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Abstract - An analytical solution of load bearing characteristics in a squeeze film model for normal human knee joint is 

obtained. The cartilage surfaces are taken to be porous and the viscosity variation of synovial fluid with hyaluronate 

concentration is also considered. It is found that the effect of permeability in the normal direction has a favorable effect on 

the load capacity as well as on the squeeze time. 
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1. INTRODUCTION 

The study of mechanism of synovial joints has recently 

become an active area of scientific research. The human 

synovial joint (Figure 1) is a dynamically loaded bearing 

which employs articular cartilage as the bearing and 

synovial fluid as the lubricant. Once a fluid film is 

generated, squeeze film action is capable of providing 

considerable protection to the cartilage surface. The 

loaded bearing synovial joints of the human body are the 

shoulder, hip, knee, and ankle joints. Synovial fluid is a 

clear viscous fluid, a dialysate of plasma containing 

muco-polysaccharides. Synovial fluid usually exhibits a 

non-Newtonian shear thinning behavior. However, under 

high shear rates, the viscosity of synovial fluid 

approaches a constant value not much higher than that of 

water (Cooke et al. [1]). Therefore, a Newtonian lubricant 

model has often used for synovial fluid in lubrication 

modeling (Dowson et al. [2]). In this study, the synovial 

fluid is modeled as Newtonian fluid. 

In this paper, we have considered the situation where the 

tangential velocity is very small or zero and the load is 

high. This situation exists at the time of ‘heel-strike’ or 

‘toe-off’, Paul [3] and in a mechanical bearing it can be 

related to the phenomenon of ‘squeeze film lubrication’. 

In this mode of lubrication, the relative motion of the 

solids is due to the normal approach with no rolling or 

sliding movements of the solids. McCutchen [4] and 

Dowson et al. [5] have studied this situation in detail and 

put forward contradicting theories for the synovial joint 

lubrication under normal load and zero sliding velocity. 

Both of them have confirmed that the porosity of the 

cartilage play the crucial role in this situation. 

In the year 1962, Dowson [6] unified the various attempts 

in generalizing the Reynolds Equation by considering the 

variation of fluid properties across as well as along the 

fluid film thickness by neglecting the slip effects at the 

bearing surfaces. Since then many researchers have 

studied the effects of viscosity variation in lubricated 

systems by considering Reynolds Equation [7-13]. 

McCutchen [4] emphasizes that the fluid in the joint 

cavity is due to ‘wringing out’ process from the cartilage 

matrix (Figure 2) and the fluid film is maintained 

hydrostatically rather than hydrodynamically. Thus, the 

load is carried mainly due to hydrostatic pressure of the 

fluid, which the cartilage weeps under loading. Mow et al. 

[14], Radin et al. [15] and Ling [16] have supported the 

mechanism, which is known as ‘weeping lubrication’. 

Walker et al. [17] have proposed an opposite theory for 

synovial joint lubrication for such a situation. According 

to their theory, which the authors have named as ‘boosted 

lubrication’, the mechanism heavily depends on the 

hyaluronate concentration in the synovial fluid and on the 

roughness character of the cartilage surface. They argue 

that when two cartilage surfaces are pressed against each 

other, nominal contact areas would be formed due to the 

roughness waves of the cartilage surface. The synovial 

fluid is trapped in these areas and the trapped pool of the 

fluid will contain high concentration of hyaluronate 

molecules, substance along with the base fluid will 

diffuse through the cartilage pores (Figure 3). This in turn 

increases the synovial fluid viscosity. A mathematical 

analysis, supporting this view has been also put forth 

(Dowson et al. [5]). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The system of synovial joint is a complex one and it is 

very difficult to account for all the factors simultaneously. 

Only a systematic study may be proved helpful in the 

study of such a system. Therefore, in this paper, a 

straightforward simple physical situation has been 
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considered. A mathematical model for the squeezing 

porous surfaces lubricated with a Newtonian fluid has 

been suggested. A particular case, considering synovial 

fluid as Newtonian fluid with varying concentration of 

hyaluronic acid molecules has been studied in detail. 

Further, as the cartilage consists of porous material, it was 

suggested to apply the same methods as applicable in the 

study of mechanical porous bearing, to investigate the 

porous effect of the cartilage on the synovial joint 

lubrication. Therefore, we shall use Darcy’s law in the 

porous matrix and an appropriate Reynolds equation in 

the fluid film region by taking permeability of the 

cartilage in the directions along and normal to the 

cartilage surface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. MATHEMATICAL MODEL  

It has been pointed out by Walker et al. [18] that the load 

bearing area of the joints is small and so the two surfaces 

may be considered parallel under the high loading 

conditions. Also, it is suggested that the knee joint 

geometry can be approximated by two rectangular plates 

(Figure 4). 

2.1.  Equation governing pressure in fluid film 

region 

Consider the geometrical model for knee joints as two 

porous rectangular discs, which are parallel and lubricated 

by Newtonian fluid. (Figure 4), the basic equation of 

motion for synovial fluid in the joint cavity can be written 

as: 

 

u p
μ

y y x

   
 

   
                                                         (1) 

 

Where, p is the pressure and   is the viscosity in the fluid 

film region, u is the fluid velocity along the x-axis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
The equation of continuity is  

 

u v
0

x y

 
 

 
 

 

On integrating it from y = 0 to h and using symmetry of 

the system gives: 

 

 
h

y h

0

v udy
x


 

                                                     (2) 

 

Where [v]y = h = velocity in the y- direction at y = h and 

includes the squeeze velocity V, as well as the velocity  ̅ 

of the fluid flowing from the cartilage to fluid film due to 

compression of the porous cartilage. 

 

 
y h

v V v


    

 

and  ̅ is to be determined by Darcy’s law. 

 

Solving equation (1) for u with the boundary conditions:  

 

u 0        at     y h  
 

u
0     at     y 0 

y


 


 

 

We obtain the expression for u as follows: 

 
y

h

p y
u dy

x μ

 
  

 
                                                        (3) 

 

Equations (2) and (3) give us the following differential 

equation, governing pressure in the fluid film region: 

 

p
F V v

x x

  
  

  
                                                    (4) 

 

For 0 ≤ x ≤ L, with the boundary conditions: 
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p
0  at  x 0

x


 

  
p 0   at  x L   

 

(As the two regions, i.e. x ≥ 0 and x ≤ 0 are symmetrical, 

it is sufficient to consider only one region say 0 ≤ x ≤ L), 

  

Where 

 
h 2

0

y
F dy

μ
                                                                 (5) 

 

2.2. Equation of pressure in the porous matrix of 

the cartilage 

  Consider the physical situation of the flow behaviour in 

the cartilage matrix under squeeze film conditions (Figure 

4), the equations of motion in the porous region (    
    and     due to symmetry) can be written as:  

 

x

0

k p
u  

μ x


 


                                                             (6) 

 

y

0 s

k P p
v

μ H

 
  

 
                                                         (7) 

 

Where,  ̅ is the average velocity along x- axis,  ̅ is the 

velocity of the fluid flowing from porous matrix towards 

fluid, kx and ky  be the permeability in x and y directions 

respectively, P(x) is the mean pressure in the porous 

region with respect to the cartilage thickness H, Hs is 

thickness of superficial tangential zone and    is the base 

fluid viscosity. 

 

Now, using the equation of continuity and integrating it 

for y in the limits h ≤ y ≤ h + H, we have: 

 

y *x

0 0 s

kHk p P p H
V

x μ x μ H t

      
       

     
             (8) 

 

Where V
* 

is the squeeze velocity of the cartilage surface 

at y = h + H with respect to the surface y = h. 

 

Thus, we have equation (4) as the appropriate Reynolds 

equation for the fluid film region and equation (8) as the 

one governing pressure in the porous region with the 

boundary conditions  

 

p
0  at  x 0

x


 


 

0p P    at  x L   

 

Where P0 is the hydrostatic pressure generated due to 

compression of the cartilage surface on loading. 

 

These two equations (4) and (8) interact due to the 

presence of the factor  ̅ and so, are dependent upon each 

other. To find the load capacity and squeeze time, one has 

to solve these equations simultaneously for p and P with 

the corresponding boundary conditions. 

 

3. VISCOSITY VARIATION 

The HA molecules are suspended in the base fluid and are 

mainly responsible for the Newtonian behavior of the 

synovial fluid.  

 

 0μ μ exp λC                                                         (9) 

 

Where  λ is a constant.   

 

The concentration C is to be determined by an appropriate 

diffusion equation and depends upon the processes such 

as diffusion, biochemical reaction, trapping, consolidation 

etc., during the joint movements and it decreases, as the 

synovial joint gets diseased. A simple model is suggested 

here as follow (when the convection terms are negligible): 

 
2

2

C
D M 0

y


 


                                                       (10) 

 

Where D is the diffusion coefficient and M is the rate of 

increase or decrease of hyaluronate concentration. Taking 

account of the physical considerations and geometrical 

symmetry of the model, the boundary conditions can be 

prescribed as follows: 

 

C
D 0  at  y 0

y


 


 

0C C       at  y h   

 

Solving equation (10) with the above boundary conditions 

and substituting in (9) we obtain: 

 

 2 2
0 0

λM
μ μ exp λC h y

2D

 
   

 
                          (11) 

 

4. LOAD CAPACITY AND SQUEEZE TIME 

FOR THE HUMAN KNEE JOINT 

Now we solve the equations governing pressure for the 

case when the synovial fluid is assumed to behave as a 

Newtonian fluid with varying viscosity due to hyaluronate 

concentration. In that case, the equation (4) and (8) will 

be as follows: 

 

y

0 s

kd dp P p
F V

dx dx μ H

  
     

   
                               (12) 

 

y*x

0 0 s

kHkd dp P p
V

dx μ dx μ H

   
     

   
                        (13) 
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Where 

 

h 2

2 2
0 0 0

y
F dy 

λM
μ exp λC h y

2D


 

  
 

                   (14) 

 

In non-dimensional form, it can be written as: 

    
1

2 2
0

0

F exp λC y exp M y 1 dy    

Where 
2

0

3

μ FλMh y
M ,  y ,  F

2D h h
    

 

Adding equations (12) and (13), we get: 

 *x

0

Hkd dp dp
F V V

dx dx μ dx

 
    

 
                        (15) 

 

Which on integrating w. r. t. x and using the boundary 

conditions for P and p, gives 

 
 

*

2 2x
0

0

V VHk
P P L x Fp  

μ 2

 
    
 
  

              (16) 

Now substituting this expression for P in equation (12), 

we get the following differential equation governing 

pressure in the fluid film region: 



  

2
y2

02
0 s

* 2 20

x

kd p 1
p V P

F Hdx

                                   V V L x
2H

-
k


   




  



      

                                                                                 (17) 

                                                    

Where 

 

y2

s x 0

k 1 1
β

H Hk μ F

 
  

 
                                           (18) 

 

Solving equation (17) with the corresponding boundary 

conditions for p, the pressure in the fluid film region is 

determined as follows: 

 

 
 

 

 

 

*

2 20

0 x

2 *x
02

0

                                                                        

V Vμ
p L x

μ F Hk 2

cosh βx Hk1 V
           1

       

β P V
cosh βL μ Fβ

19

 
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


    
              

                                                                                        

Now the load capacity for the synovial joint is given by: 

 
L

0

W 2b p dx   

 

Thus, we have the non-dimensional form for the load 

capacity as follows:  

 

   

3

3
0

yx *
0

x x

Wh
W

2μ bVL

f kF 3f  k 1 3f
   V P

F3F F k 3 F k



 
  

 

 
    

                                                                                 (20) 

 

Where 

 

  0 x
x2 2 3 3

tanh βL μ F Hk1
f 1  , F , k  ,

βLβ L h h

 
     

 

 

 
2 3*

y * 0
y 03 3

s 0

L k P hV
k ,  V  ,P  ,

VH h μ VL
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2 2
y

x

1 1
β L k

F k

 
   

 
 

 

From equation (20) the time of squeezing can be obtained 

by substituting V = - dh/dt and then integrating with 

respect to h from h = hi (initial position)  to h =  hf  (final 

position). Thus, the time of squeezing for the cartilage 

surface to reach the position h = hf from an initial position 

h = hi is given by: 

 
3

0

2
f

2μ bL
t t

Wh
  

 

Where 
2

y0i x
i x y3 3 3

f f f f s f

L kμ Fh Hkh
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h h h h H h
    
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 
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1

'
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t F 3k f
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3F F k F 1 3f V 3f k F k

               

P

21



 

 
 
 

      
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and M  appearing in  ̅ will be defined as 
2
fλMh

M
2D

  
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The equation (20) and (21) has been plotted for different 

values of permeabilities ( ̅       ̅  ) and for the various 

sets of concentration parameters in Figures 5 to 8. It can 

be noted that the load capacity and time of squeeze 

decrease as  ̅  increases and so higher permeability in the 

tangential direction will have unfavorable effect on the 

synovial joint performance. The increased concentration 

enhances the load bearing capacity of the joint as well as 

the time of squeeze (Figures 6 and 8). 

 

5. CONCLUSION 

In this work the effect of cartilage porosity and viscosity 

variation due to change in hyalurnate concentration has 

been studied. The permeability effects have been 

accounted by considering the cartilage parmeabilities in 

the directions along as well as normal to the cartilage 

surface. It has been shown that the permeability in the 

normal direction has a favorable effect on the load 

capacity as well as on the squeeze time, results are in line 

with those obtained by Chandra [19]. 

The effect of viscosity variation due to the change in 

hyaluronate concentration has also considered. It has been 

observed that the increase in the concentration parameters 

enhances the load capacity of the joint and delays the time 

of squeezing. Moreover, the effect of concentration 

variation is more pronounced. Therefore, it can be 

concluded that concentration variation of hyaluronic acid 

molecules is more important and so the process of 

consolidation and enrichment is responsible for the better 

performance of the synovial joint. Thus, the analysis 

supports the concept of ‘Boosted Lubrication’ as 

suggested by Dowson et al. [5] under the conditions of 

high load and no tangential movements of the cartilage 

surfaces. 

 

 
*

x y 0 0

 Fig. 5 :  Variation  of  W  with V  for different

 values of  k , k and P 0 .2,   λC 0.1,

M 0.25

 


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 Fig. 6 :  Variation  of  W  with V  for different

 values of  λC   and M for P 0.2  = 0.001, 
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, k

k 0.0

  

 

f i

x y 0

'
0

 Fig. 7 :  Variation  of  t   with   h / h  for different

 values of  k  and k for λC   = 0.1,  M =0.1,

V 0.1,P
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0 0
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 Fig. 8 :  Variation  of  t   with   h / h  for different

 values of  λC   and M for V 0.1,P 0

 = 0.00
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 k k1,  = 0.05 
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