(1-\alpha)\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{\beta}+\alpha\left(\frac{\left(z f^{\prime}(z)\right)}{f^{\prime}(z)}\right)^{1-\beta}<\frac{1+z}{1-z} ; z \in$ $\mathbb{E}\}$ and we will denote this class as $S^{*}\left(f, f^{\prime}, \alpha, \beta\right)$.
We will deal with two subclasses of $S^{*}\left(f, f^{\prime}, \alpha, \beta\right)$ defined as follows in our next paper:
$S^{*}\left(f, f^{\prime}, \alpha, \beta, A, B\right)=\{f(z) \in \mathcal{A} ;(1-$
$\left.\alpha)\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{\beta}+\alpha\left(\frac{\left(z f^{\prime}(z)\right)}{f^{\prime}(z)}\right)^{1-\beta}<\frac{1+A z}{1+B z} ; z \in \mathbb{E}\right\}$
$S^{*}\left(f, f^{\prime}, \alpha, \beta, \delta\right)=\left\{f(z) \in \boldsymbol{\mathcal { A }} ;(1-\alpha)\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{\beta}+\right.$
$\left.\alpha\left(\frac{\left(z f^{\prime}(z)\right)}{f^{\prime}(z)}\right)^{1-\beta}<\left(\frac{1+z}{1-z}\right)^{\delta} ; z \in \mathbb{E}\right\}$
Symbol < stands for subordination, which we define as follows:

Principle of Subordination: Let $f(z)$ and $F(z)$ be two functions analytic in \mathbb{E}. Then $f(z)$ is called subordinate to $\mathrm{F}(\mathrm{z})$ in \mathbb{E} if there exists a function $w(z)$ analytic in \mathbb{E} satisfying the conditions $w(0)=$ 0 and $|w(z)|<1$ such that $f(z)=F(w(z)) ; z \in \mathbb{E}$ and we write $f(z)<F(z)$.

By U, we denote the class of analytic bounded functions of the form $w(z)=\sum_{n=1}^{\infty} d_{n} z^{n}, w(0)=$ $0,|w(z)|<1$.

It is known that $\left|d_{1}\right| \leq 1,\left|d_{2}\right| \leq 1-\left|d_{1}\right|^{2}$.
2. PRELIMINARY LEMMAS: For $0<c<1$, we write $w(z)=\left(\frac{c+z}{1+c z}\right)$ so that

$$
\begin{equation*}
\frac{1+w(z)}{1-w(z)}=1+2 c z+2 z^{2}+\cdots \tag{2.1}
\end{equation*}
$$

3. MAIN RESULTS

THEOREM 3.1: Let $f(z) \in S^{*}\left(f, f^{\prime}, \alpha, \beta\right)$., then

$$
\left.\begin{array}{l}
\left|a_{3}-\mu a_{2}^{2}\right| \leq \\
\left\{\begin{array}{c}
\frac{1}{\{(1-\alpha) \beta+2 \alpha(1-\beta))^{2}} \\
\text { if } \left.\mu \leq A ;{ }^{\frac{8 \alpha+3 \beta+4 \alpha^{2}-12 \alpha^{2} \beta-9 \alpha \beta^{2}-7 \alpha \beta}{(3 \alpha+\beta-\alpha \alpha \beta)}}-4 \mu\right], \\
\frac{1}{3 \alpha+\beta-4 \alpha \beta} \\
\text { if } A \leq \mu \leq B ;
\end{array}\right] \\
\frac{1}{\{(1-\alpha) \beta+2 \alpha(1-\beta)\}^{2}}\left[4 \mu-\frac{8 \alpha+3 \beta+4 \alpha^{2}-12 \alpha^{2} \beta-9 \alpha \beta^{2}-7 \alpha \beta}{(3 \alpha+\beta-4 \alpha \beta)}\right], \\
\text { if } \mu \geq B(3.3)
\end{array}\right] \begin{gathered}
\text { Where } A=\frac{8 \alpha+3 \beta+4 \alpha^{2}-\beta^{2}-3 \alpha \beta^{2}-7 \alpha \beta}{4(3 \alpha+\beta-4 \alpha \beta)} \text { and } \\
B=\frac{8 \alpha+3 \beta+8 \alpha^{2}+\beta^{2}-24 \alpha^{2} \beta-6 \alpha \beta^{2}-7 \alpha \beta}{4(3 \alpha+\beta-4 \alpha \beta)}
\end{gathered}
$$

The results are sharp.

Proof: By definition of $S^{*}\left(f, f^{\prime}, \alpha, \beta\right)$, we have
$(1-\alpha)\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{\beta}+\alpha\left(\frac{\left(z f^{\prime}(z)\right)}{f^{\prime}(z)}\right)^{1-\beta}=$
$\frac{1+w(z)}{1-w(z)} ; w(z) \in U$.

Expanding the series (3.4), we get

$$
\begin{align*}
& (1-\alpha)\left\{1+\beta a_{2} z+\left(2 \beta a_{3}+\frac{\beta(\beta-3)}{2} a_{2}^{2}\right) z^{2}+--\right. \\
& -\}+\alpha\left\{1+2(1-\beta) a_{2} z+2(1-\beta)\left(3 a_{3}-(\beta+\right.\right. \\
& \left.\left.2) a_{2}^{2}\right) z^{2}+---\right\}=\left(1+2 c_{1} z+2\left(c_{2}+c_{1}^{2}\right) z^{2}+\right. \\
& ---) \tag{3.5}
\end{align*}
$$

Identifying terms in (3.5), we get
$a_{2}=\frac{2}{(1-\alpha) \beta+2 \alpha(1-\beta)} c_{1}$
$a_{3}=$
$\frac{1}{3 \alpha+\beta-4 \alpha \beta} c_{2}+\frac{8 \alpha+3 \beta+4 \alpha^{2}-12 \alpha^{2} \beta-9 \alpha \beta^{2}-7 \alpha \beta}{(3 \alpha+\beta-4 \alpha \beta)\{(1-\alpha) \beta+2 \alpha(1-\beta)\}^{2}} c_{1}{ }^{2}$.

From (3.6) and (3.7), we obtain
$a_{3}-\mu a_{2}^{2}=$
$\frac{1}{3 \alpha+\beta-4 \alpha \beta} c_{2}+\left[\frac{8 \alpha+3 \beta+4 \alpha^{2}-12 \alpha^{2} \beta-9 \alpha \beta^{2}-7 \alpha \beta}{(3 \alpha+\beta-4 \alpha \beta)\{(1-\alpha) \beta+2 \alpha(1-\beta)\}^{2}}-\right.$
$\left.\frac{4}{\{(1-\alpha) \beta+2 \alpha(1-\beta)\}^{2}} \mu\right] c_{1}^{2}$.

Taking absolute value, (3.8) can be rewritten as
$\left|a_{3}-\mu a_{2}^{2}\right| \leq$
$\frac{1}{3 \alpha+\beta-4 \alpha \beta}\left|c_{2}\right|+$
$\frac{1}{\{(1-\alpha) \beta+2 \alpha(1-\beta)\}^{2}} \left\lvert\, \frac{8 \alpha+3 \beta+4 \alpha^{2}-12 \alpha^{2} \beta-9 \alpha \beta^{2}-7 \alpha \beta}{(3 \alpha+\beta-4 \alpha \beta)}-\right.$
$4 \mu\left|\left|c_{1}^{2}\right|\right.$.

Using (1.9) in (3.9), we get
$\left|a_{3}-\mu a_{2}^{2}\right| \leq$
$\frac{1}{3 \alpha+\beta-4 \alpha \beta}\left(1-\left|c_{1}\right|^{2}\right)+$
$\left.\frac{1}{\{(1-\alpha) \beta+2 \alpha(1-\beta)\}^{2}}\left|\frac{8 \alpha+3 \beta+4 \alpha^{2}-12 \alpha^{2} \beta-9 \alpha \beta^{2}-7 \alpha \beta}{(3 \alpha+\beta-4 \alpha \beta)}-4 \mu\right| \right\rvert\, c_{1}^{2}=$
$\frac{1}{3 \alpha+\beta-4 \alpha \beta}+$
$\frac{1}{\{(1-\alpha) \beta+2 \alpha(1-\beta)\}^{2}}\left[\left|\frac{8 \alpha+3 \beta+4 \alpha^{2}-12 \alpha^{2} \beta-9 \alpha \beta^{2}-7 \alpha \beta}{(3 \alpha+\beta-4 \alpha \beta)}-4 \mu\right|-\right.$
$\left.\frac{\{(1-\alpha) \beta+2 \alpha(1-\beta)\}^{2}}{3 \alpha+\beta-4 \alpha \beta}\right]\left|c_{1}\right|^{2}$.
Case I: $\mu \leq \frac{8 \alpha+3 \beta+4 \alpha^{2}-12 \alpha^{2} \beta-9 \alpha \beta^{2}-7 \alpha \beta}{4(3 \alpha+\beta-4 \alpha \beta)}$. (3.10) can be rewritten as

$$
\begin{align*}
& \mid a_{3}-\mu a_{2}^{2} \leq \\
& \frac{1}{3 \alpha+\beta-4 \alpha \beta}+ \\
& \frac{1}{\{(1-\alpha) \beta+2 \alpha(1-\beta)\}^{2}}\left[\frac{8 \alpha+3 \beta+4 \alpha^{2}-\beta^{2}-3 \alpha \beta^{2}-7 \alpha \beta}{(3 \alpha+\beta-4 \alpha \beta)}-\right. \\
& 4 \mu]\left|c_{1}\right|^{2} . \tag{3.11}
\end{align*}
$$

Subcase I (a): $\mu \leq \frac{8 \alpha+3 \beta+4 \alpha^{2}-\beta^{2}-3 \alpha \beta^{2}-7 \alpha \beta}{4(3 \alpha+\beta-4 \alpha \beta)}$. Using (1.9), (3.11) becomes
$\mid a_{3}-\mu a_{2}^{2} \leq$
$\frac{1}{\{(1-\alpha) \beta+2 \alpha(1-\beta)\}^{2}}\left[\frac{8 \alpha+3 \beta+4 \alpha^{2}-12 \alpha^{2} \beta-9 \alpha \beta^{2}-7 \alpha \beta}{(3 \alpha+\beta-4 \alpha \beta)}-4 \mu\right]$.

Subcase I (b): $\mu \geq \frac{8 \alpha+3 \beta+4 \alpha^{2}-\beta^{2}-3 \alpha \beta^{2}-7 \alpha \beta}{4(3 \alpha+\beta-4 \alpha \beta)}$. We obtain from (3.11)
$\left\lvert\, a_{3}-\mu a_{2}^{2} \leq \frac{1}{3 \alpha+\beta-4 \alpha \beta}\right.$.

Case II: $\mu \geq \frac{8 \alpha+3 \beta+4 \alpha^{2}-12 \alpha^{2} \beta-9 \alpha \beta^{2}-7 \alpha \beta}{4(3 \alpha+\beta-4 \alpha \beta)}$

Preceding as in case I, we get

$$
\begin{align*}
& \left\lvert\, a_{3}-\mu a_{2}^{2} \leq \frac{1}{3 \alpha+\beta-4 \alpha \beta}+\frac{1}{\{(1-\alpha) \beta+2 \alpha(1-\beta)\}^{2}}[4 \mu-\right. \\
& \left.\frac{8 \alpha+3 \beta+8 \alpha^{2}+\beta^{2}-24 \alpha^{2} \beta-6 \alpha \beta^{2}-7 \alpha \beta}{(3 \alpha+\beta-4 \alpha \beta)}\right]\left|c_{1}\right|^{2} \tag{3.14}
\end{align*}
$$

Subcase II (a): $\mu \leq \frac{8 \alpha+3 \beta+8 \alpha^{2}+\beta^{2}-24 \alpha^{2} \beta-6 \alpha \beta^{2}-7 \alpha \beta}{4(3 \alpha+\beta-4 \alpha \beta)}$
(3.14) takes the form $\quad \left\lvert\, a_{3}-\mu a_{2}^{2} \leq \frac{1}{3 \alpha+\beta-4 \alpha \beta}(3.15)\right.$

Combining subcase I (b) and subcase II (a), we obtain
$\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{1}{3 \alpha+\beta-4 \alpha \beta} i f \frac{8 \alpha+3 \beta+4 \alpha^{2}-\beta^{2}-3 \alpha \beta^{2}-7 \alpha \beta}{4(3 \alpha+\beta-4 \alpha \beta)} \leq$
$\mu \leq \frac{8 \alpha+3 \beta+8 \alpha^{2}+\beta^{2}-24 \alpha^{2} \beta-6 \alpha \beta^{2}-7 \alpha \beta}{4(3 \alpha+\beta-4 \alpha \beta)}$
Subcase II (b): $\mu \geq \frac{8 \alpha+3 \beta+8 \alpha^{2}+\beta^{2}-24 \alpha^{2} \beta-6 \alpha \beta^{2}-7 \alpha \beta}{4(3 \alpha+\beta-4 \alpha \beta)}$
Preceding as in subcase I (a), we get

$$
\begin{align*}
& \left|a_{3}-\mu a_{2}^{2}\right| \leq \\
& \frac{1}{\{(1-\alpha) \beta+2 \alpha(1-\beta))^{2}}\left[4 \mu-\frac{8 \alpha+3 \beta+4 \alpha^{2}-12 \alpha^{2} \beta-9 \alpha \beta^{2}-7 \alpha \beta}{(3 \alpha+\beta-4 \alpha \beta)}\right] . \tag{3.17}
\end{align*}
$$

Combining (3.12), (3.16) and (3.17), the theorem is proved.

Extremal function for (3.1) and (3.3) is defined by

$$
f_{1}(z)=(1+a z)^{b}
$$

Where

$$
\begin{aligned}
& a= \\
& \frac{\left\{(2 \alpha+\beta-3 \alpha \beta)^{2}-(1-\alpha) \beta(\beta-3)+4 \alpha(1-\beta)(\beta+2)\right\} a_{2}^{2}-4(3 \alpha+\beta-4 \alpha \beta) a_{3}}{(2 \alpha+\beta-3 \alpha \beta) a_{2}}
\end{aligned}
$$

REFERENCES:

[1] Bieberbach L., "Uber einige Extremal probleme im Gebiete der konformen Abbildung", Math. Ann., 77(1916), 153-172.
[2] Bieberbach L., "Uber die Koeffizientem derjenigen Potenzreihen, welche eine schlithe Abbildung des Einheitskreises vermitteln", Preuss. Akad. Wiss. Sitzungsb., (1916), 940-955.
[3] Chichra, P. N., "New subclasses of the class of close-to-convex functions", Procedure of

And
$b=$
$\frac{(2 \alpha+\beta-3 \alpha \beta)^{2} a_{2}^{2}}{\left\{(2 \alpha+\beta-3 \alpha \beta)^{2}-(1-\alpha) \beta(\beta-3)+4 \alpha(1-\beta)(\beta+2)\right\} a_{2}^{2}-4(3 \alpha+\beta-4 \alpha \beta) a_{3}}$
Extremal function for (3.2) is defined by $f_{2}(z)=$ $z\left(1+B z^{2}\right)^{\frac{A-B}{2 B}}$.

Corollary 3.2: Putting $\alpha=1, \beta=0$ in the theorem, we get

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq\left\{\begin{array}{l}
1-\mu, \text { if } \mu \leq 1 ; \\
\frac{1}{3} \text { if } 1 \leq \mu \leq \frac{4}{3} ; \\
\mu-1, \text { if } \mu \geq \frac{4}{3}
\end{array}\right.
$$

These estimates were derived by Keogh and Merkes [8] and are results for the class of univalent convex functions.

Corollary 3.3: Putting $\alpha=0, \beta=1$ in the theorem, we get

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq\left\{\begin{array}{c}
3-4 \mu, \text { if } \mu \leq \frac{1}{2} \\
1 \text { if } \frac{1}{2} \leq \mu \leq 1 \\
4 \mu-3, \text { if } \mu \geq 1
\end{array}\right.
$$

These estimates were derived by Keogh and Merkes [8] and are results for the class of univalent starlike functions.

American Mathematical Society, 62, (1977), 3743.
[4] Fekete M. and Szegö G., "Eine Bemerkung über ungerade schlichte Funktionen", J. London Math. Soc. 8 (1933), 85-89.
[5] Goel, R. M. and Mehrok, B. S., "A subclass of univalent functions", Houston Journal of Mathematics, 8, (1982), 343-357.
[6] Goel R. M. and Mehrok B. S., "A coefficient inequality for a subclass of closeto-convex
functions", Serdica Bul. Math. Pubs., 15, (1989), 327-335.
[7] Kaplan, W., "Close-to-convex schlicht functions", Michigan Mathematical Journal, 1, (1952), 169185.
[8] Keogh, S. R. and Merkes, E. R., "A Coefficient inequality for certain classes of analytic functions", Procedure of American Mathematical Society, 20, (1989), 8-12.
[9] Kunle Oladeji Babalola, "The fifth and sixth coefficients of α-close-to-convex functions", Kragujevac J. Math., 32, (2009), 5-12.
[10] Löwner K., "Uber monotone Matrixfunktionen", Math. Z., 38, (1934), 177-216.
[11] Nehari Z., "Conformal Mapping", McGraw-Hill, Comp., Inc., New York, (1952).

