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Abstract:In this paper, an unsteady magneto hydro dynamic (MHD) two-layered fluids flow in a horizontal channel 

between two parallel plates in the presence of an applied magnetic and electric field is investigated, when the whole 

system is rotated about an axis perpendicular to the flow. The flow is driven by a constant uniform pressure gradient in 

the channel bounded by two parallel insulating plates, when both fluids are considered as electrically conducting. The 

two fluids are assumed to be incompressible with variable properties, namely, different viscosities, thermal and electrical 

conductivities. Also, the transport properties of the two fluids are taken to be constant and the bounding plates are 

maintained at constant and equal temperatures. The governing partial differential equations are then reduced to the 

ordinary linear differential equations by using two-term series. Exact solutions for primary and secondary velocity 

distributions, also the temperatures are obtained in both fluid regions of the channel. Profiles of these solutions are 

plotted to discuss the effect on the flow and heat transfer characteristics, and their dependence on the governing 

parameters involved, such as the Hartmann number, Taylor number (rotation parameter), and ratios of the viscosities, 

heights, electrical and thermal conductivities. Moreover, an observation is made how the velocity and temperature 

distributions vary with hydro magnetic interaction in the case of steady and unsteady motions in the presence of rigid 

rotation. 
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1. INTRODUCTION:  

 The flow of an electrically conducting fluid in 

the presence of a magnetic field is encountered in 

cosmical and geophysical fluid dynamics. The problems 

of fluid motion in parallel plate channels and 

rectangular channels have been studied by several 

authors due to their importance in engineering and 

technological fields. Subsequently, considerable 

attention has been also given to the study of magneto 

hydro dynamic flow of viscous fluids in a rotating 

system. New and emerging ideas have been added to 

the literature to possible applications in geophysics, 

astrophysics, engineering problems, geothermal energy, 

stem stimulation of oil field, food drying and heat pipes 

etc. The viscous fluid flow in a rotating frame of 

reference is of considerable importance due to the 

occurrence of various natural phenomena and for its 

application in various technological situations, which 

are governed by the actions of Coriolis forces.  

The broad subjects of oceanography, 

meteorology, atmospheric science and astronomy 

involve some important and essential features of 

rotating fluids. The rotating flow of an electrically 

conducting fluid in the presence of a magnetic field is 

encountered in cosmological and geophysical fluid 

dynamics. Many important observations on the viscous 

fluid flow problems in a rotating system under different 

conditions and configurations have come out from the 

analytical studies of many investigators, namely, 

Greenspan and Howard [13], Holton [20], Vidyanidhi 

[44], Walin [45], Siegman [40], Jana and Datta [22], 

Seth et al. [38], Mazumder [29], Ganapathy [9], Hayat 

et al.[18], Hayat and Hutter [16] and Das et al. [6]. The 

investigation on an oscillatory flow in a rotating 

channel is important from a practical point of view, 

because fluid oscillations may be expected in many 

MHD devices and natural phenomena where the fluid 

flow is generated due to the oscillating pressure 

gradient or due to vibrating plates/walls. In view of 

these facts, Mukherjee and Debnath [31], Seth and Jana 

[37], Singh [41], Ghosh [11], Ghosh and Pop [12] and 

Guria and Jana [14] investigated an oscillatory flow of a 

viscous incompressible electrically conducting fluid in a 

rotating channel under different conditions to analyze 

various aspects of the problem. Rahman and Sattar [33] 

studied an MHD free convection and mass transfer flow 

with an oscillating plate velocity and constant heat 

source in a rotating frame of reference.  

All the above investigations have been carried 

out in a fluid system having single fluid flows. But 

many problems relating to astrophysics, geophysical 

fluid dynamics, aeronautics, and in petroleum industry, 

also in industrial applications, etc; involve multi 

layered-fluid flow situations. In the petroleum industry 

as well as in other engineering and technological fields, 

a stratified two-phase/two-layered fluid flow often 

occurs. For example, in geophysics, it is so important to 

study the interaction of the geomagnetic field with the 

hot springs/fluids in geothermal regions, in which, once 

the interaction of the geomagnetic field with the flow 

field is known, then one can easily find the temperature 

distribution from the well known energy equation. 
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Moreover, the temperature distribution plays an 

important role in MHD generators, plasma physics, 

turbines, etc. Also, it is a known fact that, to generate 

electricity, the temperature is used to run the turbine 

across a magnetic field. Transportation and extraction 

of the products of oil are other obvious applications 

using a two-phase system to obtain the increased flow 

rates in an electromagnetic pump from the possibility of 

reducing the power required to pump oil in a pipe line 

by a suitable addition of water (Shail, [39]).  

There are several investigations with regards to 

both experimental and theoretical aspects of Magneto 

hydro dynamic flow problems, which are available in 

the literature [viz., Packham and Shail [32], Lielausis 

[23], Michiyoshi et al. [30], Chan [4], Chao et al. [5], 

Dunn [8], Gherson [10], Lohrasbi and Sahai [26], 

Alireza and Sahai [1], Serizawa et al. [35], Malashetty 

and Leela [27], Malashetty and Umavathi [28], 

Ramadan and Chamkha [3], Chamkha [2], Tsuyoshi 

Inoue and Shu-Ichiro Inutsuka [42] etc.]. Also, recent 

studies show that magneto hydro dynamic (MHD) 

flows can also be a viable option for transporting 

conducting fluids in micro scale systems, such as a flow 

inside the micro-channel networks of a lab-on-a-chip 

device (Haim et al., [15]; Hussameddine et al., [21]. In 

micro-fluidic devices, multiple fluids can be transported 

through a channel for different reasons. For example, an 

increase in mobility of a fluid may be achieved by 

stratification of a highly mobile fluid or mixing of two 

or more fluids in transit may be designed for 

emulsification or heat and mass transfer applications. In 

this regard, magnetic field-driven micro-pumps are an 

increasing demand due to their long-term reliability in 

generating flow, low power requirement and mixing 

efficiency (Yi et al., [47] and Weston et al., [46]). 

Most of the above investigations correspond to 

the steady flow situations. However, a significant 

number of practical problems dealing with immiscible 

fluids are unsteady in nature. In many practical 

problems, it is also advantageous to consider both 

immiscible fluids as electrically conducting, one of 

which is highly electrically conducting compared to the 

other. The fluid of low electrical conductivity compared 

to the other is helpful to reduce the power required to 

pump the fluid in MHD pumps and flow meters. In 

view of these facts, Heavy and Young [19] studied 

oscillating two-phase channel flows. Debnath and Basu 

[7] discussed the unsteady slip flow in an electrically 

conducting two-phase fluid under transverse magnetic 

fields. Chamkha [3] studied the unsteady MHD 

convective heat and mass transfer past a semi-infinite 

vertical permeable moving plate with heat absorption. 

Umavathi et al. [43] investigated an oscillatory 

Hartmann two-fluid flow and heat transfer in a 

horizontal channel. Linga Raju and Sreedhar [25] 

discussed an unsteady two-fluid flow and heat transfer 

of conducting fluids in channels under transverse 

magnetic field. On the other hand, the simultaneous 

influence of rotation and an external magnetic field on 

electrically conducting two-layered/two-phase fluid 

systems seem to be dynamically important and 

physically useful etc.  

 

2. FORMULATION AND SOLUTION: 
 Consider the unsteady MHD flow of a viscous 

incompressible electrically conducting fluid between 

two infinitely long horizontal parallel walls separated 

by a distance h. Choose a Cartesian co-ordinates system 

with the x-axis along the channel wall at y = 0, the y- 

axis perpendicular to the channel walls and z-axis is 

normal to the xy-plane as shown in the figure. 1. A 

uniform transverse magnetic field H0 is applied 

perpendicular to the channel walls. Since the channel 

walls are infinite in extent and the flow is unsteady, the 

physical variables are the function of y and t only. 

The unsteady governing equations of motion of the flow 

through porous medium along x and z-directions in a 

rotating frame of reference are 
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 where, (u, w) is the velocity components along 

O(x, z) directions respectively.   is the density of the 

fluid, eμ  is the magnetic  permeability,  is the 

coefficient of kinematic viscosity,   k is the permeability 

of the medium, 
0

H  is the applied magnetic field and p 

the fluid pressure. The initial and boundary conditions 

are 
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 Making use of non-dimensional variables, the equations 

(2.1) and (2.2) becomes to (dropping asterisks) 
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Figure1: Physical Geometry of the problem 

 

(2.3) 
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Corresponding non-dimensional initial and boundary 

conditions are 

10,0,0,0  ytwu  
 (2.6)      

1and0,0,0,0  yytwu        

Combining equations (2.4) and (2.5), Let  
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we get 
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The initial and boundary conditions are 

10,0,0  ytq   (2.8) 

1and0,0,0  yytq         

Taking the Laplace transform of the equation (2.7), we 

have  
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where )(sf  is the Laplace transform of )(tf , 

The transformed boundary conditions are  

0),1(and,0),0(  sqsq    (2.10) 

The solution of the equation (2.9) subjected to the 

boundary conditions (2.10) are  

given by 
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where DiKM  22
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where   is the frequency of oscillations; 
0

P ,
1

P and 

2
P are real constants. 

Taking the inverse Laplace transforms to the equation 

(2.11), and we obtain the solution for the complex 

velocity q as,  
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In the equation (2.10), the lower sign is valid 

for  22K  and the upper sign is valid for 

22K . The equation (2.13) represents the velocity 

of the fluid in the general case.  

Now we shall consider the following special cases. 

Case. 1. Velocity distribution for impulsive pressure 

gradient: 

In this case 0
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 PP , then the equation (2.10) 

reduces to 
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Case. 2. Velocity distribution for cosine oscillations 

of pressure gradient: 

 In this case 0
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Case. 3. Velocity distribution for sine oscillations of 

pressure gradient: 

 In this case 0
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         (2.16) 

 

Shear Stress: 

For the impulsive change of pressure gradient, the non-

dimensional shear stresses at the wall 0y  are given 

by 
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For the cosine oscillations of pressure gradient, the non-

dimensional shear stresses at the wall 0y  are given 

by 
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    (2.18) 

For the sine oscillations of pressure gradient, the non-

dimensional shear stresses at the  

wall 0y  are given by 
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 (2.19) 

 

3. RESULTS AND DISCUSSION 

 The unsteady MHD flow of a viscous 

incompressible electrically conducting fluid through 

porous medium in a rotating parallel plate channel with 

variable pressure gradient has been studied. The 

governing equations are solved analytically using the 

Laplace transform technique. For computationally we 

have considered three different cases 1. Impulsive 

change of pressure gradient, 2. Cosine oscillations of 

pressure gradient and 3. Sine oscillations of pressure 

gradient. The flow governed by the non-dimensional 

parameters for the velocity components u and w with 

different values of magnetic parameter M, rotation 

parameter K, Reynolds number Re, D the permeability 

parameter, frequency parameter   and phage angle 

t   Fig.2-Fig.19  represents the velocity profiles for 

impulsive pressure gradient Fig.10-Fig.21 represent the 

velocity profiles for cosine oscillations of pressure 

gradient, where as the Fig.22-Fig.33 represent the 

velocity profiles for sine oscillations of pressure 

gradient. 

 We have seen from Fig.2, Fig.10 and Fig.22 

that the velocity component u increases with an increase 

in magnetic parameter M for the impulsive change, and 

decreases for cosine and sine oscillations of the pressure 

gradient. Fig.3, Fig.11 and Fig.23 shows that the 

velocity component w decreases for the cosine 

oscillations of the pressure gradient while it increases 

for impulsive change and sine oscillations of the 

pressure gradient with an increase in magnetic 

parameter M. As expected due to the fact that the 

application of transverse magnetic field results to a 

resistive type force (called Lorentz force) similar to 

drag force and upon increasing the values of magnetic 

parameter, the drag force increases which leads to the 

deceleration of the flow. It is seen from Fig.4, Fig.5, 

Fig.12 and Fig.13 that the primary velocity u and the 

secondary velocity w decreases for cosine oscillations 

of the pressure gradient, while primary velocity u 

increases and w reduces throughout the fluid region 

with an increase in rotation parameter K for impulse 

change, the reversal behaviour is observed for sine 

oscillations of the pressure gradient. The rotation 

parameter defines the relative magnitude of the Coriolis 

force and the viscous force in the regime; therefore it is 

clear that high magnitude Coriolis forces are counter-

productive for the primary flow. Fig.6, Fig.14 and 

Fig.26, we noticed that the primary velocity u decreases 

with an increase in Reynolds number Re for the 

impulsive change, while it increases with an increase in 

Reynolds number Re for cosine oscillations of the 

pressure gradient, the magnitude of the velocity 

component w enhances initially for  2.0y  and then 

gradually reduces for  14.0  y  with an increase in 

Reynolds number Re for sine oscillations of the 

pressure gradient. 

 It is seen from Fig.7, Fig.15 and Fig.27 that the 

secondary velocity w increases for the impulsive change 

while it decreases for sine oscillations of the pressure 

gradient with an increase in Reynolds number Re. 

Similarly, the magnitude of the velocity component w 

enhances initially for  2.0y  and then gradually 

reduces for  12.0  y  with an increase in Reynolds 
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number Re for cosine oscillations of the pressure 

gradient.  It is seen from Fig.8, Fig.16, and Fig.28 that 

the primary velocity u increases with an increase in 

permeability parameter D for the impulsive change, 

cosine and sine oscillations of the pressure gradient 

throughout the fluid region. Likewise from Fig.9, 

Fig.17 and Fig.29 that the secondary velocity w reduces 

with an increase in permeability parameter D for sine 

oscillations of the pressure gradient while it enhances 

for the impulsive change and cosine oscillations of the 

pressure gradient. Fig.18 and Fig.30 shown that the 

primary velocity u increases with an increase in 

frequency parameter   for cosine oscillations of the 

pressure gradient while the velocity u enhances for 

6&4,2  and then experiences retardation for 

8  for sine oscillations of the pressure gradient. It 

has been seen from Fig.15 and Fig.31 that the 

secondary velocity w decreases for the sine oscillations 

of the pressure gradient while the velocity u enhances 

for 6&4,2  and then experiences retardation for 

8 for cosine oscillations of the pressure gradient 

with an increase in frequency parameter . Finally we 

have noticed from Fig.20 and Fig.32 that, the 

magnitude of the primary velocity u decreases with an 

increase in phase angle t  for both cosine and sine 

oscillations of the pressure gradient. It is also seen from 

Fig.21 and Fig.33 that the secondary velocity w reduces 

for cosine oscillations of the pressure gradient while it 

increases for sine oscillations of the pressure gradient 

with an increase in phase angle t . It is noted that, the 

magnitude of the velocities for cosine oscillations of the 

pressure gradient are always greater than magnitude of 

sine oscillations of the pressure gradient. 

 The non-dimensional shear stresses x
  and 

z
  

have been calculated at the wall ( 0y ) due to the 

primary and the secondary flows are presented in 

Table1-Table6 and computationally discussed with 

reference to governing parameters like, magnetic 

parameter M, rotation parameter K, Reynolds number 

Re, Permeability parameter D, frequency parameter   

and phase angle t . We notice that the shear stresses 

x
  and 

z
  due to the primary and secondary flow at the 

wall 0y  reduce for the impulsive change, cosine and 

sine oscillations of the pressure gradient with an 

increase in Hartmann number M.  The magnitude of 

the shear stress x
  due to the primary flow decreases 

for the impulsive change and cosine oscillations, while 

it increases for sine oscillations of the pressure gradient 

with an increase in rotation parameter K or Permeability 

parameter D. It is found that the shear stress 
z

  

decreases for both impulsive change and cosine 

oscillations of the pressure gradient while it increases 

for sine oscillations of the pressure gradient with an 

increase in rotation parameter K and Permeability 

parameter D. The shear stress x
  decreases for small 

values of magnetic parameter M ( 8) and then it 

increases for the impulsive change, cosine and sine 

oscillations of the pressure gradient with an increase in 

Reynolds number Re. Also the shear stress 
z

  increases 

for both impulsive change and cosine oscillations of the 

pressure gradient while it decreases for sine oscillations 

of the pressure gradient with an increase in Reynolds 

number Re. The shear stress x
  increases for small 

values of magnetic parameter M ( 8) and then it 

decreases for cosine and sine oscillations of the pressure 

gradient with an increase in frequency parameter . It 

is found that the shear stress 
z

  increases for small 

values of magnetic parameter M ( 8) and then it 

decreases for cosine oscillations while it first decreases 

and then increases for sine oscillations of the pressure 

gradient with an increase in frequency parameter . 

The shear stress x
  decreases for both cosine and sine 

oscillations of the pressure gradient with an increase in 

phage angle t  . Also the shear stress 
z

  decreases for 

cosine oscillations of the pressure gradient while it 

increases for sine oscillations of the pressure gradient 

with an increase in phage angle t  . 

 

 

4. GRAPHS & TABLES 

I. Velocity Profiles with Impulsive Pressure Gradient: 

 
 

Fig. 2:  The velocity Profile for u against M with   

10,1.0,1,2Re,2,1
0
 PtmKD
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Fig. 3:  The velocity Profile for w against M with      

10,1.0,1,2Re,2,1
0
 PtmKD  
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Fig. 4:  The velocity Profile for u against K with 

10,1.0,2,2Re,1,1
0
 PtMmD
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Fig. 5:  The velocity Profile for w against K with      

10,1.0,2,2Re,1,1
0
 PtMmD  
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Fig. 6:  The velocity Profile for u against Re with   

10,1.0,1,2,2,1
0
 PtmMKD  
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Fig. 7:  The velocity Profile for w against Re with  

10,1.0,1,2,2,1
0
 PtmMKD  
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Fig. 8:  The velocity Profile for u against D with  

10,1.0,1,2,2,2Re
0
 PtmMK  
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Fig. 9:  The velocity Profile for w against D with   

10,1.0,1,2,2,2Re
0
 PtmMK  
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II. Velocity Profiles with Cosine Oscillation of Pressure Gradient: 

 

 
 

Fig. 10:  The velocity Profile for u against M with        

10,1.0,4/,2,1,2Re,2,1
0
 PttmKD 
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Fig. 11:  The velocity Profile for w against M with     

10,1.0,4/,2,1,2Re,2,1
0
 PttmKD   
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Fig. 12:  The velocity Profile for u against K with     

10,1.0,4/,2,2,2Re,1,1
0
 PttMmD   
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Fig. 13:  The velocity Profile for w against K with   

10,1.0,4/,2,2,2Re,1,1
0
 PttMmD   
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Fig. 14:  The velocity Profile for u against Re with   

10,1.0,4/,2,1,2,2,1
0
 PttmMKD   
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Fig. 15:  The velocity Profile for w against Re with 

10,1.0,4/,2,1,2,2,1
0
 PttmMKD   
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Fig. 16:  The velocity Profile for u against D with  

10,1.0,4/,2,1,2,2,2Re
0
 PttmMK   
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Fig. 17:  The velocity Profile for w against D with      

10,1.0,4/,2,1,2,2,2Re
0
 PttmMK   
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Fig. 18:  The velocity Profile for u against D with    

10,1.0,4/,1,2,1,2,2Re
0
 PttmMDK 
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Fig. 19:  The velocity Profile for w against D with       

10,1.0,4/,1,2,2,2Re
0
 PttmMK   
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Fig.20 The velocity Profile for u against t  with   

10,1.0,2,1,2,2,2Re
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 PtmMK 
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Fig. 21:  The velocity Profile for w against t  with   

10,1.0,2,1,2,2,2Re
0
 PtmMK 
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III. Velocity Profiles with Sine Oscillation of Pressure Gradient: 

 
Fig. 22:  The velocity Profile for u against M with  

10,1.0,4/,2,1,2Re,2,1
0
 PttmKD 
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Fig. 23:  The velocity Profile for w against M with    

10,1.0,4/,2,1,2Re,2,1
0
 PttmKD   
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Fig. 24:  The velocity Profile for u against K with     

10,1.0,4/,2,2,2Re,1,1
0
 PttMmD   
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Fig. 25:  The velocity Profile for w against K with     

10,1.0,4/,2,2,2Re,1,1
0
 PttMmD   
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Fig. 26:  The velocity Profile for u against Re with    

10,1.0,4/,2,1,2,2,1
0
 PttmMKD 
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Fig. 27:  The velocity Profile for w against Re with 

10,1.0,4/,2,1,2,2,1
0
 PttmMKD 
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Fig. 28:  The velocity Profile for u against D with 

10,1.0,4/,2,1,2,2,2Re
0
 PttmMK   
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Fig. 29:  The velocity Profile for w against D with 

10,1.0,4/,2,1,2,2,2Re
0
 PttmMK   
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Fig. 30:  The velocity Profile for u against D with  

10,1.0,4/,1,2,1,2,2Re
0
 PttmMDK   
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Fig. 31:  The velocity Profile for w against D with

10,1.0,4/,1,2,2,2Re
0
 PttmMK   

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0 0.2 0.4 0.6 0.8 1

w

y

ω=2

ω=4

ω=6

ω=8

 

 
Fig. 32:  The velocity Profile for u against t  with      

10,1.0,2,1,2,2,2Re
0
 PtmMK 
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Fig. 33:  The velocity Profile for w against t  with

10,1.0,2,1,2,2,2Re
0
 PtmMK 
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 K Re D M=2 M=5 M=8 M=10 

I 2 2 1 0.920545 0.755471 0.544854 0.388507 

II 4 2 1 0.901254 0.722564 0.522541 0.355689 

III 6 2 1 0.887459 0.700142 0.500245 0.445088 

IV 2 4 1 0.785540 0.588914 0.366982 0.455212 

V 2 6 1 0.678801 0.321415 0.288795 0.482546 

VI 2 2 2 0.855852 0.624558 0.323266 0.211452 

VII 2 2 3 0.648878 0.405525 0.200145 0.144523 

Table 1: The shear stress (
x

 ) at the wall 0y  with impulsive pressure gradient 

 K Re D M=2 M=5 M=8 M=10 

I 2 2 1 0.566585 0.510225 0.478845 0.425563 

II 4 2 1 0.522142 0.488574 0.422548 0.388546 

III 6 2 1 0.500214 0.466506 0.399564 0.332564 

IV 2 4 1 0.788548 0.622564 0.578045 0.488574 

V 2 6 1 0.966569 0.745805 0.655482 0.540478 

VI 2 2 2 0.704458 0.615542 0.588478 0.522453 

VII 2 2 3 0.800145 0.711214 0.652546 0.599698 

Table 2: The shear stress ( z
 ) at the wall 0y  with impulsive pressure gradient 
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 K Re D   t  M=2 M=5 M=8 M=10 

I 2 2 1 2 4/  0.814025 0.755845 0.681452 0.622142 

II 4 2 1 2 4/  0.722459 0.699857 0.640563 0.574486 

III 6 2 1 2 4/  0.622546 0.584740 0.589902 0.510252 

IV 2 4 1 2 4/  0.788458 0.685548 0.622548 0.684476 

V 2 6 1 2 4/  0.688982 0.566809 0.566527 0.722105 

VI 2 2 2 2 4/  0.699885 0.685041 0.661245 0.600732 

VII 2 2 3 2 4/  0.588987 0.562215 0.541046 0.522146 

VIII 2 2 1 4 4/  0.998702 0.855406 0.746025 0.520214 

IX 2 2 1 6 4/  1.225473 0.958456 0.866502 0.445106 

X 2 2 1 2 6/  0.885442 0.822546 0.755480 0.688549 

XI 2 2 1 2 3/  0.745582 0.722152 0.622548 0.588479 

Table 3: The shear stress (
x

 ) at the wall 0y  with cosine oscillations of  

pressure gradient 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4: The shear stress (
z
 ) at the wall 0y  with cosine oscillations of  

pressure gradient 

 

 K Re D   t  M=2 M=5 M=8 M=10 

I 2 2 1 2 4/  0.356636 0.322546 0.299555 0.277485 

II 4 2 1 2 4/  0.388546 0.352262 0.314452 0.299873 

III 6 2 1 2 4/  0.399658 0.366585 0.322506 0.302145 

IV 2 4 1 2 4/  0.321021 0.302589 0.288695 0.266899 

V 2 6 1 2 4/  0.301332 0.284585 0.266554 0.244855 

VI 2 2 2 2 4/  0.366525 0.336502 0.300045 0.299845 

VII 2 2 3 2 4/  0.377785 0.344215 0.321787 0.332566 

VIII 2 2 1 4 4/  0.255466 0.210023 0.199665 0.156656 

IX 2 2 1 6 4/  0.221455 0.188545 0.144526 0.122546 

X 2 2 1 2 6/  0.422515 0.400526 0.355626 0.322145 

XI 2 2 1 2 3/  0.333256 0.302214 0.255664 0.221552 

Table 5: The shear stress (
x

 ) at the wall 0y  with sine oscillations of  

pressure gradient 

 K Re D   t  M=2 M=5 M=8 M=10 

I 2 2 1 2 4/  0.662152 0.622154 0.596655 0.577458 

II 4 2 1 2 4/  0.604252 0.566254 0.533624 0.511425 

III 6 2 1 2 4/  0.541125 0.522143 0.499854 0.466233 

IV 2 4 1 2 4/  0.725546 0.688549 0.622504 0.599685 

V 2 6 1 2 4/  0.788544 0.722145 0.685502 0.622115 

VI 2 2 2 2 4/  0.755066 0.699584 0.658956 0.602156 

VII 2 2 3 2 4/  0.822103 0.755263 0.702023 0.655246 

VIII 2 2 1 4 4/  0.702254 0.665445 0.622542 0.500246 

IX 2 2 1 6 4/  0.722546 0.705871 0.655589 0.455213 

X 2 2 1 2 6/  0.622352 0.602056 0.574856 0.550026 

XI 2 2 1 2 3/  0.600214 0.586966 0.552466 0.522336 
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 K Re D   t  M=2 M=5 M=8 M=10 

I 2 2 1 2 4/  0.278843 0.255655 0.233652 0.201145 

II 4 2 1 2 4/  0.296585 0.272562 0.255626 0.228545 

III 6 2 1 2 4/  0.322145 0.298845 0.275699 0.250142 

IV 2 4 1 2 4/  0.222541 0.200145 0.188547 0.166585 

V 2 6 1 2 4/  0.201145 0.184078 0.144585 0.122548 

VI 2 2 2 2 4/  0.325266 0.301225 0.285596 0.255896 

VII 2 2 3 2 4/  0.350021 0.322546 0.302152 0.288549 

VIII 2 2 1 4 4/  0.254025 0.233256 0.201232 0.178858 

IX 2 2 1 6 4/  0.313365 0.299585 0.255485 0.222215 

X 2 2 1 2 6/  0.352662 0.252266 0.200214 0.155242 

XI 2 2 1 2 3/  0.399685 0.370254 0.325650 0.256654 

Table 6: The shear stress (
z
 ) at the wall 0y  with sine oscillations of pressure gradient 

 

5. CONCLUSIONS:  

 

 The velocity component for primary flow 

enhances with increasing M, K and D, and 

reduces with Re for the impulsive change of 

pressure gradient. 

 The velocity component for secondary flow 

enhances with increasing M, Re and D, and 

reduces with K for the impulsive change of 

pressure gradient. 

 The velocity component for primary flow 

increases with increasing Re, D and , and 

reduces with M, K and phase angle t  for the 

cosine oscillations of pressure gradient. 

 The velocity component for primary flow 

increases with increasing D, and reduces with 

M, K and phase angle t  for the sine 

oscillations of pressure gradient. 

 The magnitude of the velocity components for 

primary flow and for secondary flow enhances 

initially for  2.0y  and then gradually 

reduces for  12.0  y  with an increase in 

Reynolds number Re for sine and cosine 

oscillations of the pressure gradient 

respectively. 

 The velocity for primary flow and for 

secondary flow enhances for 6&4,2  

and then experiences retardation for 8  for 

sine and cosine oscillations of the pressure 

gradient respectively. 

 The velocity component for secondary flow 

enhances with increasing M, K and phase angle

t , and reduces with increase in Re, D and 

frequency of oscillation   for the impulsive 

change of pressure gradient. 

 The magnitude of the shear stress x
  due to 

the primary flow decreases for the impulsive 

change and cosine of the pressure gradient 

with an increase in M, Re, K or Permeability 

parameter D. 

 The magnitude of the shear stress 
z

  due to 

the secondary flow reduces for the impulsive 

change and cosine of the pressure gradient 

with an increase in rotation parameter M or K 

and enhances with increasing in Re or D. 

 Both the stresses enhance with increase in K 

and D; and reduce with increase in M or Re for 

sine of the pressure gradient. 

 The shear stress 
x

  increases for small values 

of magnetic parameter M ( 8) and then it 

decreases for cosine and sine oscillations of 

the pressure gradient with an increase in 

frequency parameter .  

 The shear stress 
z

  increases for small values 

of magnetic parameter M ( 8) and then it 

decreases for cosine oscillations while it first 

decreases and then increases for sine 

oscillations of the pressure gradient with an 

increase in frequency parameter . 

 The shear stress 
x

  decreases for both cosine 

and sine oscillations of the pressure gradient 

with an increase in phage angle t  . Also the 

shear stress 
z

  decreases for cosine 

oscillations of the pressure gradient while it 

increases for sine oscillations of the pressure 

gradient with an increase in phage angle t  . 
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