
 International Journal of Research in Advent Technology, Vol.7, No.4, April 2019

E-ISSN: 2321-9637

Available online at www.ijrat.org

125

Security Against Fork Bomb Attack in Linux Based

Systems

Krunalkumar D. Shah
1
, Krunal V. Patel

2

Information Technology Department
1,2

, SSEC Bhavnagar
1,2

Email: einstein1410@gmail.com
1
, krunal220@gmail.com

2

Abstract-Linux is one of the most popular and widely used operating system in devices ranging from servers to

tiny embedded gadgets. However, linux has greatly enhanced the security in many ways, but still it suffers from

many attacks. A major process security issue called Fork Bomb is one of them, which is denial of service attack

in which process continually creates itself to make system down or crash due to resource starvation. Most of the

solutions found in the literature has their own limitations like false positive detection and resource unavailability.

To preserve one goal that is availability among the CIA (Confidentiality, Integrity and Availability) of

information security, we proposed to develop efficient solution which handles the fork bomb attack in such a

way that system remains available for use by end user.

Index Terms-Linux, Process, Overload, Fork, Bomb, Availability

1. INTRODUCTION

Operating system is one kind of system software

which deals with process management, memory

management, providing security and all. In short,

operating system manages the resources of computing

system. When a process or user requests for the

resources in order to accomplish certain task,

requested resources will be allocated by the operating

system and more specifically by the core part called

kernel. Once the task has been finished, all the

resources are made free and marked as available for

use by other process and users. Thus, OS works as a

resource manager as it does the management of

resources.

When a process creates a sub process, then the

process which has created the sub process becomes the

parent of that sub process and sub process is called

child process. A single process can creates more than

one child processes. The same thing is applicable to

the child processes. For creating a child process,

especially in the Linux based system a special system

call is used named as fork(). Once the fork system call

is executed, it requests the operating system kernel to

create sub process and allocates the resources. As

mentioned here, there is no limitation on how many

sub processes can be created by a single process.

Fork bomb is much similar to one kind of denial of

service attack. Fork bomb is nothing but a simple

program which replicates itself. It exploits resource

allocation mechanism of operating system. In case of

the fork bomb, a single process creates as many

processes as the operating system can handle. Once it

has exhausted all the available resources, operating

system will not be able to handle further processes

which leads to system hang or sometimes system

crash.

Once the process is created, one entry is made in a

special structure maintained by the operating system

itself called the process table. Since the process table

has finite amount of memory, it can only handle that

amount of processes. Once it gets filled, system will

start lagging. And after sometime system will become

completely hanged. You need to restart the system by

powering it off. Thus, fork bomb is a kind of process

overload attack whose only aim is to affect the

performance of the system and to make it unavailable

for further use.

As far as the information security says that, in any

situation the system and the data stored inside it must

remain available as and when needed, among it’s three

pillars called CIA (Confidentiality, Integrity, and

Availability). Fork bomb affects the availability by

exploiting resource allocation mechanism.

Linux is considered as one of the most secure

operating system. But not even Linux, in the case of

fork bomb can survive. The only reason is that process

creation is legitimate operation and doesn’t require

special powers. If you can run any arbitrary code with

out special privileges, then you can create fork bomb.

Thus in this paper, we are going to propose a new

approach which handles the fork bomb in such a way

that system will remain available. This paper is

organized into four subsequent sections which

contains the main aim of the whole work, existing

solutions with it’s limitations, proposed solution along

with some experimental results respectively. At the

end, conclusion is presented along with the future

work.

2. EXISTING SOLUTIONS

In this section all the existing solutions to deal

with fork bomb is given along with their own

limitations.

2.1. Limitation on the Number of Process

Creation

In the Linux or Unix based systems, you can set

the limit especially the upper limit of how many total

number of processes can be created by particular user.

You can do this by setting “nproc” in

“/etc/security/limits.conf”.

 International Journal of Research in Advent Technology, Vol.7, No.4, April 2019

E-ISSN: 2321-9637

Available online at www.ijrat.org

126

This solution is not adaptive as once the upper

bound is reached, system will deny all the subsequent

requests even though it might be important or

legitimate.

2.2. Limitation of Memory Usage per Process

As the name says itself, it puts the memory

limitations on the processes. If a process requires more

memory than the predefined memory, it will be denied

from further execution. The only limitation is that, we

can not predetermined the memory requirements, and

hence in future, if a process with more memory

requirement comes then it will be denied from

execution.

2.3. Limitation of Process Creation Rate of

Each User

This approach says that process creation rate of

each user is counted. And once the creation rate goes

beyond the threshold, it will be denied from further

execution. If any user creates a single process which in

turns create more processes like as happened in more

complex computer aided manufacturing and design

software, then user can not be able to run this kind of

things. Our system will detect it as a fork bomb and

execution is terminated.

2.4. Fork Bomb Attack Mitigation by Process

Resource Quarantine

This method does not prevent the fork bomb

attack, but it tries to mitigate it’s effect. Here,

Operating system don’t terminate the bomb processes,

Instead of that, operating system will make resource

limitations for the bomb processes and it will be

checked periodically. Once, it starts behaving like a

normal process, resource limitation will be removed

and will be allowed to execute as a normal process.

This is a good approach to remove the false

positiveness of the previous solution. And according

to information security laws, system should remain

available for use, either it is a bomb process or a

legitimate one. Thus, this solution tried to mitigate the

fork bomb and obeys the information security laws.

2.5. Accurate Fork Bomb Detection by Process

Name

In this approach, authors said that, instead of

using process identifiers or putting resource

limitations, just use the name of the processes. Here,

two lists is used called detection list and exception list.

User can add the name of the process into the

exception list, if he or shes wishes that this particular

process not to be checked by the system and allowed

execution. The name of the processes which are

identified as a bomb process will be added to the

detection list. Once the name is added in that list, and

if in future the process having the same name comes,

then without any further check it will be killed.

The only limitation of this method is that once

the name of any process is added to the detection list

then it will stay there forever. In future, it might be

possible that process having the same name as one of

the process in the detection list comes, but not a fork

bomb process, it will be killed directly. Thus, even

though the process is legitimate, system will not allow

it’s execution.

3. PROPOSED SOLUTION

The proposed method for efficiently dealing with

fork bomb attack is as follows:

Our approach of dealing with fork bomb is

combination of the [1] and [2]. As suggested in [2],

accurate detection is made. Once done, we took it as

base and applied the solution presented in [1]. Reason

behind doing this is, once the process name is added in

to the detection list, it stays there forever. When in

future, process arrives and have the same name but not

the fork bomb then solution defined in [2] will directly

deny the execution.

Also, if a malicious user create one process

having some well known name or name of that

process derived from some popular software, then it

will be added in the detection list and after that when

the legitimate process arrives from which the attacker

derived the name, it can not execute itself.

Following figure 1 is the flow chart of the

proposed solution. It also shows how the various steps

are executed in order to efficiently deal with fork

bomb.

As shown in the above figure, there are two flows

from which system can pass.

In first step, when process requests fork, then it

will be checked in the exception list. If it found in the

exception list then without performing any check, it

will be permitted for execution. Otherwise, it will be

checked in the detection list.

Fig. 1. Flow of the proposed solution

 International Journal of Research in Advent Technology, Vol.7, No.4, April 2019

E-ISSN: 2321-9637

Available online at www.ijrat.org

127

In second step, let’s say the process is not found

in the detection list, then the process growth rate is

measured in particular interval time and compared

with the predefined threshold value. If it exceeds then

it’s name is added to the detection list and will be

killed.

In last step, if match found in the detection list,

then instead of directly denying execution, it will be

permitted to execute in the resource quarantine

manner, where the resource limitation is imposed on

the process. Here, it will be checked periodically and

if it has normal behaviour then it will be released from

the resource limitation and it’s name will be removed

from the detection list, otherwise, it will be killed.

4. EXPERIMENTAL RESULTS

When you apply fork bomb in the system

whether intentional or unintentional, it is clearly

visible that before the fork bomb system behaved

normally. Once, the fork bomb occurs, the system

started lagging. For experimental purpose, we have

used bash fork bomb, which nothing but the simple

bash shell script. In this shell script, bomb process

replicates itself twice. Thus, the process growth can be

seen like 1,2,4,8,16,32,64... etc. And all are the do

nothing processes. The only task they are doing is the

forking of themselves twice. Here, parent will never

die. And hence it makes system overloaded.

In the previous solutions, as mentioned above,

the process growth rate is measured and if it goes

beyond the some predefined threshold, it will be

killed. But in some cases, if a user wants to make this

happen, then in this case, our proposed solution

provides the facility to add that process into the

exception list.

System configuration details and parameters that

has been applied are as below:

Parameter Value

FORK_RECORD_DEPTH 500 record

FORK_SPEED_LIMIT 1000 fork/sec

MEMORY_CAPTURE 750 MiB

INSPECTION_INTERVAL 10 msec

Table 1. Parameters and Values

CPU Intel Celeron

Frequency 2.20 GHz

RAM 1GB

Linux Kernel Version 4.15.0-47-generic

Xubuntu Version 18.04 LTS

Table 2. System Configuration

In order to find fork bomb, our system will check

for the fork system call. And will count the number of

times the fork system call executed. If it goes beyond

the threshold, then it will be added into the detection

list. So, for new processes, the time for checking if

consumed. Else, it will not check for the same. Hence

the time is reduced drastically.

In contrast, to achieve the system availability, it

also checks the processes which are already in the

detection list for it’s validity. Thus, this solution may

generate slide system load especially the load on the

system memory.

Following table 3 shows the time required to

identify the fork bomb with respective to the threshold

as shown in the table 1.

Threshold Time (msec)

500 44

700 124

1000 668

1500 2468

Table 3. Fork Bomb identification time

For finding the load on the system, well known

web server cockpit is used. Task manager can also be

used which is provided as part of almost all operating

systems. Here, in our case, xfce4-taskmanager

provides good diagnostic information like memory

utilized, load on CPU and utilization of swap space.

Following figure 2 shows the load on the system

via CPU Load, Memory Load at the time of attack.

Fig. 2. Load Monitor

As we can see, once the bomb is exploited on the

system, our proposed method will check according the

flow shown in figure 1. In the above load monitoring

case, the process name is already added into the

detection list. Hence, without checking the system will

kill that processes. Thus, it makes the system

available.

5. CONCLUSION

In this paper, we have used the hybrid mix

approach as of storing the name of the process for

future reference and putting resource limitations.

There are several solutions for handling the fork

bomb. They have their own limitations. However,

proposed method will remove the limitations of the

existing solution, it will slightly affects the memory.

But that memory requirement is small. Thus, by

combining the existing two solutions in order to

remove the limitations of each other, we have

provided the efficient solution in this paper.

The result of the evaluation experiment shows that,

once the process name is added into the detection list,

it won’t be killed, rather than that, it will be examined

 International Journal of Research in Advent Technology, Vol.7, No.4, April 2019

E-ISSN: 2321-9637

Available online at www.ijrat.org

128

under memory limitations. Hence, according the

information security laws, the availability is

maintained and efficient dealing with fork bomb is

done.

ACKNOWLEDGEMENTS

The authors would like to thank the anonymous

reviewers for their valuable suggestions and the

proposed references.

REFERENCES

[1] Gaku Nakagawa, Shuichi Oikawa, “Fork Bomb

Attack Mitigation by Process Resource

Quarantine”, Fourth International Symposium on

Computing and Networking, IEEE 2016.

[2] M. Hareesh, K. Yaswanth, M. Sreeja, Saidalavi

Kalady, “Accurate Fork Bomb detection by

Process Name”, International Conference on

Intelligent Computing, Instrumentation and

Control Technologies (ICICICT), IEEE 2017.

[3] Mohiuddin Ali Khan, Sateesh Kumar Pradhan,

Huda Fatima, “Applying Data Mining Techniques

in Cyber Crimes”, IEEE 2017.

[4] Michele Berlot, Janche Sang, “Dealing with

Process Overload Attacks in UNIX”, Information

Security Journal: A Global Perspective, 2008.

[5] Ashvini T. Dheshmukh, Dr. Parikshit. N.

Mahalle, “Survey on Linux Security and

Vulnerabilities”, International Journal of

Engineering And Computer Science (IJECS),

2014.

[6] Abraham Silberschatz, Peter Bear Galvin, Gerg

Gagne. Operating System Principles. 7th Edition.

ISBN: 9812531769.

[7] “Why did the command “:(){ :|: & };:” make my

system lag so badly I had to reboot?”, accessed on

05 November 2018,

https://askubuntu.com/questions/159491/why-did-

the-command-make-my-system-lag-so-badly-i-

had-to-reboot/.

[8] R. singh, “fork bomb defuser (rexfbd).”, accessed

on 01 December 2018,

http://rexgrep.tripod.com/rexfbd.htm.

[9] “understanding bash fork bomb,”, accessed on 08

November 2018,

https://www.cyberciti.biz/faq/understanding-bash-

fork-bomb/.

[10] “limiting user process in kernel.”, accessed on 15

October 2018, http://www.cyberciti.biz/tips/linux-

limiting-user-process.html.

[11] Paul Cobbaut. “System Administration”, accessed

on 05 October 2018, http://linux-

training.be/linuxsys.pdf.

