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Abstract- The main objective of the present attempt is to investigate the numerical solutions for the Falkner-

Skan flow of two-dimensional radiative Magneto hydrodynamic Casson fluid past a static/moving wedge with 

convective boundary condition in the presence of porous medium. In addition to the effects of viscous dissipation 

and heat generation /absorption are also considered. A set of suitable local similarity transformations are used to 

non dimensionalize the governing equations of the present problem. The system of ordinary differential 

equations are tackled numerically by MATLAB bvp4c solver. The impact of involved parameters on velocity, 

temperature and concentration skin friction coefficient and the Nusselt number has been studied and numerical 

results are presented graphically and in tabular form. The numerical results are in good agreement with those of 

the results previously published in the literature. 

Keywords: Casson fluid model, Convective Boundary condition, MHD, radiation, viscous dissipation. 

NOMENCLATURE 

 

Q  heat generation/absorption 

coefficient 

u, v velocity components in x and y 

directions respectively 

 

qr radiative  heat flux 

Tw The temperature at the boundary 

layer 
k

*
 absorption coefficient 

Cw The concentration at the 

boundary layer 
f similarity function 

T∞ The temperature at free stream R Radiation parameter 

C∞ The concentration at free stream Pr Prandtl number 

B magnetic field Grx Grashof number 

 py yield stress of the fluid Bi Biot number 

μb 
plastic dynamic viscosity of the 

non-Newtonian fluid 
Ec Eckert number 

 
π product of the component of 

deformation 
xCf  skin friction coefficient 

B0 Strength of the magnetic field 
xNu  local Nusselt number 

M Magnetic parameter Greek symbols 

 K Porosity parameter   Casson parameter 

T  thermal buoyancy parameter   electrically conductivity 

k1 permeability of porous medium   fluid density 

g gravitational force due to 

acceleration 

  moving wedge parameter 

T  volumetric coefficient of thermal 

expansion 
  total angle of the wedge 

T fluid temperature ν kinematic viscosity 

k thermal conductivity of the fluid 
w  wall skin friction 

Cp specific heat at constant pressure qw wall heat flux 
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1. INTRODUCTION  

The flow across a wedge shaped bodies have many 

engineering applications and also in the growth of 

fluid dynamics. The Falkner-Skan equation was first 

introduced by Falkner and Skan for boundary layer 

flow determined by a stream wise pressure gradient. 

The nonlinear third-order ordinary differential 

equation  21 0f ff f      with boundary 

conditions      0 , 0 , 1f f f      , where 

  is the strength of the mass transfer at the wall, 

2

1

m

m
 


is a stream wise pressure gradient which 

represent a two-dimensional incompressible laminar 

boundary layer flow. The original Falkner-Skan 

equation has  0, 0      for an impermeable 

wedge flow. A lot of literature regarding the Falkner-

Skan wedge flow can be found in the books by 

Schlichting and Gersten (2000) and Leal (2007). The 

wedge is triangular shaped and is used for separating 

two objects, one object hold in a plane and other 

lifting up. It converts the lateral force into a transverse 

splitting force. In addition, MHD plays an important 

role to control the heat transfer in boundary layer flow 

and metallurgical processes. Many investigators 

(Prasad, K. V.et al., (2013), Anuar Ishak, et al., 

(2009), Mourad F.Dimian, (2004), Nabil T. El-Dabe et 

al., (2015)),explored MHD effects on heat and mass 

transfer over a wedge for various conditions in 

different types of fluids. Abdulhameed et al., (2015) 

reported that the magnetic field decelerate the fluid 

flow while thermal radiation tends to enhance fluid 

temperature. 

 Convective Condition over a wedge with 

MHD was observed by Raju and Sandeep  

(2016).James et al., (2015) fed light on the effect of 

variable viscosity of nanofluid flow over a permeable 

wedge with chemical reaction and thermal radiation. 

Suneetha et al., (2008) studied thermal radiation 

effects on mhd free convection flow past an 

impulsively started vertical plate with variable surface 

temperature and concentration.  

Suneetha and Bhaskar Reddy (2010) fed light on the 

radiation and mass transfer effects on mhd free 

Convection flow past a moving vertical cylinder 

embedded in porous medium. Ahmad and Khan 

(2013) examined the influence of viscous dissipation 

and heat generation or absorption on force convection 

flow of viscous fluid over a moving wedge subject to 

suction/injection. Imran Ullah et al., (2016) observed 

that the heat transfer rate decreases with an increase in 

Prandtl number in the presence of viscous dissipation 

in a moving wedge with heat transfer. 

Motivated by such facts, the aim of the 

present article is to develop a mathematical model for 

steady two-dimensional Flakner-Skan wedge flow of 

MHD Casson fluid past a static/moving wedge in the 

presence of convective boundary condition and 

viscous dissipation. Also, radiation and heat 

generation are considered. With the help of similarity 

transformations, we transformed the derived governed 

equations as ordinary nonlinear differential equations. 

The results are determined by applying MATLAB 

bvp4c solver. Graphs are revealed and described for 

various non-dimensional governing parameters. By 

choosing the same parameters, we discussed about the 

skin friction coefficient and local Nusselt number with 

the assistance of tables separately. 

    

2. MATHEMATICAL ANALYSIS 

A steady Falkner-Skan flow of Casson fluid over a 

moving wedge through porous medium in the 

presence of MHD and viscous dissipation is 

considered. Here wedge is moving with the velocity 

  m

w wu x U x and the free stream velocity

  m

eu x U x ; where 
wU  and U

 are constants.  

2

1

m

m
 


is the Hartree pressure gradient parameter 

related to 





 

for the total angle  of the wedge 

(see Fig.1) 

 

 

 

 

 

 

 

 

 

 

 

Figure1.physical model and coordinate system 

 

The temperature and concentration at the 

boundary layer and free stream are represented by Tw; 

T∞ and Cw; C∞, respectively. A variable magnetic field 

  1/ 2

0

mB x B x  is applied in the direction of the flow 

as in Fig.1. It is also assumed that the induced 

magnetic field caused by the motion of electrically 

conducting fluid is neglected, as it is very small 

compared to magnetic field. Further, the buoyancy 

force generates due to temperature differences inside 

moving fluid, and is taken in momentum equation. 

The effect of heat generation/absorption with 
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convective boundary condition is also included in this 

study. Further, the wall of wedge is heated by variable 

temperature   2m

wT x T A x  and free stream 

temperature is denoted by T
. 

The rheological equation of an isotropic and 

incompressible flow of a Casson fluid can be written 

as 

2
2 ,i j b i j c

y
e when

P


   

 
   
   

2 ,
2

y

i j b i j c

P
e when   



 
   
                                                                               

Py is known as yield stress of the fluid, mathematically 

expressed as 
2

.b
yP

 




  

μb is known as plastic 

dynamic viscosity of the non-Newtonian fluid, π is the 

product of the component of deformation rate with 

itself (i.e. π = ei j ei j), where ei j is the (i, j) th 

component

 

of the deformation rate and πc is the critical 

value based on the non-Newtonian model.

 The rheological governing equations for momentum 

and energy are given as 

 0
u v

x y

 
 

 
       (1) 

 
 

2

2

2

1

1
1

( )sin
2

e
e

e T

u u u u
u v u

x y x y

B x
u u g T T

k




 





    
    

    

  
     
 

   (2) 

 

 
 

22

2

1 1
1

( )1

p p

r

pp

T T T u
u v

x y C y yC

Q x T Tq

y CC



 





     
      

     


 



 (3) 

Subject to the   boundary conditions: 

 

  2

, 0, ( ),

0

w f w

m

w

T
u u x k h T T

y

T x T Ax at y






    



  

 (4) 

  ,eu u x T T as y                     (5)  

where u and v denote the velocity components in x and 

y-directions respectively,  is kinematic viscosity, 

  is the Casson parameter,

 

 is the electrically 

conductivity, B0 is the strength of the magnetic field, 

  is the fluid density,   is the porosity, k1 is the 

permeability of porous medium, g is the gravitational 

force due to acceleration, ‘+’ sign corresponds to 

assisting flow, ‘-’ is for opposing flow, 
T  is the 

volumetric coefficient of thermal expansion, T is the 

fluid temperature, k is the thermal conductivity of the 

fluid, Cp is the specific heat at constant pressure and 

  1

0

mQ x Q x  is heat generation/absorption coefficient. 

When material has a great extinction coefficient, it can 

be treated as optically thick. qr is the radiative  heat 

flux and is defined using the Rosseland approximation 

as 

4

*

4
,

3
r

T
q

k y

 



                (6) 

Where σ* is the Stefan–Boltzmann constant and k* is 

known as the absorption coefficient. We assumed that 

the temperature differences within the flow are 

sufficiently small such that T
4
 may be expressed as a 

linear function of the free stream temperature T∞. This 

is obtained by expanding T
4
 in a Taylor series about 

T∞ and neglecting higher order terms, we obtained 
4 4 3 34 4 ,T T T T T T       (7)

 4 4
4 * 4 *

.
3 * 3 *

r
q T T T

y y k y y k T y

        
 

     

   
   
   

 (8) 

Upon substitution, we obtained  

3 2

2

16 *
.

3 *
rq T T

y k y

  
 

 
                                           (9)  

By using Eq. (9) and Eq. (3) can be written as  

 

 

22

2

3 2

2

1 1
1

16 * ( )

3 *

p p

p p

T T T u
u v

x y C y C y

T T Q x T T

k C y C



  



 

 

   
   

   

 
 



  
  
  

   

 (10) 

Introduce the following similarity variables:  

 
 2 1

, ,
1 2

w

eexu m u T T
f y

m x T T


   







 
  

 
    (11) 

Where the stream function ψ(x, y) is defined by the 

following relations: 

(6)

 

(7)
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( )u
y





 and ( )v

x


 


 

From Eq. (11) in above equation, we can write 

   

 
 

,

1 1

2 1

e

e

u u x f

m u m
f f

x m




  



 
 



   
     

      (12) 

These automatically satisfied continuity equation (1) 

and we obtained the following locally similarity 

ordinary differential equations:     

 

  

2

2

1
1 1

1 sin 0
2

T

f ff f

M K f




 

 
      

 


    

     (13) 

 

   
2

Pr
2 Pr

1

1
Pr 1 2 Pr 0

f f
R

Ec f

   

 


   


 
     

 

 (14) 

Together with the boundary conditions

 
       , 1 0f Bi at                (15) 

    1, 0 0f at at        
     

 (16) 

Where
 

2
2 02

,
1

B
M

U m



 


  1

2
,

1 e

x
K

k m u






Re ,x
exu




 

3

2

2
,

1

T
x

g T x
Gr

m







 
2

,
Re

x
T

x

Gr
  

 

 ( T > 0 corresponds to assisting flow and T  < 0 is 

for opposing flow), Pr ,
pc




 

 

2

,
e

p w

u x
Ec

c T T




 

0 ,
p

Q

c U




 ,wU

U





 

2
,

1

f

f e

h x
Bi

k m u






34 *
.

*

T
R

k k

 

   

The skin friction coefficient 
xCf   and   local Nusselt 

number
xNu are defined as  

 2
,w w

x x

e w

xq
Cf Nu

u k T T



 

 


                           (17)  

Where 
w  and 

wq  are the wall skin friction and wall 

heat flux, respectively, defined by 

0 0

1
1 ,w B w

y y

u T
q

y y
 


 

      
      

           

 (18) 

For engineering interest, physical quantities are the 

local the skin friction coefficient and local Nusselt 

number
xCf , 

xNu  given as  

 
 

 
1

2
2 1

Re 1 0
1

,x xCf f
m 

 
  

  

 
 

 
1

2
2 4

Re 1 0 .
1 3

x xNu R
m


  

  
  

      

 (19) 

The system of Eqs. (13) and (14) along with the 

corresponding boundary conditions (15) and (16) are 

solved numerically by using MATLAB bvp4c solver. 

(Shampine et al., (2000)). Results are computed and 

presented in tables graphically.  

 

3. RESULTS AND DISCUSSIONS 

In this section, the numerical results for velocity 

( )f   and temperature ( )   with corresponding 

boundary conditions as well as skin friction coefficient 

 
1

1 f 


 
 

 

and Nusselt number ( )  have been 

computed and presented graphically in Figs. 2–11. 

These results demonstrate the effects of Casson fluid 

parameter  , Pressure gradient parameter  , 

magnetic parameter M, porosity parameter K, thermal 

buoyancy parameter
T , Prandtl number Pr, Eckert 

number Ec, radiation parameter R, Biot number Bi, 

heat generation/absorption parameter   and moving 

wedge parameter  . 
 

Fig. 2 depict the effect of magnetic field 

parameter on velocity for 
T  > 0; 

T  = 0; 
T < 0 

cases. It is evident that rising values of magnetic field 

parameter leads to increase the fluid flow in both cases 

of assisting and opposing flows. M is the ratio of 

electromagnetic force to viscous force, therefore 

increasing values of M means decreasing the viscous 

force that results in reduction in velocity boundary 

layer thickness. If there is a less suppression of 

Lorentz force it leads to deprecation in temperature 

and development in velocity field with progressive 

values of magnetic field parameter. 

 Fig. 3 shows the effect of  on velocity 

profile for various values of T . It is worth 

mentioning here that   corresponds to 

Newtonian fluid, (
T > 0) represents assisting flow,  
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(
T < 0) denotes opposing flow and ( 0T  ) is for 

force convection flow. It is found that velocity is an 

increasing function of 
 

in all cases of
T . The 

reason behind this is that increase of   leads to 

decrease in yield stress Py, and consequently, reduces 

momentum boundary layer thickness. It is also 

observed that velocity is higher in case of Newtonian 

fluid for assisting flow 
T > 0. 

          Fig. 4 illustrates the effect of   on velocity 

profile for Newtonian and Non- Newtonian fluids. It is 

noteworthy that ( > 0) corresponds to decreasing 

pressure, 0 
 

represents flat plate case and  < 0 shows increasing 

pressure case. It is observed that the fluid velocity 

increases when  < 0, and reduces when  > 0. Also, 

velocity is higher for Newtonian fluid as compared to 

Non- Newtonian fluid. Also, thickness of momentum 

boundary layer increases as  increases. 

 Fig. 5 reveals the effect of K on velocity 

profile for various values of  . It needs to mention 

that K = 0 represents non-porous medium, whereas 

0K  is for porous medium. Porosity is defined as 

the measure of void (or empty) spaces in a porous 

medium and is a fraction of the volume of voids over 

the total volume It is noticed that velocity of fluid is 

higher for higher values of K. Convection flows are 

often influenced by porosity and in result raise the 

fluid velocity.  

 Fig. 6 elucidates the effect of on   velocity 

profile in porous and non-porous medium. It is worth 

to mention that 
 
< 0 corresponds to the case when 

wedge is moving opposite to the fluid motion,  = 0 

represents static or stationary wedge case and   > 0 

is the case when wedge and the fluid move in the same 

direction. It is observed that velocity is increasing 

function of  .  It is also noticed that velocity of the 

fluid merely squeezes closer and closer to the wall 

when wedge and fluid move in one direction through 

porous medium. 

 The ratio of the heat transfer coefficient to 

thermal conductivity of the fluid particles is low. This 

can lead to decrease the temperature field with 

existing of biot number, which is observed in Fig.7. 

 The influence of Ec on temperature profile 

for different values of  
T  is shown in Fig.8. It is 

seen that the temperature rises for increasing values of 

Ec for both   assisting flow (
T > 0) and opposing 

flow (
T < 0). The reason behind this is that in 

moving fluid heat energy is stored because of 

frictional heating, which results in higher temperature. 

In addition to this, stronger viscous dissipative heat 

causes an increase in fluid temperature. And also 

noted that the temperature is more when the wedge is 

moving opposite in fluid direction when compared 

with the wedge is moving same in fluid direction.  

 The effect of thermal radiation parameter on 

temperature field for various values of c is shown in 

Fig.9. Rising values of 
  

thermal radiation decreases 

the temperature near the plate and slightly raises away 

the plate. It is also observed that the thermal radiation 

is highly in effective on 
 
< 0 case when compared 

with 
 
> 0,

 


 
= 0 cases. 

 Fig.10 displays the effect of Pr on 

dimensionless temperature profile for moving wedge 

parameter 
 
. Fluid temperature increases close to the 

wall and then merely reduces for increasing values of 

Pr. As expected, rate of thermal diffusion is lowered 

as Pr increases. That is, higher values of Pr lead to 

decrease in thermal boundary layer thickness. 

Consequently falls. It is also noted that the 

temperature is high for 
 
< 0 case compared with the 

other cases.   
 

Fig. 11 reveals the effect of   on 

temperature profile in porous and non-porous medium. 

It is found that temperature is decreasing function of 

  for both porous and non-porous cases. Also noted 

that the temperature remains almost same for K = 0 

and K = 2 for the wedge and the fluid move in the 

same direction. 

In order to check the validity of present 

method, the results are compared with results of 

existing literature, and shown in Table1. Table 1 

illustrate the comparison of local skin friction 

coefficient for different values of m with the results 

Ishak et al., (2007) and Imran Ullah et al., (2016) and 

are found in excellent agreement. It is also observed 

from this table that local skin friction coefficient 

increases with the increase of m. Table 2 describes the 

variation of wall shear stress and heat transfer rate 

obtained from the present method for increasing 

values of pertinent parameters. The wall shear stress 

decreases with increasing values of β, M, R, K, Pr, Ec, 

ε and Bi, whereas it decreases with decreasing        

T  . The heat transfer rate decreases with increasing 

β, M, Pr, Ec, and ε and opposite trend is observed for 

γ. The heat transfer rate remains constant for K and

.T  
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Fig.2 Effect of Magnetic field on velocity profiles for various  λT 

 
Fig.3 Effect of β on velocity for various λT 
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0
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
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)
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Fig.4 Effect of λ on velocity for different β 

 
Fig.5 Effect of K on velocity for various λ 
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Fig.6 Effect of γ on velocity for various K 

 
Fig.7   Effect of Bi on temperature field γ  
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Fig.8   Effect of Ec on temperature for various λT 

 

 
Fig.9 Effect of R on temperature field for various values of  γ 
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Fig.10   Effect of Pr on temperature field for various values of γ 

 
Fig.11   Effect of γ on temperature field for various values of K 
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Table 1. Comparison of coefficient of local skin friction        for differet values of m with Pr = 0.73, M = K = 

λT = Ec = ε = γ = R = Bi = 0 and β→∞, where 
2

 
1

m

m
 

  

       

m Ishak et al.,(2007) Imran Ullah et al.,(2016) Present results 

0 0.4696 0.4696 0.4691 

1 1.2326 1.2326 1.2328 

5 1.5504 1.5504 1.5504 

100 1.6794 1.6794 1.6794 

∞ 1.6872 1.6872 1.6872 

 

 

Table 2. Numerical results for skin friction coefficient and Nusselt number for different values of β, λ, 

M, K, λT, Pr, γ, Ec, ε, R and Bi. 

 

β λ M K λT Pr γ Ec ε R Bi 
 

1
1 0f



 
 

 

 

(0)  

0.6 0.5 2.0 0.2 0.5 0.1 0.2 1.0 1.0 0.1 0.2 3.0990 0.1117 

0.9 0.5 2.0 0.2 0.5 0.1 0.2 1.0 1.0 0.1 0.2 2.7635 0.1097 

1.2 0.5 2.0 0.2 0.5 0.1 0.2 1.0 1.0 0.1 0.2 2.3401 0.1045 

0.6 1.0 2.0 0.2 0.5 0.1 0.2 1.0 1.0 0.1 0.2 3.2711 0.1270 

0.6 1.5 2.0 0.2 0.5 0.1 0.2 1.0 1.0 0.1 0.2 3.4433 0.1366 

0.6 0.5 4.0 0.2 0.5 0.1 0.2 1.0 1.0 0.1 0.2 5.4923 0.1097 

0.6 0.5 6.0 0.2 0.5 0.1 0.2 1.0 1.0 0.1 0.2 8.0226 0.1061 

0.6 0.5 2.0 0.4 0.5 0.1 0.2 1.0 1.0 0.1 0.2 3.1539 0.1117 

0.6 0.5 2.0 0.6 0.5 0.1 0.2 1.0 1.0 0.1 0.2 3.2079 0.1117 

0.6 0.5 2.0 0.2 0.0 0.1 0.2 1.0 1.0 0.1 0.2 2.9732 0.1118 

0.6 0.5 2.0 0.2 -0.3 0.1 0.2 1.0 1.0 0.1 0.2 2.8976 0.1118 

0.6 0.5 2.0 0.2 0.5 0.72 0.2 1.0 1.0 0.1 0.2 3.3473 -0.0584 

0.6 0.5 2.0 0.2 0.5 1.0 0.2 1.0 1.0 0.1 0.2 3.5546 -0.2108 

0.6 0.5 2.0 0.2 0.5 3.0 0.2 1.0 1.0 0.1 0.2 5.3736 -1.9349 

0.6 0.5 2.0 0.2 0.5 0.1 0.0 1.0 1.0 0.1 0.2 3.8034 0.1060 

0.6 0.5 2.0 0.2 0.5 0.1 -0.2 1.0 1.0 0.1 0.2 4.4893 0.0991 

0.6 0.5 2.0 0.2 0.5 0.1 0.2 2.0 1.0 0.1 0.2 3.1087 0.1055 

0.6 0.5 2.0 0.2 0.5 0.1 0.2 5.0 1.0 0.1 0.2 3.1383 0.0866 

0.6 0.5 2.0 0.2 0.5 0.1 0.2 1.0 1.5 0.1 0.2 3.1260 0.0959 

0.6 0.5 2.0 0.2 0.5 0.1 0.2 1.0 2.0 0.1 0.2 3.1692 0.0708 

0.6 0.5 2.0 0.2 0.5 0.1 0.2 1.0 1.0 0.3 0.2 3.0956 0.1139 

0.6 0.5 2.0 0.2 0.5 0.1 0.2 1.0 1.0 0.6 0.2 3.0922 0.1161 

0.6 0.5 2.0 0.2 0.5 0.1 0.2 1.0 1.0 0.1 0.3 3.1258 0.1391 

0.6 0.5 2.0 0.2 0.5 0.1 0.2 1.0 1.0 0.1 0.5 3.1590 0.1729 

 

 

4. CONCLUSIONS 
Thermal radiation with combination of viscous 

dissipation and heat generation has many real time 

engineering as well as industrial applications. Owing 

view into this Falkner-Skan flow of radiative 

Magnetohydrodynamic Casson fluid past a 

static/moving wedge through porous medium in the 

presence of convective boundary condition is studied. 

The arising sets of nonlinear differential equations 

have been numerically solved by MATLAB bvp4c 

solver. For engineering purpose, we also computed the 
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friction factor coefficient and local Nusselt number. 

The conclusions are as follows: 

 Fluid flow increases with the increase of M, 

K, γ and β. 

 Fluid velocity decreases with increase of λ. 

 Fluid temperature increases with increase of 

Ec and Pr. 

 Fluid temperature decreases with increase of 

Bi, R and γ. 

 The  wall shear stress decreases with 

increasing values of β,  R, K, Pr, Ec, ε and Bi, 

whereas it decreases with decreasing 
T  . 

 The heat transfer rate decreases with 

increasing β, Pr, Ec, and ε and opposite trend 

is observed for γ. 
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