
International Journal of Research in Advent Technology, Vol.7, No.4, April 2019 

E-ISSN: 2321-9637 

Available online at www.ijrat.org 
 

326 

 

MAX-MiBit-An Algorithm To Discover Maximal 

Frequent Itemsets From Large Transactional Datasets 
 

R.Sujatha
1
, Dr. S. Ravichandran

2
,                         

 

Research Scholar
1
 , Assistant Professor and  Head

2
, 

PG and Research Department of Computer Science
1,2 

H.H. The Rajah’s College (A)
1, 2

 

Pudukkottai
1,2

, Tamilnadu- 622001
1,2

. 

              Email: rsujathaa77@gmail.com
1
 , rajahsravis@gmail.com

2 
 

Abstract-A new algorithm for mining maximal frequent items was proposed in this paper. The proposed 

algorithm initially discover the missing items in the transactions and then uses simple bit vector computations to 

unearth maximal frequent itemsets from the large transactional datasets. The noticeable attribute of the proposed 

algorithm MAX-MiBit is that the maximal frequent itemsets are discovered in a straight forward method and the 

uncertain items are removed instantaneously to enhance the execution speed and to decrease the memory 

consumption. The experimental evaluation showcased that the proposed algorithm MAX-MiBit outscores the 

state of the art current algorithms by a huge margin with respect to execution speed and memory consumption. 

 

Keywords-Frequent Itemset,Bitvector,Maximal,Datamining. 

 

1.INTRODUCTION 

Currently there are many algorithms which 

produce frequent itemsets efficiently. However, a 

drawback of these algorithms is that they may 

discover too many frequent patterns to users. A very 

large number of frequent patterns make it difficult for 

users to analyze results to gain insightful knowledge.   

It may also cause the algorithms to become 

inefficient in terms of time and memory because the 

more frequent patterns the algorithms produce, the 

more resources they consume. The problem becomes 

worse when the database contains long frequent 

patterns. 

A frequent itemset is nothing but that occurs 

in user-defined times in the transaction database. That 

number of time or occurrence is called minimum 

support value of the item. An itemset is considered to 

be closed if its immediate supersets do not contain the 

same minimum support. An itemset is considered as 

maximal frequent if its immediate supersets are not 

frequent. 

 

2. PRELIMINARIES 

Let I be a set of items,I={1,…,N}). Assume 

X ⊆I an itemset, and here the X a k-itemset if the 

cardinality of itemset X is k. Let database T be a 

multiset of subsets of I,and let support(X) be the 

support of itemsets Y in T such that X ⊆Y. 

Here the support of an itemset describes how 

often X occurs in the transaction database. If 

support(X) = minSup, we say that X is a frequent 

itemset, and we denote the set of all frequent itemsets 

by FI. If X is frequent and none of its supersets are 

frequent, then X is called maximally frequent itesmset  

 

 

MFI. The relationship between frequent, 

closed frequent and maximally frequent is generally 

denoted as, 

 

MFI FCI FI 
 

 

 

 

 

 

 

     Figure 1: Relationship between FI, FCI and MFI 

For brevity an itemset {A, B, C} is written as 

ABC. The minimum support of an itemset X , denoted 

Sup (X), is the number of transactions in which the 

item occurs as a subset. An itemset is frequent if its 

support is more than or equal to a user-specified 

minimum support (min_sup) value,  

(i.e.,) if  Sup( X )  min sup. 

Support = Frequency(A,B) 

                                              ………….1                  

                          N                       

Where, N is the total number of transaction in the                    

database.               

 
          
 

 

 
 

 

 
 

 

 
 

 

Table 1: Sample transaction dataset 

Tid Transactions 

1 ABC 

2 ABCD 

3 BCE 

4 ACDE 

5 DE 

mailto:rsujathaa77@gmail.com1


International Journal of Research in Advent Technology, Vol.7, No.4S, April 2019 

E-ISSN: 2321-9637 

Available online at www.ijrat.org 
 

327 

 

{A,B,C,D,E} \ {A,B,C} 

{A,B,C,D,E}\{A,B,C,D} 

{A,B,C,D,E} \ {B,C,E} 

{A,B,C,D,E}\{A,C,D,E} 

{A,B,C,D,E} \ {D,E} 

1 D,E 

2 E 

3 A,D 

4 B 

5 A,B,C 

Consider the transaction database shown in table 

1.There are five different items, I = {A; B; C; D; E } 

and five transactions T = {1 ; 2 ; 3 ; 4 ; 5} . The figure 

2 shows all the frequent itemsets discovered for a min 

sup= 40%. 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

Figure 2: All frequent itemsets discovered from the sample dataset 

 

 

3.PROPOSED APPROACH 

 The proposed approach employs missing 

item technique and then finds the maximal frequent 

itemsets after converting the transactional database 

into bit vector values. Initially the distinct items 

present in the transaction database are found and the 

procedure to discover distinct items is shown in the 

figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
   Figure 3: Pseudo code to find distinct items in the  

                  transaction  database 

The procedure to find distinct items first 

scans the database and then fetches each and every 

row and then fetches each and every items present in 

the transactional database to compare, if the item 

compared is present in the Distinct[] array, the item is 

ignored else, the item will be stored as distinct item. 

The process of discovering the distinct items present 

in the database is the first task during the discovery of 

maximal frequent itemset using the proposed MAX-

MiBit algorithm. 

 
4. FIND MISSING ITEMS IN THE 

      TRANSACTIONS 

The distinct items found by the procedure 

DistinctITEM is {A, B, C, D, E} and the sample 

dataset is again scanned to find the missing items 

present in every transactions and the pseudo code is 

shown in the figure 4. 

 

PROCEDURE 

GetMissingItems(Database dT, 

DistinctItems d) 

INPUT:Transaction Database dT,  

               DistinctItems d 

OUTPUT: Missing Items Array[] 

BEGIN: 

1. Load the database dT 

2.  TransactionRow  RtdT  do  

3. Find The Set Difference diff=d \ Rt 

4. Store diff in Output array with 

Transaction ID  

5. End For 

6. Return Output  array 

END PROCEDURE 
 
Figure 4: Pseudo code to discover the missing items in transactions. 

 
The transactional rows present in the 

database dT is fetched and the set difference between 

the distinct item d and the transaction row fetched is 

discovered, stored along the TID in the missing item 

output array as shown in the figure 5. 

 

 

 

 

 

 

 

 
Figure 5: Working of missing item procedure                                                              

 
         

 

 
 

 
 

 

 

PROCEDURE DistinctITEM 

( Database dT) 

INPUT: Transaction Database dT 
OUTPUT: DistinctItems 

BEGIN: 

1. Load the input database dT 

2. Set Distinct[] =  

3.  TransactionRow  tR present  in 

dT  do  

4.  RowItem rI present in  tR  do 

5. If [ rI present in Distinct[] ] then 

6. Fetch Next Item 

7. else 

8. Store RowItem rI  Distinct[]  

9. End IF 

10. End For 

11. End For 

12. Return Distinct[] 

END PROCEDURE 



International Journal of Research in Advent Technology, Vol.7, No.4S, April 2019 

E-ISSN: 2321-9637 

Available online at www.ijrat.org 
 

328 

 

 
 

 

 
 

 
 

 

 
 

  Table 2: Missing items discovered 

 

The discovered missing items are now 

converted into bit vectors and then used to perform 

simple manipulations to unearth the maximal frequent 

itemsets. The item present in the missing item 

database shown in table 2 is marked with “1”, else 

marked with “0”. The procedure to convert the 

missing items into bit vectors is shown in figure 5 and 

the converted missing values are shown in figure 7. 
 
PROCEDURE 

ConvertToBit(Database mT, 

DistinctItems d) 

INPUT:Database mT, DistinctItems d 

OUTPUT: Bit Vectors 

BEGIN: 

1. Load the database mT 

2.  transaction Row Rt in mT 

3. Compare Distinct Items d with 

Row Rt 

4. IF [ d present in Rt ] then 

5. Mark  1 

6. Else  

7. Mark  0 

8. End IF 

9. Store Bit vectors 

END PROCEDURE 

 
Figure 6: Procedure to convert missing items to bit vectors 

 

 

 

 

 

 

 

 

 

 

 

 

 
      Figure 7: Converted Missing Bit vectors 
 

 

 

 

 

   5. MAX-MiBit ALGORITHM 

 

ALGORITHM MAX-MiBit(Database dT, 

Minimum Support M) 

INPUT:Database dT, min_sup M 

OUTPUT: Maximal Frequent Itemsets 

1. Array1[ ]= DistinctItems( Database dT) 

2. mT = GetMissingItems(Database dT,  

Array1[ ]) 

3. BitRes= ConvertToBit(mT, Array1[ ]) 

4. Fetch Row in BitRes and ADD with the 

next  Row 

5. Apply simple addition to sum and store in 

RES 

6. G:Find The support Sup[RES] 

7. IF [Sup[RES] M and RES not in any 

Superset] then 

8. Store RES in MaxR 

9. ELSE  

10. Combine the Union and Next Row in 

BitRes, Sum it and GOTO G 

11. End If 

Return MaxR 

Figure 8: MAX-MiBit Algorithm to find maximal frequent itemset 

  Let us consider the missing bit vector shown 

in the figure 7, the minimum support threshold 

provided by the user is 2(40%) and enumerate the 

MAX-MiBit algorithm’s working. The Step 4 in the 

algorithm loads the missing bit vector table and the 

first item in the figure 7 “A” is fetched with the next 

item “B” and it forms the 2-itemset {AB}. The values 

of A and B are 00101 and 00011 respectively. The 

addition of {AB} is 00101 + 00011=00111. The step 6 

finds the support of the itemset{AB}= 2, that is equal 

to the minimum support threshold value provided by 

the user2. This {AB} is frequent itemset but the 

algorithm checks if any super set equal to the 

minimum support value. Now {AB} value is added 

with the next distinct item C. The values of {AB} and 

{C} are added. 

{AB} + C = ABC.   

00101 + 00001 =>00111. 

The step 6 again calculates the support for 

{ABC} = 2, which is equal to the minimum support 

value provided by the user and this 3-itemset is 

frequent but the next item D has to be added to check 

whether the superset has the same minimum support. 

{ABC} + D 

 00011 + 10100 => 10111 

 The step again calculates the support of the 4-

itemset {ABCD} which is found to be 1 and since it is 

less than the minimum support provided by the user, 

all the itemset which contains {ABCD} will also be 

non-maximal and other items are pruned. The itemset 

{ABC} is found to be maximal. Similarly all the 

maximal itemsets are discovered and shown in the 

table 3. 

Tid Transactions 

1 D,E 

2 E 

3 A,D 

4 B 

5 A,B,C 

TID 1 2 3 4 5 

A 0 0 1 0 1 

B 0 0 0 1 1 

C 0 0 0 0 1 

D 1 0 1 0 0 

E 1 1 0 0 0 



International Journal of Research in Advent Technology, Vol.7, No.4S, April 2019 

E-ISSN: 2321-9637 

Available online at www.ijrat.org 
 

329 

 

 
Table 3: maximal frequent itemset discovered 

 

 

 

 

 

 

 

 6.EXPERIMENTAL RESULTS 

 

 The proposed MAX-MiBit algorithm was 

implemented using java programming language on a 

personal computer with 2.66GHz Intel Pentium dual 

core processor, 1GB RAM running on windows 7 

ultimate. Benchmarked dataset like chess, Mushroom, 

Connect4 and Pumsb are procured from the UC Irvine 

Machine Learning Database Repository. The proposed 

algorithm MAX-MiBit is compared with state of the 

art algorithms like MAFIA [1] and genMAX [5]. After 

executing the algorithms along with the proposed 

algorithm the execution time is noted and compared as 

shown in the figures 9 and figure 10 
 

 

 

 

 

 

 

 

 

   

 
 

    Figure 9: Comparison with respect to execution  

                     time on Mushroom dataset 
 

Figure 10: Comparison with respect to execution time 

             on Connect4 dataset 

 

7. CONCLUSION  

 A new vertical data representation blended 

with the missing items and bit vector is employed with 

simple arithmetic manipulation presented in this paper 

to discover maximal frequent itemsets performed 

extremely well. When dealing with denser datasets 

like Connect4 with long transactions, the data 

compression can be employed to reduce the size of the 

dataset which in turn will reduce the memory usage 

considerably. The proposed algorithm quite clearly 

showcased that the missing item approach with simple 

calculation employed, drastically reduced the 

execution time. From the experimental results shown 

in the figure 9 and figure 10 it is quite evident that the 

proposed MAX-MiBit algorithm outscored the 

existing algorithms MAFIA and genMax and took 20 

to 40 % less time to produce results. 

 

REFERENCES 
[1].Doug Burdick, Manuel Calimlim, Johannes Gehrke, 

“MAFIA: A maximal frequent itemset algorithm for 

transactional databases”, Proceedings of the 17th 

International Conference on Data Engineering, Heidelberg, 

Germany, 2001. 

[2] Hong-Zhen Zheng, Dian-Hui Chu, De-Chen Zhan, 

“Association Rule Algorithm Based on Bitmap and Granular 

Computing”, AIML Journal, Volume (5), Issue (3), 

September, 2005. 

[3] Jinlin Chen, Keli Xiao, “BISC: A bit map itemset 

support counting approach for efficient frequent itemset 

mining”, ACM Transactions on Knowledge Discovery from 

Data (TKDD), October 2010. 

[4] J. Han and M. Kamber. Data Mining: Concepts and 

Techniques. Morgan Kaufmann Publishers, San Francisco, 

CA, 2001. 

[5] K. Gouda and M. J. Zaki. Efficiently mining maximal 

frequent itemsets. In Proceedings of the 1st IEEE 

International Conference on Data Mining, pages 163–170, 

2001. 

SNO Maximal Itemset 

1 ABC 

2 ACD 

3 CE 

4 DE 


