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Abstract- The ECG (Electrocardiogram) signal is continuous in nature and abruptly changing. For taking 

intelligent health care decisions related with heart diseases such as paroxysmal of heart, arrhythmia diagnosing, 

ECG signal needs to be analyze accurately. The ECG signal basically corresponds to the electrical activity of the 

heart. In the literature, the ECG signal has been analyzed and utilized for various purposes, such as measuring 

the heart rate, examining the rhythm of heartbeats, diagnosing heart abnormalities, emotion recognition and 

biometric identification. ECG analysis can contain several steps, such as pre-processing, feature extraction, 

feature selection and classification. Performing each step is crucial for the sake of the related analysis. In this 

work, the literature on ECG analysis, mostly from the last decade, is comprehensively reviewed based on all of 

the major aspects mentioned above. Each step in ECG analysis is briefly described, and the related studies are 

provided. Similarly, we have focused on the ECG database used for analysis.  
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1. INTRODUCTION 
            The electrocardiogram (ECG) is a 

graphical recording of the electrical activity signals 

generated by the heart. The signals are generated when 

cardiac muscles depolarise in response to electrical 

impulses generated by pacemaker cells. Upon 

depolarisation, the muscles contract and pump blood 

throughout the body. The ECG is an effective non-

invasive tool for various biomedical applications such 

as measuring the heart rate, examining the rhythm of 

heartbeats, diagnosing heart abnormalities, emotion 

recognition and biometric identification and even the 

approximate ischemic location in the event of a heart 

attack (myocardial infarction). The ECG being a non-

stationary signal, the disease indicators may occur at 

random in the time scale. Therefore, the patient may 

have to be kept under observation for long intervals 

for accurate diagnosis. A typical ECG recording from 

a normal person (Fig. 1) 

 

  

 

 

 

 

 

 

 

 

 

 
Fig.1. Standard fiducial points in the ECG signal [1]. 

 

Typical lead II ECG features and their normal values 

in the sinus rhythm at a heart rate of 60 bpm for a 

healthy male adult [2]. 

 

Feature Normal Value 
Normal 

Limit 

P width 110 ms ±20 ms 

PR interval 160 ms ±40 ms 

QRS width 100 ms ±20 ms 

QTc (corrected) 

interval 

400 ms ±40 ms 

P amplitude 0.15 mV ±0.05 mV 

QRS height 1.5 mV ±0.5 mV 

ST level 0 mV ±0.1 mV 

T amplitude 0.3 mV ±0.2 mV 

Table 1: clinical features [2] 

 

The ECG is described by waves, segments and 

intervals. 

• Waves are labelled using the letters P, QRS, T and 

U. The typical normal ECG may not show a U wave. 

• Segments are time durations between waves, e.g. P-

R segment is the duration between the P and R waves 

(or P and Q waves, when Q wave is present). 

• Intervals are time durations that include waves and 

segments, e.g. P-R interval is made up of the P-wave 

and the P-R segment. 

• P-wave corresponds to the depolarisation of the atrial 

myocardium (muscles of upper chambers of the heart), 

and indicates the start of atrial contraction that pumps 

blood to the ventricles. 

• The Q, R, and S waves are usually treated as a single 

composite wave known as the QRS complex. The 

QRS-complex reflects the depolarisation of ventricular 

myocardium, and indicates the start of ventricul 

contraction that pumps blood to the lungs and the rest 

of the body. 

 

 One of the major fields in which ECG 

analysis is required is the diagnosis of cardiovascular 

diseases. As reported by the World Health 
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Organization, cardiovascular diseases are the main 

reason for deaths worldwide. Among the 

cardiovascular diseases, cardiac arrhythmias are the 

most common, and as a result, their precise 

classification has been of great interest in biomedical 

studies [3]. The use of ECG analysis in fields other 

than the diagnosis of cardiovascular diseases has also 

increased substantially. Many researchers have used 

ECG signals for emotion recognition,         especially 

for stress level detection in addition to many other 

signals such as the electroencephalogram, skin 

temperature, blood pres-sure, electromyogram, heart 

rate variability, cortisol levels, and thermal imaging 

features. Researchers measure ECG signals at 

different critical moments (stress situations), such as 

during an oral exam, after a holiday for students, in 

office environments for office workers, and during a 

driving task for drivers. The results of these studies 

reveal that ECG features are useful at distinguishing 

the characteristics between different mental workloads 

and stress levels as well [1]. 

 

 An ECG signal is analyzed and utilized for 

various purposes and applications. Depending on the 

application, the analysis contains several steps, such as 

pre-processing, feature extraction, feature selection, 

feature transformation and classification. Additionally, 

the employed success measures and appropriate 

constitution of the ECG databases play crucial roles. 

 In this paper, a comprehensive study is 

conducted for ECG analysis, and the subject is 

handled considering all the major aspects, including 

pre-processing, feature extraction, classification and 

ECG databases. Although there already exist several 

review articles in the literature [4, 5–7] on this topic, 

they are limited to only a few of these aspects rather 

than all. Specifically, this work comprises a survey of 

existing studies on ECG analysis in the literature, 

mostly from the last decade. For this purpose, we 

particularly review the articles published in journals 

indexed by prestigious scientific indices such as 

Science Citation Index and Science Citation Index-

Expanded. To search the relevant studies in the 

literature, several platforms, such as IEEEXplore, 

ScienceDirect and Google Scholar, are employed, and 

various combinations of the keywords 

“electrocardiogram” and “ECG” together with 

“classification”; “database”; “QRS”; “feature 

extraction”; “feature selection” and “pre-processing” 

are used.  

 

2. PRE-PROCESSING 
ECG recordings are usually contaminated by different 

types of noise and artifacts. In the pre-processing step, 

the goals are to reduce such noise and artifacts to 

determine the fiducial points (P, Q, R, S, T). 

(P-onset, P-peaks, P-offset, QRS-onset, QRS-offset, 

T-onset, T-peaks and T-offset)) and to avoid 

amplitude and offset effects to compare signals from 

different patients. Typical types of noise are described 

briefly and grouped into the following categories       

[3,8,9]. 

 

a) Power line interference: a signal in the frequency of 

50 or 60 Hz, and its bandwidth is below 1 Hz  
b) Baseline wander: a low-frequency (0.15 up to 0.3 

Hz) noise. This noise results from the patient 

inhaling and compels a baseline shifting of the ECG 

signals.  
c) Electrode contact noise: noise that results from a 

deficiency in the contiguity between the electrode 

and skin, which adequately cuts off the 

measurement system from the subject.  
d) Electrode motion artifacts: artifacts that result from 

variations in the electrode-skin impedance with 

electrode motion.  
e) Muscle contractions (Electromyography noise): 

noise that results from the contraction of other 

muscles apart from the heart. 

 

2.1 Filtering 

The pre-processing stage uses a filtering block to 

delete artifact signals from an ECG signal [10]. 

Usually, an ECG signal is initially bandpass filtered 

with different frequency ranges before analyzing it. 

Bandpass filtering is widely used to delete muscle 

noise, baseline wander, power line interference, and 

low- and high-frequency noise components and to 

limit ADC saturation. 

The frequency range of 0.1–100 Hz for the 

bandpass filtering is most often used [4]. Other 

frequency ranges used in band-pass filtering are 1–40 

Hz [11-13], 0.5–40 Hz [14,15,16],  0.4–40 Hz [17], 

0.05–40 Hz [18], 0.5–50 Hz [19], 1–120 Hz [20] and 

1–100 Hz [21].   

Analog low-pass filtering has a noticeable effect on 

the QRS complex, epsilon, and J-waves but does not 

alter the repolarization signals [22]. A good low-pass 

filter can filter out the noise and still leave a large 

amount of data for further processing [23]. A low-pass 

filter is designed to remove the high-frequency 

component in the ECG waveform. Low-pass filters 

with the cut-off frequency 35 Hz [24], 50 Hz [25], 100 

Hz [26] and 70 Hz [27,28] were used to delete high-

frequency noise and power line interference.  

 

3.  FEATURE EXTRACTION 
Since electrocardiography is an interpretation of the 

electrical activity of the heart, a correct representation 

of the ECG signal plays an important role in the 

proper diagnosis of heart diseases. In the lit-erature, 

various feature extraction techniques have been 

proposed to expose the distinctive information from 
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ECG signals for differ-ent purposes, such as analysis 

and classification. Those features can be used 

individually or in combination with other features. In 

this work, we categorize ECG features mainly into 5 

groups, namely, QRS, statistical, morphological, 

wavelet and other features 

 

3.1 P-QRS-T complex features 

The P-QRS-T complex features for an ECG signal 

basically correspond to the locations, durations, 

amplitudes, and shapes of particular waves or 

deflections inside the signal [29,30]. Typically, an 

ECG signal has a total of five major deflections, 

including P, Q, R, S, and T waves, plus a minor 

deflection, namely, the U wave, as shown in Fig.1 [1]. 

The P wave is a small low-voltage deflection away 

from the baseline that is caused by the depolarization 

of the atria prior to atrial contraction as the activation 

(depolariza-tion) wave-front propagates from the 

sinoatrial node through the atria. The Q wave is a 

downward deflection after the P wave. The R wave 

follows as an upward deflection, and the S wave is a 

down-ward deflection following the R wave. Q, R, 

and S waves together indicate a single event. Hence, 

they are usually considered to be the QRS complex. 

The features based on the QRS complex are among 

the most powerful features for ECG analysis. The 

QRS-complex is caused by currents that are generated 

when the ventricles depolarize prior to their 

contraction. Although atrial repolarization occurs 

before ventricular depolarization, the latter waveform 

(i.e., the QRS-complex) has a much greater amplitude, 

and atrial repolarization is, therefore, not seen on an 

ECG. The T wave, which follows the S wave, is 

ventricular repolarization, whereby the cardiac muscle 

is prepared for the next cycle of the ECG. Finally, the 

U wave is a small deflection that immediately follows 

the T wave. The U wave is usually in the same 

direction as the T wave. 

 

 

Researchers utilize various attributes of the QRS 

complex as the features. Some of those attributes are 

the R wave duration, P+ amplitude, QRS p-p 

amplitude, R wave amplitude, ST amplitude, T+ 

amplitude, QRS wave area and ST slope. The R wave 

duration is the time that passes between the beginning 

and end of the R wave [31]. The P+ amplitude can be 

defined as the difference between the P point and the 

other subsequent points where the signal rises again. 

The QRS p-p amplitude is the difference between the 

R and Q points in the QRS complex in terms of the 

amplitude. The R wave amplitude can be defined as 

the height of the R wave from the base-line. The ST 

amplitude is the difference between the S and T points 

in terms of the amplitude values. The T+ amplitude 

can be defined as the difference between the T point 

and the subsequent point where the signal rises again. 

The QRS wave area is the area of the region when a 

rectangle is drawn on the QRS complex using the Q, R 

and S points [32]. The ST slope is the angle of the 

line, which can be drawn from the S point to the T 

point of the QRS complex. Some of the recent studies 

on ECG analysis that utilize QRS features are [33-39]. 

 
4.  CLASSIFICATION 

In the literature, there are various classifiers that 

have been utilized for ECG analysis and classification 

tasks. According to the recent studies reviewed in this 

paper, these classifiers can be mainly grouped into 

categories such as artificial neural networks (ANNs), 

LDA, k nearest neighbour (kNN), support vector 

machine (SVM), decision tree (DT), and Bayesian 

classifiers. All of these common approaches and other 

uncommon approaches are explained in the next 

subsections. 

 
 
4.1 Artificial Neural Networks (ANN) 

An ANN is a mathematical model that is inspired 

by biological neural networks. It includes 

interconnected artificial neurons, with the 

interconnections associated with adjustable weights; 

the neurons consist of input, output and/or hidden 

layer(s); this approach is one of the widely used 

pattern classifiers. ANNs aim to solve both linear 

classification and non-linear classification problems 

with various network structures and learning 

algorithms. The neural network structures frequently 

used in the ECG classification domain are as follows: 

 

a) Complex-valued ANN: This ANN is a type of 

network that consists of complex-valued data, 

complex-number weights and complex-valued 

neuron activation functions [40]. Complex-valued 

ANNs are employed in one of the ECG 

classification studies [41]. 

 
b) Fuzzy clustering ANN: In this structure, a fuzzy 

clustering layer and an ANN layer that consists of a 

multilayer perceptron work sequentially. While the 

fuzzy layer performs the initial opera-tions for the 

classification task, the ANN layer works as a final 

classifier. Eventually, fuzzy clustering is used to 

improve the performance of the ANN classifier 

[42].   
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4.2 Linear Discriminant Analysis (LDA) 

LDA was originally developed in 1936 by 

Fisher, and it often produces models that obtain higher 

classification accuracies in comparison with more 

modern and complex classification methods [43]. It 

aims to maximize the ratio of the between-class 

variance to the within-class variance, and it provides 

the highest possible discrimination between different 

classes. LDA is utilized in some of the recent ECG 

classification studies [44,45]. 

 

4.3 k nearest Neighbour (kNN) 

kNN classifies feature vectors according to the 

labels of the clos-est training samples in the feature 

space. For an unknown feature vector, the distances 

from this vector to all vectors in the training set are 

calculated using a distance measure such as the 

Euclidean distance. Then, an unknown feature vector 

is assigned to the class in which the closest k samples 

mostly belong to. Thus, a kind of majority voting 

approach is applied. The value of k is a positive 

integer and is known to be a strongly influencing 

factor for the accuracy of the classification. kNN has a 

wide usage in most of the pattern recognition 

problems and is also employed in some recent ECG 

classification studies [46,47]. 

 

4.4 Support Vector Machine (SVM) 

SVM is a widely used tool for solving binary 

classification problems because of its outstanding 

generalization performance. The main idea of the 

SVM is to find a maximum margin between the 

training data and the decision boundary [48]. Support 

vectors, which are the training samples that are closest 

to the decision 

 

4.5 Decision Tree (DT) 

DT learning aims to map observations about an 

item to a con-clusion. This conclusion can be either a 

possible target class label or a target value. According 

to the difference in this conclusion, DT structures are 

called classification or regression trees. While the 

leaves of classification trees represent class labels, the 

leaves of regression trees represent continuous values. 

DT is used in some ECG classification studies [49]. In 

addition to common decision tree approaches, there 

are some more specific decision tree structures that are 

used frequently for ECG classification. The Random 

Forest Tree is a type of ensemble classifier that uses 

many decision trees [50]. In this approach, multiple 

decision trees are trained with subsets of training data. 

This approach uses a type of majority voting in which 

the output class label is assigned according to the 

number of votes from all the individual trees. This 

approach is also frequently used for ECG 

classification studies [51]. 

 
4.6 Bayesian Classifier 

Bayesian classifiers are the systems that are based 

on Bayes’ decision theory. This theory is a 

fundamental statistical approach [52]. The idea behind 

these classifiers is that if the class is known, the values 

of the other features can be predicted. If the class is 

not known, then Bayes’ rule can be used to predict the 

class label according to the given feature values. In 

Bayesian classifiers, prob-abilistic models of the 

features are built to predict the class label of a new 

sample. Bayesian classifiers, which are one of the 

widely used methods for pattern recognition problems, 

are utilized in most of the recent studies [53]. The 

types of Bayesian classifiers utilized for ECG 

classification are the Bayesian network [54]. 

 

4.7 Fuzzy based Classifier 

Apart from the abovementioned classification 

methods, there are also various classifiers that have 

been utilized for ECG classification, such as fuzzy 

logic classifier [55, 56] genetic fuzzy classifier [56]. 

 

5. ECG DATABASES 
Various databases are publicly available to evaluate 

the methods proposed in studies that target the 

analysis of ECG signals. The following databases    

[57, 58] are widely used for different purposes in ECG 

signal analysis: 

 

a) The Massachusetts Institute of Technology-Beth 

Israel Hospi-tal (MIT-BIH) Arrhythmia database is 

widely used for ECG signal analysis.  
b) Physionet PTB Diagnostic ECG database includes 

549 records from 290 persons with 52 healthy and 

148 sick persons. Each sub-ject is represented by 

one to five records. Each record includes 15 

simultaneously measured signals. The sampling rate 

is 1000 sam-ples/second with a 16-bit resolution 

over a range of ±16.384 mV. The subjects were 209 

men and 81 women, 17–87 years of age.  
c) The QT database contains ECG recordings selected 

primarily from existing ECG databases, including 

15 recordings from the MIT-BIH Arrhythmia 

Database, 6 recordings from the MIT-BIH ST 

Change Database, 13 recordings from the MIT-BIH 

Supraventricular Arrhythmia Database, 4 

recordings from the MIT-BIH Long Term 

Database, 10 recordings from the MIT-BIH Normal 

Sinus Rhythm Arrhythmia Database, 33 recordings 

from the European Society of Cardiology ST-T 
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Database, and 24 recordings from the sudden death 

patients gathered at Boston’s Beth Israel Deaconess 

Medical Center. The QT Database covers a total of 

105 recordings of two channel ECGs, which were 

chosen to prevent important baseline fluctuations or 

other artifacts. All the ECG signals were sampled at 

250 samples/second. 

d) The Apnea-ECG database contains 70 recordings 

with the time interval of ECG recordings ranging 

between 401 and 578 min. The sampling rate is 100 

Hz. Each recording contains a continu-ous digitized 

ECG signal, a set of apnea annotations, and a set of 

machine-generated QRS. 

e) Non-Invasive Fetal ECG database comprises 55 

multichannel non-invasive fetal electrocardiogram 

recordings, collected from only one subject at 21–

40 weeks of pregnancy. The records have 

changeable durations and were collected weekly. 

These records can be used for testing signal 

separation algorithms.  
f) Creighton University (CU) Ventricular 

Tachyarrhythmia database contains 35 eight-

minute (slightly less than 8.5 min) single-channel 

ECG recordings of subjects who suffered from 

episodes of sustained ventricular tachycardia, 

ventricular flutter, and ventricular fibrillation. The 

sampling rate is 250 Hz with a 12-bit resolution 

over a 10-V range. 

g) The American Heart Association (AHA) 

database contains 80 two-channel ECG recordings. 

The sampling rate is 250 Hz per channel with a 12-

bit resolution over a 10-mV range. The short 

version comprises five minutes of unannotated 

ECG prior to a thirty-minute annotated section in 

each recording, and the long version contains 2.5 h 

of unannotated ECG preceding each annotated 

segment. This database was developed for the 

evaluation of ventricular arrhythmia detectors. 

h) Fantasia database contains records of 40 subjects. 

Half of them are young people between the ages of 

21 and 34, and the remain-ing half are elderly 

people between the ages of 68 and 85. There is a 

single record for each person with a two-hour 

interval. The sampling rate is 250 Hz 

i) The BIDMC Congestive Heart Failure database 

is composed of 20 h of ECG recordings from 15 

subjects. The recordings have a sampling rate of 

250 samples/second with a 12-bit resolution over a 

range of ±10 millivolts. The subjects were 11 men, 

22–71 years of age, and 4 women, 54–63 years of 

age.  
j) The European ST-T database is composed of 90 

two-hour annotated ECG recordings from 79 

persons. Each record has two signals; the sampling 

rate for each signal is 250 Hz with a 12-bit 

resolution over a nominal 20-millivolt input range. 

The subjects were 70 men, 30–84 years of age, and 

8 women, 55–71 years of age. The ST segment and 

T-wave changes were identified in both leads, and 

their onsets, extrema, and ends were annotated by 

two cardiologists. 

k) The Long-Term ST database covers 86 lengthy 

ECG recordings of 80 persons. Each recording 

ranges between 21- and 24-h time intervals and is 

composed of two or three ECG signals. The sam-

pling rate is 250 Hz with a 12-bit resolution over a 

range of ±10 millivolts. 

l) The St. Petersburg Institute of Cardiological 

Technics (INCART) database is composed of 75 

annotated recordings collected from 32 holter 

contacts. Each record is 30 min and includes 12 

stan-dard leads. The sampling frequency of each 

record is 257 Hz. The subjects were 17 men and 15 

women, 18–80 years of age. 

The interested reader can determine detailed 

information on the databases mentioned in this paper 

at: 

https://www.physionet.org/physiobank/database/#ec

g. 

 

6. CONCLUSIONS 

Many researchers around the world address various 

problems related to the analysis of ECG signals. 

Therefore, they need particular information on the 

different stages of ECG signal analysis. Although 

there already available many review articles in the 

literature on ECG analysis, they are limited to only a 

few aspects. In this paper, a comprehensive study has 

been conducted for preprocessing, feature extraction, 

classification, ECG databases.  

Recent studies on the preprocessing step of ECG 

signal analysis are summarized in this paper.   
In addition to the pre-processing step, the feature 

extraction are also very important for different tasks, 

such as classification or identification. Those steps are 

comprehensively reviewed with the related 

subcategories. 

In the Classifier section, seven widely used 

classifiers, ANN, LDA, kNN, SVM, DT, Bayesian 

and fuzzy based classifier are reviewed in detail. 

Future work would cover classifiers published in the 

literature in view of their accordance with the 

databases.  

 
 
 

https://www.physionet.org/physiobank/database/#ecg
https://www.physionet.org/physiobank/database/#ecg
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