Available online at www.ijrat.org

$(1, 2) * -\alpha^*$ - Compact Spaces in Bitopological Spaces

L. Elvina Mary¹, A. Devika²,

Department of Mathematics¹, Department of Mathematics², PSG College of Arts and Science, Coimbatore ^{1,2} Email: elvinamary79@gmail.com¹, devirakavi@gmail.com²

Abstract- In this paper, $(1,2)^*-\alpha^*$ - isolated point, $(1,2)^*-\alpha^*$ -compact spaces, $(1,2)^*-\alpha^*$ - countably compact spaces and sequentially $(1,2)^*-\alpha^*$ - compact spaces in bitopological spaces are introduced and its properties are investigated.

Keywords- $(1,2)^*$ - α^* - isolated point $(1,2)^*$ - α^* - compact spaces $(1,2)^*$ - α^* - countably compact spaces and sequentially $(1,2)^*$ - α^* - compact spaces.

1. INTRODUCTION

The study about a class of compact space called as S-closed space using semi open cover was first initiated by DI Maio and Noiri [4]. The notion of locally S-closed space was investigated by Noiri[7]. The class of compact space namely GO-compact space and GO-connected space using g-open cover was introduced by Balachandran, Sundaram and Maki[1]. Pauline Mary Helen, Ponnuthai Selvarani, Veronica Vijayan , Punitha Tharani[8] studied about g^{**} compact space and g^{**} compact space modulo I space Mohana and Arockiarani [6] introduced a class of $(1, 2)^*-\pi$ $g\alpha^{**}$ -connected spaces using $(1, 2)^*-\pi$ $g\alpha^{**}$ -open sets in bitopological spaces.

In this paper, we introduce a new class of (1,2)*- α^* -compact space using (1,2)*- α^* open sets and investigate their properties. Further, we study (1,2)*- T_{α^*} -space , (1,2)*- $_gT_{\alpha^*}$ -space and their properties.

2. PRELIMINARIES

Throughout this paper, X and Y denote the bitopological spaces (X, τ_1, τ_2) and (Y, σ_1, σ_2) respectively, on which no separation axioms are assumed.

Definition 2.1.[5] A subset S of a bitopological space X is said to be $\tau_{1,2}$ -open if S=AUB where $\tau_1 \in A$ and $\tau_2 \in B$. A subset S of X is said to be (i) $\tau_{1,2}$ -closed if the complement of S is $\tau_{1,2}$ -open. (ii) $\tau_{1,2}$ -clopen if S is both $\tau_{1,2}$ -open and $\tau_{1,2}$ -closed.

Definition 2.2.[5] Let S be a subset of the bitopological space X. Then the $\tau_{1,2}$ - interior of S denoted by $\tau_{1,2}$ - int(S) is defined by \cup {G: G \subseteq S and G is $\tau_{1,2}$ - open} and $\tau_{1,2}$ - closure of S denoted by

 $\tau_{1,2}$ -cl(S) is defined by \cap {F: S \subseteq F and F is $\tau_{1,2}$ -closed}.

Definition 2.3. A subset A of a bitopological space X is said to be

i)(1,2)*-regular open [5] if $A = \tau_{1,2} - int(\tau_{1,2} - cl(A))$.

ii)(1,2)*- α -open[5]if $A \subseteq \tau_{1,2} - int(\tau_{1,2} - cl(\tau_{1,2} - int(A)))$.

iii) $(1,2)^* - \alpha^* - \text{closed}[2]$ if $\tau_{1,2} - \text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is $(1,2)^* - \alpha$ – open set in X.

Definition 2.4. A map $f: X \to Y$ is called

- (i) $(1, 2)^*$ - α^* -continuous [3] if $f^1(V)$ is $(1, 2)^*$ - α^* -closed in X for every σ_{12} closed set V of Y
- (ii) $(1, 2)^*-\alpha^*$ -irresolute[3] if $f^1(V)$ is $(1, 2)^*-\alpha^*$ -closed in X for every $(1,2)^*-\alpha^*$ -closed V of Y.

Definition 2.5. [8]A map $f: X \to Y$ is called g^{**} -resolute if f(V) is g^{**} -open in Y whenever U is g^{**} -open in X.

3. $(1,2) * - \alpha^*$ - COMPACT SPACES

Definition 3.1. A collection {A i : i \in I} of (1, 2)*- α *-open sets in a bitopological space X is called a (1, 2)*- α *-open cover of a subset B if B $\subseteq \bigcup$ {A i : i \in I}.

Definition 3.2. A bitopological space X is called $(1, 2)^*-\alpha^*$ -compact, if every $(1, 2)^*-\alpha^*$ -open covering of X contains a finite subcollection that also covers X.A subset A of X is said to be $(1, 2)^*-\alpha^*$ -compact if every $(1, 2)^*-\alpha^*$ -open covering of A contains a finite subcollection that also covers A.

Definition 3.3. A subset B of a bitopological space X is said to be $(1, 2)^*-\alpha^*$ -compact relative to X, if for

Available online at www.ijrat.org

every collection $\{A_i: i \in I\}$ of $(1, 2)^*-\alpha^*$ -open subsets of X such that $B \subseteq \bigcup \{A_i: i \in I\}$ then,

there exists a finite subset I_0 of I such that $B \subseteq \bigcup \{A_i : i \in I_0\}$.

Definition 3.4.A subset B of a bitopological space X is said to be $(1, 2)^*-\alpha^*$ -compact if B is $(1, 2)^*-\alpha^*$ -compact as the subset of X.

Remark 3.5. Any topological space having only finitely many points is necessarily $(1, 2)^*-\alpha^*$ -compact and $(1, 2)^*$ -compact.

Theorem 3.6. A $(1, 2)^*$ - α^* -closed subset of $(1, 2)^*$ - α^* -compact space is $(1, 2)^*$ - α^* -compact.

Proof.Let A be a $(1,2)^*$ - α^* -closed subset of $(1,2)^*$ - α^* -compact space (X,τ_1,τ_2) and $\{U_\alpha\}_{\alpha\in\Delta}$ be a $(1,2)^*$ - α^* -open cover for A.Then, $\{\{U_\alpha\}_{\alpha\in\Delta},(X-A)\}$ is a $(1,2)^*$ - α^* -open cover for X.Since X is $(1,2)^*$ - α^* -compact,there exists $\alpha_1,\alpha_2,....\alpha_n\in\Delta$ such that .Therefore, which proves A is $(1,2)^*$ - α^* -compact.

Theorem 3. 7. A $(1, 2)^*-\alpha^*$ -closed subset of $(1, 2)^*-\alpha^*$ -compact space is $(1, 2)^*-\alpha^*$ -compact relative to X.

Proof. Let A be a $(1, 2)^*$ - α^* -closed subset of a $(1, 2)^*$ - α^* -compact space X. Then A^c is $(1, 2)^*$ - α^* -open in X. Let S be a cover of A by $(1, 2)^*$ - α^* -open sets in X. Then, $\{S, A^c\}$ is a $(1, 2)^*$ - α^* -open cover of X. Since X is $(1, 2)^*$ - α^* -compact, it has a finite subcover, say $\{G_1, G_2,Gn\}$. If this subcover contains A^c , we discard it. Otherwise leave the subcover as it is. Thus we have obtained a finite $(1, 2)^*$ - α^* -open subcover of A and so A is $(1, 2)^*$ - α^* -compact relative to X.

Theorem 3.8.

- (i) If $f: X \rightarrow Y$ is $(1, 2)^*-\alpha^*$ -continuous image of a $(1, 2)^*-\alpha^*$ -compact space, then $(1, 2)^*$ -compact.
- (ii) If a map $f: X \rightarrow Y$ is $(1, 2)^*-\alpha^*$ -irresolute and a subset B is $(1, 2)^*-\alpha^*$ -compact relative to X, then the image f(B) is $(1, 2)^*-\alpha^*$ -compact relative to Y.

Proof.

- (i) Let f: X→Y be a (1, 2)*-α*-continuous map from a (1, 2)*-α*-compact space X onto a bitopological space Y. Let {A i :i ∈ I} be an open cover of Y. Then {f⁻¹ (A_i): i ∈ I} is a (1, 2)*-α*-compact, it has a finite subcover, say {f⁻¹(A₁), f⁻¹(A₂),...... f⁻¹(A_n)}. Since f is onto, { A₁, A₂,...... A_n} is a σ_{1,2}-open cover of Y and so Y is (1, 2)*-compact.
- (ii) Let $\{A_i : i \in I\}$ be any collection of $(1, 2)^* \alpha^*$ open subsets of Y such that $f(B) \subseteq \bigcup \{A_i : i \in I\}$

I}. Then, $B \subseteq \bigcup \{ f^1(A_i): i \in I \}$. By using assumptions ,there exists a finite subset I_0 of I suchthat $B \subseteq \bigcup \{ f^1(A_i): i \in I \}$. Therefore, we have $f(B) \subseteq \bigcup \{A_i : i \in I_0\}$ which shows that f(B) is $(1, 2)^*-\alpha^*$ -compact relative to Y.

Definition 3.9. A map $f: X \to Y$ is called $(1, 2)^* - \alpha^*$ resolute if f(V) is $(1,2)^* - \alpha^*$ -open in Y whenever U is $(1,2)^* - \alpha^*$ -open in X.

Definition: 3.10 A map $f: X \to Y$ is called strongly-(1, 2)*- α *-continuous if $f^1(V)$ is τ_{12} -closed (τ_{12} -open) in X for every (1,2)*- α *-closed ((1,2)*- α *-open) set V of Y.

Definition 3.11. A topological space (X, τ_1, τ_2) is said to be a $(1, 2)^*-\alpha^*- T_1$ -space if for every pair of distinct points x,y in X ,there exists disjoint $(1, 2)^*-\alpha^*$ - open sets U and V in X such that $x \in U, y \notin U$ and $x \notin V, y \in V$.

Definition 3.12. A topological space (X, τ_1, τ_2) is said to be a $(1, 2)^*$ - α^* - T_2 -space if for every pair of distinct points x,y in X ,there exists disjoint $(1, 2)^*$ - α^* - open sets U and V in X such that $x \in U$ and $y \in V$.

Definition: 3.13. A collection ζ of subsets of X is said to have finite intersection property if for every subcollection $\{C_1, C_2, \ldots, C_n\}$ of ζ the intersection $C_1 \cap C_2 \cap \ldots \cap C_n$ is non-empty.

Theorem: 3. 14. If a map $f: X \rightarrow Y$ is strongly- $(1, 2)^*$ - α^* -continuous from a $(1, 2)^*$ -compact space X onto a bitopological space Y, then Y is $(1, 2)^*$ - α^* -compact.

Proof: Let $\{A_i: i \in I\}$ be a $(1, 2)^*-\alpha^*$ -open cover of Y. Then $\{f^1(A_i): i \in I\}$ is a τ_{12} -open cover of X. As f is strongly- $(1, 2)^*-\alpha^*$ -continuous. Since X is $(1, 2)^*$ -compact, it has a finite subcover, say $\{f^{-1}(A_1), f^{-1}(A_2), \ldots, f^{-1}(A_n)\}$. Since f is onto, $\{A_1, A_2, \ldots, A_n\}$ is a finite $(1, 2)^*-\alpha^*$ -open cover of Y and so Y is $(1, 2)^*-\alpha^*$ -compact.

Theorem: 3.15. Let (X, τ_1, τ_2) and (Y, σ_1, σ_2) be two topological spaces and $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ be a function .Then

- 1. f is $(1, 2)^*-\alpha^*$ -irresolute and A is a $(1, 2)^*-\alpha^*$ -compact subset of $X \implies f(A)$ is a $(1, 2)^*-\alpha^*$ -compact subset of Y.
- 2. f is one to one $(1, 2)^*-\alpha^*$ -resolute and B is a $(1, 2)^*-\alpha^*$ -compact subset of $Y \implies f^1(B)$ is a $(1, 2)^*-\alpha^*$ -compact subset of X.

Proof:(1) and (2) Obvious from the definitions.

Available online at www.ijrat.org

similar above.

Theorem: 3.16 A topological space (X, τ_1, τ_2) is $(1, 2)^*-\alpha^*$ -compact if and only if for every collection ζ of $(1, 2)^*-\alpha^*$ -closed sets in X having finite intersection property, $\bigcap_{c \in C} C$ of all elements of ζ is non-empty.

Proof: Let $\left(X, \tau_1, \tau_2\right)$ is $(1, 2)^*-\alpha^*$ -compact and ζ be a collection of $(1, 2)^*-\alpha^*$ -closed sets with finite intersection property. Suppose $\bigcap_{c \in C} C = \varphi$, then $\bigcap_{c \in C} \left(X - C\right) = X$. Therefore, $\left\{X - C\right\}_{c \in C}$ is a $(1, 2)^*-\alpha^*$ -open cover for X. Then there exists $C_1, C_2, \ldots, C_n \in \zeta$ such that $\bigcup_{i=1}^n (X - C_i) = X$.

Therefore, $\bigcap_{i=1}^n C_i = \varphi$ which is a contradiction. Therefore, $\bigcap_{c \in C} C \neq \varphi$. Conversely, assume the hypothesis given in the statement. To prove X is (1, 2)*- α *-compact. Let $\{U_{\alpha}\}_{\alpha \in \Delta}$ be a (1,2)*- α *-open cover for X. Then $\bigcup_{\alpha \in \Delta} U_{\alpha} = X \Rightarrow \bigcap_{\alpha \in \Delta} (X - U_{\alpha}) = \varphi$. By the

hypothesis, there exists $\alpha_1,\alpha_2,....\alpha_n$ such that $\bigcap_{i=1}^n X - U_{\alpha_i} = \varphi \text{.Therefore, } \bigcup_{i=1}^n U_{\alpha_i} = X \text{.Therefore, } X \text{ is } (1,2)^*-\alpha^*\text{-compact.}$

Corollary 3.17:Let (X, τ_1, τ_2) be a $(1,2)^*-\alpha^*-$ compact space and let $C_1 \supseteq C_2 \supseteq \supseteq C_n \supseteq C_{n+1} \supseteq$ be a nested sequence of non-empty $(1, 2)^*-\alpha^*-$ closed sets in X. Then $\bigcap_{c \in Z^+} C_n$ is non-empty.

Proof: Obviously $\{C_n\}_{n\in Z^+}$ has finite intersection property. Therefore by Theorem 3.15, $\bigcap_{c\in Z^+} C_n$ is nonempty.

Theorem 3.18. Let $f:(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ be a function ,then

- 1) f is $(1, 2)^*-\alpha^*$ -continuous, onto and X is $(1, 2)^*-\alpha^*$ -compact \Longrightarrow Y is compact.
- 2) f is continuous, onto and X is $(1, 2)^*-\alpha^*$ compact \Rightarrow Y is compact.
- 3) f is $(1, 2)^*-\alpha^*$ -irresolute, onto and X is $(1, 2)^*-\alpha^*$ -compact $\Rightarrow Y$ is $(1, 2)^*-\alpha^*$ -compact.
- 4) f is strongly $(1, 2)^*-\alpha^*$ -irresolute, onto and X is $(1, 2)^*-\alpha^*$ -compact \Rightarrow Y is $(1, 2)^*-\alpha^*$ -compact.

- 5) f is $(1, 2)^*-\alpha^*$ -open, bijection and Y is $(1, 2)^*-\alpha^*$ -compact $\Rightarrow X$ is compact.
- 6) f is open, bijection and Y is $(1, 2)^*-\alpha^*$ compact $\Rightarrow X$ is compact.
- 7) f is $(1, 2)^*-\alpha^*$ -resolute, bijection and Y is $(1, 2)^*-\alpha^*$ -compact $\Rightarrow X$ is $(1, 2)^*-\alpha^*$ -compact.

Proof: (1):Let $\{U_{\alpha}\}_{\alpha\in\Delta}$ be an open cover for Y. Then $\{f^{-1}(U_{\alpha})\}_{\alpha\in\Delta}$ is a (1, 2)*- α *-open cover for X. Since X is (1, 2)*- α *-compact, there exists $\alpha_1,\alpha_2,.....\alpha_n$ such that $X\subseteq\bigcup_{i=1}^n f^{-1}(U_{\alpha_i})$. Therefore, Y is compact. Proof for (2) to (7) are

4. (1, 2)*- α *-COUNTABLY COMPACT SPACE **Definition: 4.1.** A subset A of a topological space (X, τ_1, τ_2) is said to be (1, 2)*- α *-countably compact space if every countable (1, 2)*- α *-open covering of A has a finite subcover.

Remark 4.2. Every $(1, 2)^*-\alpha^*$ - compact space is $(1, 2)^*-\alpha^*$ - countably compact space.

Definition: 4.3:Let (X, τ_1, τ_2) be a topological space and $x \in X$. Every $(1, 2)^*-\alpha^*$ -open set containing x is said to be a $(1, 2)^*-\alpha^*$ -neighbourhood of x.

Definition: 4.4:Let A be a subset of a topological space (X, τ_1, τ_2) . A point $x \in X$ said to be $(1, 2)^*$ - α^* -limit point of A if every $(1, 2)^*$ - α^* - neighbourhood of x contains a point of A other than x.

Theorem 4.5:In a $(1, 2)^*-\alpha^*$ -countably compact topological space every infinite subset has a $(1, 2)^*-\alpha^*$ -limit point.

Proof:Let (X, τ_1, τ_2) be $(1, 2)^*-\alpha^*-$ countably compact. Suppose that there exists an infinite subset which has no $(1, 2)^*-\alpha^*-$ limit point. Let $B = \{a_n/n \in N\}$ be a countable subset of A. Since B has no $(1, 2)^*-\alpha^*-$ limit point of B, there exists a $(1, 2)^*-\alpha^*-$ neighbourhood U_n of a_n such that $B \cap U_n = \{a_n\}$. Now $\{U_n\}$ is a $(1, 2)^*-\alpha^*-$ open cover for B. Since B^c is $(1, 2)^*-\alpha^*-$ open, $\{B^c, \{U_n\}_{n \in \mathbb{Z}^+}\}$ is a countable $(1, 2)^*-\alpha^*-$ open cover for X. But it has no finite subcover which is a contradiction, since X is $(1, 2)^*-\alpha^*-$ countably compact. Therefore every infinite subset of X has a $(1, 2)^*-\alpha^*-$ limit point.

Available online at www.ijrat.org

Corollary 4.6:In a compact topological space every infinite subset has a limit point.

Proof follows from theorem 4.5,since every $(1, 2)^*$ - α^* -compact is $(1, 2)^*$ - α^* -countably compact.

Theorem 4.7:A $(1, 2)^*-\alpha^*$ -closed subset of $(1, 2)^*-\alpha^*$ -countably compact space is $(1, 2)^*-\alpha^*$ -countably compact. Proof is similar to theorem 3.6.

Definition: 4.8 In a topological space (X, τ_1, τ_2) , a point $x \in X$ is said to be $(1, 2)^*-\alpha^*$ -isolated point of A if every $(1, 2)^*-\alpha^*$ -open set containing x contains no point of A other than x.

Theorem 4.9:Let X be a non-empty $(1, 2)^*-\alpha^*$ -compact $(1, 2)^*-\alpha^*-T_2$ space. If has no $(1, 2)^*-\alpha^*$ -isolated points, then X is uncountable.

Proof: Let $x_i \in X$. Choose a point y of X different from x. This is possible since $\{x_i\}$ is not a $(1, 2)^*$ - α^* - isolated point. Since X is $(1, 2)^*$ - α^* - T_2 , there exists $(1, 2)^*-\alpha^*$ -open sets such that U_1 and V_1 such that $U_1 \cap V_1 = \varphi; x \in U_1, y \in V_1$. Therefore V_1 is (1, 2)*- α *-open and $x_1 \notin g^{**}cl(V_1)$. By repeating the same process with V_1 in the place of X and x_1 in the place of y we get a point $x \neq x_1$ and a $(1, 2)^*-\alpha^*$ -open V_2 set such that V_2 is $(1, 2)^*-\alpha^*$ -open and $x_2 \notin (1,2)^* - \alpha^* cl(V_2)$. In general, given V_{n-1} which is $(1, 2)^*-\alpha^*$ -open and non-empty ,choose V_n to be a non-empty (1, 2)*- α *-open set such that $V_n \subseteq V_{n-1}$ and $x_n \notin (1,2)^* - \alpha^* cl(V_n)$. Hence we get a nested sequence of $(1, 2)*-\alpha*$ -closed sets such that $(1,2)^* - \alpha^* cl(V_n) \supseteq (1,2)^* - \alpha^* cl(V_{n+1}) \supseteq \dots$ (1, $(1,2)^* - \alpha^* cl(V_n) \neq \varphi$. Therefore, there exists $x \in \bigcap (1,2)^* - \alpha^* cl(V_n)$. But $x \neq x_n$, for every n, $x_n \notin (1,2)^* - \alpha^* cl(V_n)$ since $x \in (1,2)^* - \alpha^* cl(V_n)$. Define $f: Z_+ \to X$ such that $f(n) = x_n$. Then $x \in X$ has no preimage. Therefore, f is not onto and hence X is uncountable.

Note 4.10: The converse of Theorem 4.5 is true in a $(1, 2)^*-\alpha^*-T_1$ space.

Theorem 4.11:In a $(1, 2)^*-\alpha^*-T_1$ space ,if every infinite subset has a $(1, 2)^*-\alpha^*$ -limit point, the X is $(1, 2)^*-\alpha^*$ -countably compact.

Proof: Let every infinite subset has a $(1,2)^*-\alpha^*$ - limit point. To prove X is a $(1,2)^*-\alpha^*$ -countably compact. If not there exists a countable $(1,2)^*-\alpha^*$ -open cover $\{U_n\}$ such that it has no finite sub cover. Since $U_1 \neq X$, there exists $x_1 \notin U_1$; since $X \neq U_1 \cup U_2$, there exists $x_2 \notin U_1 \cup U_2$. Proceeding like this there exists $x_2 \notin U_1 \cup U_2 \cup \ldots \cup U_n$ for all n. $A = \{x_n\}$ is an infinite set. If $x \in X$, then $x \in U_n$ for some n. But $x_k \notin U_n$ for all $k \geq n$. $U_n - \{x_1, x_2, x_3, \ldots, x_{n-1}\}$ is a $(1, 2)^*-\alpha^*$ -open set (since X is $(1, 2)^*-\alpha^*-T_1$) containing x which does not have a point of A other than x. Therefore, x is not a limit point of A which is a contradiction.

Theorem 4.12 A topological space (X, τ_1, τ_2) is $(1, 2)^*-\alpha^*$ - countably compact if and only if for every countable collection ζ of $(1, 2)^*-\alpha^*$ - closed sets in X having finite intersection property, of all elements of ζ is non- empty.

Proof: Similar to the proof of theorem 3.15.

Corollary 4.13. X is $(1,2)^*$ - α^* - countably compact if and only if every nested sequence of $(1,2)^*$ - α^* - closed non-empty sets $C_1 \supset C_2 \supset \ldots$ has a non-empty intersection.

Proof. Obviously $\{C_n\}_{n\in Z^+}$ has finite intersection property. Therefore, by theorem 4.10, $\bigcap_{c\in Z^+} C_n$ is nonempty.

5. SEQUENTIALLY (1, 2)*- α * -COMPACT SPACE

Definition: 5.1 A subset A of a topological space (X, τ_1, τ_2) is said to be sequentially $(1, 2)^*-\alpha^*$ -compact space if every sequence in A contains a subsequence which $(1, 2)^*-\alpha^*$ -converges to some point in A.

Theorem: 5.2 A finite subset A of a topological space (X, τ_1, τ_2) is sequentially $(1, 2)^*-\alpha^*$ -compact.

Proof: Let $\{x_n\}$ be an arbitrary sequence in X .Since A is finite, at least one element of the sequence say x_0 must be repeated infinite number of times .So the

Available online at www.ijrat.org

constant subsequence $X_0, X_{0,...}$ must $(1, 2)^*-\alpha^*$ - converges to X_0 .

Theorem 5.3 Every sequentially $(1, 2)^*-\alpha^*$ -compact space is $(1, 2)^*-\alpha^*$ -countably compact.

Proof: Let (X, τ_1, τ_2) be sequentially $(1, 2)^*-\alpha^*$ -compact. Since X is not $(1, 2)^*-\alpha^*$ -countably compact. Then there exists countable $(1, 2)^*-\alpha^*$ -open cover $\{U_n\}_{n\in Z^+}$ which has no finite subcover. Then $X=\bigcup_{n\in Z^+}U_n$. Choose

$$x_1 \in U_1, x_2 \in U_2 - U_1, x_3 \in U_3 - \bigcup_{i=1,2} U_i, \dots, x_3 \in U_{[3]} - \bigcup_{i=1,2} U_i$$
 A and Elvina Mary. L, "(1,2) * - α * -

This is possible since $\{U_n\}$ has no finite subcover. Now $\{x_n\}$ is a sequence in X. Let $x \in X$ be arbitrary .Then $x \in U_k$ for some k. By our choice of $\{x_n\}$, $x_i \not\in U_k$ for all greater than k. Hence there is no subsequence of $\{x_n\}$ which can $(1, 2)^*-\alpha^*$ -converge to x. Since x is arbitrary, the sequence $\{x_n\}$ has no convergent subsequence which is a contradiction. Therefore X is $(1, 2)^*-\alpha^*$ -countably compact.

Theorem 5.4:Let $f:(X,\tau_1,\tau_2) \rightarrow (Y,\sigma_1,\sigma_2)$ be a function ,then

- 1) f is $(1, 2)^*-\alpha^*$ -resolute, bijection and Y is sequentially $(1, 2)^*-\alpha^*$ -compact $\Rightarrow X$ is sequentially $(1, 2)^*-\alpha^*$ -compact.
- 2) f is onto, $(1, 2)^*-\alpha^*$ -irresolute and X is sequentially $(1, 2)^*-\alpha^*$ -compact $\Rightarrow Y$ is sequentially $(1, 2)^*-\alpha^*$ -compact.
- 3) f is onto $(1, 2)^*-\alpha^*$ -irresolute and X is sequentially $(1, 2)^*-\alpha^*$ -compact $\Rightarrow Y$ is sequentially $(1, 2)^*-\alpha^*$ -compact.
- 4) f is onto, $(1, 2)^*$ -continuous and X is sequentially $(1, 2)^*$ - α^* -compact $\Rightarrow Y$ is sequentially compact.
- 5) f is onto, strongly $(1, 2)^*-\alpha^*$ -continuous and X is sequentially $(1, 2)^*-\alpha^*$ -compact $\Rightarrow Y$ is sequentially $(1, 2)^*-\alpha^*$ -compact.

Proof:(1) Let $\{x_n\}$ be a sequence in X. Then $\{f(x_n)\}$ is a sequence in Y. It has a $(1, 2)^*-\alpha^*$ -convergent subsequence $\{f(x_n)\}$ such that $f(x_{n_k}) \xrightarrow{(1,2)^*-\alpha^*} y_0$ in Y. Then there exists $x_0 \in X$ such that $f(x_0) = y_0$. Let U be a $(1,2)^*-\alpha^*$ -open set containing x_0 . Then f(U) is a $(1,2)^*-\alpha^*$ -open set containing y_0 . Then

there exists N such that $f(x_{n_k}) \in f(U)$ for all $k \ge N$. Therefore $f^{-1} \circ f(x_{n_k}) \in f^{-1} \circ f(U)$.

Therefore $x_{n_k} \in U$ for all $k \ge N$. This proves that X is sequentially $(1, 2)^*-\alpha^*$ -compact. Proof for (2) to (5) is similar to the above.

REFERENCES

- [1] K. Balachandran, P. Sundaram and J. Maki, "On generalized continuous maps in topological spaces", Mem. Fac. Sci. Kochi Univ. (Math) 12, 5-13,1991.
- [2] Devika. A and Elvina Mary. L, " $(1,2) * -\alpha^*$ -closed sets in Bitopological spaces", Elixir Adv.Math. 101, 44027-44031, 2016.
- (3) Devika. A and Elvina Mary. L, " $(1,2) * -\alpha^*$ -continuous functions in Bitopological spaces", International Journal of pure and applied Mathematics. Vol.117 (14), 83-90, 2017.
- [4]. G. Di Maio and T. Noiri, Indian J. Pure appl. Math., 18, 226-33, 1987.
- [5] M. Lellis Thivagar and O. Ravi, "A bitopological (1, 2)*-semi generalized continuous mappings", Bull. Malaysian Math. Soc. 29, no.1, 1-9, 2005.
- [6] K. Mohana, I. Arockiarani, " $(1, 2)^*$ - $\pi g \alpha^{**}$ -Compact Spaces and $(1, 2)^*$ - $\pi g \alpha^{**}$ -Connected Spaces in Bitopological spaces", International Journal of Advanced Scientific and Technical Research, Issue 1,Vol 2,pp 59-68, 2011.
- [7] T. Noiri, Atti Accad. Naz.Lincei Rent. Cl. Sci. Fis. Mat., Natur. (8)64, 157-62, 1978.
- [8] Pauline Mary Helen Ponnuthai Selvarani, Veronica Vijayan , .Punitha Tharani, "g** compact space and g** compact space modulo I space", International Journal of Computer Application, Issue 2,Volume 4,pp 123-133,August 2012.