Construction of Coefficient Inequality for a New Subclass of Starlike Analytic Functions

NARINDER KAUR
KHALSA COLLEGE, PATIALA
(E-mail: k.narinder089@gmail.com)

KEYWORDS: Univalent functions, Starlike functions, Close to convex functions and bounded functions.

MATHEMATICS SUBJECT CLASSIFICATION: 30C50

ABSTRACT: In this article, we discuss a newly constructed subclass of starlike analytic functions by that we obtain sharp upper bounds of functional $\left|a_{3}-\mu a_{2}^{2}\right|$ for the analytic function $f(z)=z+$ $\sum_{n=2}^{\infty} a_{n} z^{n},|z|<1$ belonging to this subclass.

1. INTRODUCTION : Let \boldsymbol{A} denote the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the unit disc $\mathbb{E}=\{z:|z|<1 \mid\}$. Let \boldsymbol{S} be the class of functions of the form (1.1), which are analytic univalent in \mathbb{E}.

In 1916, Bieber Bach ([7], [8]) proved that $\left|a_{2}\right| \leq 2$ for the function $f(z) \in \mathcal{S}$. In 1923, Löwner [5] proved that $\left|a_{3}\right| \leq 3$ for the functions $f(z) \in \boldsymbol{S}$..

It, with the known estimates $\left|a_{2}\right| \leq 2$ and $\left|a_{3}\right| \leq 3$, was natural to seek some relation between a_{3} and $a_{2}{ }^{2}$ for the class \boldsymbol{S}, Fekete and Szegö[9] used Löwner's method to prove the following well known result for the class \boldsymbol{S}.

Let $f(z) \in \boldsymbol{S}$, then
$\left|a_{3}-\mu a_{2}^{2}\right| \leq\left[\begin{array}{l}3-4 \mu, \text { if } \mu \leq 0 ; \\ 1+2 \exp \left(\frac{-2 \mu}{1-\mu}\right), \text { if } 0 \leq \mu \leq 1 ; ~ \\ 4 \mu-3, \text { if } \mu \geq 1 .\end{array}\right.$
The inequality of Equation (1.2) plays a very important role in estimating high coefficients for the sub classes $\boldsymbol{\mathcal { S }}$ ([1], [6]).

Let's define some subclasses of \boldsymbol{S}.
We denote by S^{*}, the class of univalent starlike functions $g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n} \in \mathcal{A}$ and satisfying the condition
$\operatorname{Re}\left(\frac{z g(z)}{g(z)}\right)>0, z \in \mathbb{E}$.
We denote by \mathcal{K}, the class of univalent convex functions $h(z)=z+\sum_{n=2}^{\infty} c_{n} z^{n}, z \in \mathcal{A}$ and satisfying the condition
$R e \frac{\left(\left(z h^{\prime}(z)\right)\right.}{h^{\prime}(z)}>0, z \in \mathbb{E}$.
A function $f(z) \in \mathcal{A}$ is said to be close to convex if there exists $g(z) \in S^{*}$ such that
$\operatorname{Re}\left(\frac{z f^{\prime}(z)}{g(z)}\right)>0, z \in \mathbb{E}$.
The class of close to convex functions introduced by Kaplan [3], is denoted by C and it was shown by him that all close to convex functions are univalent.
$S^{*}(A, B)=\left\{f(z) \in \mathcal{A} ; \frac{z f^{\prime}(z)}{f(z)}<\frac{1+A z}{1+B z},-1 \leq B<A \leq 1, z \in \mathbb{E}\right\}$
$\mathcal{K}(A, B)=\left\{f(z) \in \mathcal{A} ; \frac{\left(z f^{\prime}(z)\right)^{\prime}}{f \prime(z)}<\frac{1+A z}{1+B z},-1 \leq B<A \leq 1, z \in \mathbb{E}\right\}$
It is obvious that $S^{*}(A, B)$ is a subclass of S^{*} and $\mathcal{K}(A, B)$ is a subclass of \mathcal{K}.
We introduce a new subclass as

$$
\left\{\mathbf{f}(\mathbf{z}) \in \mathcal{A} ; \frac{\mathbf{1}}{\mathbf{2}}\left(\frac{\mathbf{z f ^ { \prime } (\mathbf { z })}}{\mathbf{f}(\mathbf{z})}+\left(\frac{\mathbf{z} \mathbf{f}^{\prime}(\mathbf{z})}{\mathbf{f}(\mathbf{z})}\right)^{\frac{1}{\alpha}}\right)=\frac{1+\mathbf{w}(\mathbf{z})}{1-\mathbf{w}(\mathbf{z})} ; \mathbf{z} \in \mathbb{E}\right\}
$$

and we denote this class as $f(z) \in \Sigma S^{*}[\alpha]$.
Symbol < stands for subordination, which is defined as follows:
PRINCIPLE OF SUBORDINATION: Let $f(z)$ and $F(z)$ be two functions analytic in \mathbb{E}. Then $f(z)$ is called subordinate to $\mathrm{F}(\mathrm{z})$ in \mathbb{E} if there exists a function $w(z)$ analytic in \mathbb{E} satisfying the conditions $w(0)=0$ and $|w(z)|<1$ such that $f(z)=F(w(z)) ; z \in \mathbb{E}$ and we write $f(z)<F(z)$.
By U, we denote the class of analytic bounded functions of the form
$w(z)=\sum_{n=1}^{\infty} d_{n} z^{n}, w(0)=0,|w(z)|<1$.
It is known that $\left|d_{1}\right| \leq 1,\left|d_{2}\right| \leq 1-\left|d_{1}\right|^{2}$.
2. PRELIMINARY LEMMAS: For $0<c<1$, we write $w(z)=\left(\frac{c+z}{1+c z}\right)$ so that
$\frac{1+A w(z)}{1+B w(z)}=1+(A-B) c_{1} z+(A-B)\left(c_{2}-B c_{1}^{2}\right) z^{2}+---$

3. MAIN RESULTS

THEOREM 3.1: Let $f(z) \in f(z) \in \Sigma S^{*}[\alpha]$, then

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq\left\{\begin{array}{l}
\frac{2 \alpha}{(\alpha+1)^{3}}\left[5 \alpha^{2}+10 \alpha-3-8 \mu \alpha(\alpha+1)\right] \text {; if } \mu \leq \frac{4 \alpha^{2}+8 \alpha-4}{8 \alpha(\alpha+1)} \tag{3.1}\\
\frac{2 \alpha}{\alpha+1} \quad ; \text { if } \frac{4 \alpha^{2}+8 \alpha-4}{8 \alpha(\alpha+1)} \leq \mu \leq \frac{6 \alpha^{2}+12 \alpha-2}{8 \alpha(\alpha+1)}(3.2) \\
\frac{2 \alpha}{(\alpha+1)^{3}}[8 \mu \alpha(\alpha+1)-65-10 \alpha+3] ; \text { if } \mu \geq \frac{6 \alpha^{2}+12 \alpha-2}{8 \alpha(\alpha+1)}
\end{array}\right.
$$

The results are sharp.
PROOF: By definition of $f(z) \in f(z) \in \Sigma S^{*}[\alpha]$, we have
$\frac{1}{2}\left(\frac{\mathrm{zf}^{\prime}(\mathrm{z})}{\mathrm{f}(\mathrm{z})}+\left(\frac{\mathrm{zf} \mathbf{f}^{\prime}(\mathbf{z})}{\mathrm{f}(\mathrm{z})}\right)^{\frac{1}{\alpha}}\right)=\frac{1+\mathbf{w}(\mathrm{z})}{1-w(\mathrm{z})} ; w(z) \in U$.

Expanding the series (3.4), we get
$1+a_{2} z\left(\frac{\alpha+1}{2 \alpha}\right)+\frac{z^{2}}{2}\left[\left(2 a_{3}-a_{2}^{2}\right)\left(\frac{\alpha+1}{\alpha}\right)+\left(\frac{1-\alpha}{2 \alpha^{2}}\right) a_{2}^{2}\right]+---=\left(1+2 c_{1} z+2\left(c_{1}^{2}+c_{2}\right) z^{2}+\right.$
$\left.\mathrm{z}^{3}\left(2 c_{3}+4 c_{1} c_{2+} c_{1}^{3}\right)+---\right)$.
Identifying terms in (3.5), we get
$a_{2}=\frac{4 c_{1}}{\alpha+1}$
$a_{3}=\left(\frac{2 \alpha}{\alpha+1}\right)\left[c_{1}^{2}+c_{2}+\frac{4 c_{1}^{2}}{(\alpha+1)^{2}}\left[\alpha^{2}+2 \alpha-1\right]\right]$

From (3.6) and (3.7), we obtain
$a_{3}-\mu a_{2}^{2}=c_{1}^{2}\left[\frac{2 \alpha}{\alpha+1}+\frac{8 \alpha\left(\alpha^{2}+2 \alpha-1\right)}{(\alpha+1)^{3}}-\frac{16 \mu \alpha^{2}}{(\alpha+1)^{2}}\right]+c_{2}\left[\frac{2 \alpha}{\alpha+1}\right]$
By considering absolute value, (3.8) can be rewritten as
$\left|a_{3}-\mu a_{2}^{2}\right| \leq\left|\frac{2 \alpha}{\alpha+1}+\frac{8 \alpha\left(\alpha^{2}+2 \alpha-1\right)}{(\alpha+1)^{3}}-\frac{16 \mu \alpha^{2}}{(\alpha+1)^{2}}\right|\left|c_{1}^{2}\right|+\left|c_{2}\right|\left|\frac{2 \alpha}{\alpha+1}\right|$
Using (1.11) in (3.9), we get

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq\left[\frac{2 \alpha}{(\alpha+1)^{3}}\left[\left|\left(5 \alpha^{2}+10 \alpha-3\right)\right|-8 \mu \alpha(\alpha+1)\right]-\frac{2 \alpha}{\alpha+1}\right]\left|c_{1}\right|^{2}+\frac{2 \alpha}{\alpha+1}(3.10)
$$

Case I: $\mu \geq \frac{5 \alpha^{2}+10 \alpha-3}{8 \alpha(\alpha+1)}$. (3.10) can be rewritten as
$\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{2 \alpha}{(\alpha+1)^{3}}\left[8 \mu \alpha(\alpha+1)-\left(6 \alpha^{2}+12 \alpha-2\right)\right]\left|c_{1}\right|^{2}+\frac{2 \alpha}{\alpha+1}$
Sub case I (a): $\mu \geq \frac{6 \alpha^{2}+12 \alpha-2}{8 \alpha(\alpha+1)}$. Using (1.11), (3.11) becomes
$\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{2 \alpha}{(\alpha+1)^{3}}\left[8 \mu \alpha(\alpha+1)-5 \alpha^{2}-10 \alpha+3\right]$.
Sub case I (b): $\mu<\frac{6 \alpha^{2}+12 \alpha-2}{8 \alpha(\alpha+1)}$. We obtain from (3.11)
$\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{2 \alpha}{\alpha+1}$
Case II: $\mu<\frac{5 \alpha^{2}+10 \alpha-3}{8 \alpha(\alpha+1)}$

Preceding as in case I, we get
$\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{2 \alpha}{\alpha+1}+\frac{2 \alpha}{(\alpha+1)^{3}}\left[4 \alpha^{2}+8 \alpha-4-8 \mu \alpha(\alpha+1)\right]\left|c_{1}\right|^{2}$.
Sub case II (a): $\mu \leq \frac{4 \alpha^{2}+8 \alpha-4}{8 \alpha(\alpha+1)}$
(3.14) takes the form
$\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{2 \alpha}{(\alpha+1)^{3}}\left[5 \alpha^{2}+10 \alpha-3-8 \mu \alpha(\alpha+1)\right]$
Sub case II (b): $\mu>\frac{4 \alpha^{2}+8 \alpha-4}{8 \alpha(\alpha+1)}$
Preceding as in subcase I (a), we get
$\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{2 \alpha}{\alpha+1}$
By combining inequalities (3.12), (3.16) and (3.17), the theorem is proved.
Extremal function for (3.1) and (3.3) is defined by

$$
f_{1}(z)=(1+a z)^{b}
$$

where $a=\frac{\left\{(2 \alpha+\beta-3 \alpha \beta)^{2}-(1-\alpha) \beta(\beta-3)+4 \alpha(1-\beta)(\beta+2)\right\} a_{2}^{2}-4(3 \alpha+\beta-4 \alpha \beta) a_{3}}{(2 \alpha+\beta-3 \alpha \beta) a_{2}}$
and $b=\frac{(2 \alpha+\beta-3 \alpha \beta)^{2} a_{2}^{2}}{\left\{(2 \alpha+\beta-3 \alpha \beta)^{2}-(1-\alpha) \beta(\beta-3)+4 \alpha(1-\beta)(\beta+2)\right\} a_{2}^{2}-4(3 \alpha+\beta-4 \alpha \beta) a_{3}}$
Extremal function for (3.2) is defined by $f_{2}(z)=z\left(1+B z^{2}\right)^{\frac{A-B}{2 B}}$.

COROLLARY 3.2: By putting $\alpha=1, \beta=0$ in the theorem, we get

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq\left\{\begin{array}{l}
1-\mu, \text { if } \mu \leq 1 \\
\frac{1}{3} \text { if } 1 \leq \mu \leq \frac{4}{3} \\
\mu-1, \text { if } \mu \geq \frac{4}{3}
\end{array}\right.
$$

These estimates were obtained by Keogh and Merkes [8] and are results for the class of univalent convex functions.

COROLLARY 3.3: Putting $A=1, B=-1$ and $\alpha=0, \beta=1$ in the theorem, we get

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq\left\{\begin{array}{c}
3-4 \mu, \text { if } \mu \leq \frac{1}{2} \\
1 \text { if } \frac{1}{2} \leq \mu \leq 1 \\
4 \mu-3, \text { if } \mu \geq 1
\end{array}\right.
$$

These estimates were obtained by Keogh and Merkes [8] and are results for the class of univalent starlike functions.

REFERENCES:

[1] Chichra, P. N., "New subclasses of the class of close-to-convex functions", Procedure of American Mathematical Society, 62, (1977), 37-43.
[2] Goel, R. M. and Mehrok, B. S., "A subclass of univalent functions", Houston Journal of Mathematics, 8, (1982), 343-357.
[3] Kaplan, W., "Close-to-convex schlicht functions", Michigan Mathematical Journal, 1, (1952), 169-185.
[4] Keogh, S. R. and Merkes, E. R., "A Coefficient inequality for certain classes of analytic functions", Procedure of American Mathematical Society, 20, (1989), 8-12.
[5] K. Löwner, "Uber monotone Matrixfunktionen", Math. Z., 38, (1934), 177-216.
[6] Kunle Oladeji Babalola, "The fifth and sixth coefficients of α-close-to-convex functions", Kragujevac J. Math., 32, (2009), 5-12.
[7] L. Bieberbach, "Uber einige Extremal probleme im Gebiete der konformen Abbildung", Math. Ann., 77(1916), 153-172.
[8] L. Bieberbach, "Uber die Koeffizientem derjenigen Potenzreihen, welche eine schlithe Abbildung des Einheitskreises vermitteln", Preuss. Akad. Wiss. Sitzungsb., (1916), 940-955.
[9] M. Fekete and G. Szegö, "Eine Bemerkung über ungerade schlichte Funktionen", J. London Math. Soc. 8 (1933), 85-89.
[10] R. M. Goel and B. S.Mehrok, "A coefficient inequality for a subclass of closeto-convex functions", Serdica Bul. Math. Pubs., 15, (1989), 327-335.
[11] Z. Nehari, "Conformal Mapping", McGrawHill, Comp., Inc., New York, (1952).

