Some New Subclasses Of Bi-Univalent Functions Defined By Convolution Associated With Linear Differential Operator

M.Thirucheran ${ }^{1}$, T. Stalin ${ }^{2}$
Associate Professor and Head, Post Graduate and Research Department of Mathematics ${ }^{1}$, Assistant Professor, Department of Mathematics ${ }^{2}$, LN Government College, University of Madras, Chennai, India ${ }^{l}$. Gojan School of Business and Technology, Anna University, Chennai, India ${ }^{2}$. Email: drthirucheran@gmail.com ${ }^{1}$, goldstaleen@ gmail.com ${ }^{2}$

Abstract

The main object of this paper is investigating a new subclass of bi-univalent function in the open unit disk U which is defined by convolution of Al-Oboudi Differential Operator. And obtained the initial two Taylor -McLaurin co-efficient $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for the subclass $S_{\Sigma, r}^{m, n, b, \delta}$ of Bi-Univalent function.

2010 Mathematics Subject classification:30C45,30C55 and 30C80.
Keywords:Analytic functions, univalent functions, bivalent functions, convolution and Al-Oboudi differential operator.

1. INTRODUCTION AND DEFINITIONS

Definition 1.1

Let A denote the class of functions f normalized by

$$
\begin{equation*}
f(z)=z+\sum_{j=2}^{\infty} a_{j} z^{j} \tag{1.1}
\end{equation*}
$$

Which are analytic in the open unit disc $\mathrm{U}=\{\mathrm{z} \in C:|z|<1\}$.
For $f \in A$, Al-Oboudi [1] introduces the following operator.

$$
\begin{align*}
D^{0} f(z) & =f(z), \\
D^{\prime} f(z) & =(1-\delta) f(z)+\delta z f^{\prime}(z)=D_{\delta} f(z), \quad \delta \geq 0 \\
D^{n} f(z) & =D_{\delta}\left(D^{n-1} f(z)\right), \quad n \in N=1,2,3, \ldots \\
\therefore D^{n} f(z) & =z+\sum_{j=2}^{\infty}[1+(j-1) \delta]^{n} a_{j} z^{\prime}, \quad n \in N_{0}=N \cup\{0\} . \tag{1.2}
\end{align*}
$$

differential operator.
Koebe One -Quarter Theorem [5]
The range of every function of class A contains the disk of radius $\left\{w:|w|<\frac{1}{4}\right\}$.
It is well known that every function $f \in A$ has an inverse f^{-1} defined by $f^{-1}(f(z))=z$ and $f\left(f^{-1}(w)\right)=w \quad, \quad\left(|w|<r_{0}(f) ; r_{0}(f) \geq \frac{1}{4}\right)$.
For this inverse function f^{-1}, we have:

$$
\begin{align*}
& g(w):=f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3} \tag{1.3}\\
& -\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\ldots \ldots .
\end{align*}
$$

Let $\quad r(z)=z+\sum_{n=2}^{\infty} r_{j} z^{j} \quad, \quad\left(r_{j}>0\right) \&$
$f(z)=z+\sum_{j=2}^{\infty} a_{j} z^{j} \in S_{\Sigma, r}^{m, n, b}$
Then the Hadamard product $\left(f^{*} r\right)$ defined by if and only if $(f * r)(z)=z+\sum_{j=2}^{\infty} r_{j} a_{j} z^{j} \in S_{\Sigma, r}^{m, n, b, \delta}$

Definition 1.2

If both the function f and its inverse function f^{-1} are univalent in U, then the function f is called bi-univalent.
For example, $\frac{z}{1-z},-1 \mathrm{og}(-z), \frac{1}{2} \mathrm{lo}\left(\frac{1+z}{1-z}\right)$, and so on.
However, the familiar Koebe function is not a biunivalent function.
For example, $z-\frac{z^{2}}{2}, \frac{z}{1-z^{2}}$, and so on.
Let the class \sum of bi-univalent function first investigated by Levin [8] and found that
Afterward, Brannan and Clunie [2] conjectured that $\left|a_{2}\right| \leq \sqrt{2}$.
Later, Brannan and Taha [3] introduced the new subclass of bi-univalent function of the class \sum like the familiar subclasses $S^{*}(\alpha)$ and $C(\alpha)$ of starlike and convex functions of $\alpha .(0 \leq \alpha<1)$,respectively. If a function $f \in A$ is in the class $S_{\Sigma}^{*}(\alpha)$ of strongly bi-starlike function of order α. $(0 \leq \alpha<1)$ if each of the following conditions
satisfied $\quad f(z) \in \sum$ and $\left|\arg \left(\frac{z f^{\prime}(z)}{f(z)}\right)\right|<\frac{\alpha \pi}{2} \quad$, $(z \in U)$ and $\left|\arg \left(\frac{w g(z)}{g(w)}\right)\right|<\frac{\alpha \pi}{2},(w \in U)$
where the function g is the extension of f^{-1} to U .Similarly, a function $f \in A$ is in the class $C_{\Sigma}(\alpha)$ of strongly bi-convex function of order α. $(0 \leq \alpha<1)$ if each of the following conditions satisfied $f(z) \in \sum$ and $\left|\arg \left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right|<\frac{\alpha \pi}{2} \quad$, $(z \in U)$ and $\left|\arg \left(1+\frac{w g^{\prime \prime}(z)}{g^{\prime}(w)}\right)\right|<\frac{\alpha \pi}{2} \quad, \quad(w \in U)$. Where the function g is the extension of f^{-1} to U. For each function $S_{\Sigma}^{*}(\alpha)$ and $C_{\Sigma}(\alpha)$. They found non-sharp estimates on the first two Taylor McLaurin co-efficient $\left|a_{2}\right|$ and $\left|a_{3}\right|$.

Recently, Qing-Hua Xu, Ying-Chun Gui and H.M. Srivastava [9], B.A. Frasin and M.K. Aouf [6], Seker.B [11], and R.M. El-Ashwah [10] investigated some subclasses of bi-univalent function and obtained non-sharp estimates on the first two co-efficient.

By motivated this study we introduce and obtained the initial two co-efficient $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for the subclass $S_{\Sigma, r}^{m, n, b, \delta}$.

Definition: 1.3

A function $f(z)$ given by (1.1) is said to be in the class $f \in S_{\Sigma, r}^{m, n, b, \delta}(\alpha)$, ($m, n \in N_{0}, m>n, 0<\alpha \leq 1$). if the following conditions are satisfied: $f(z), r(z) \in A$ and $\left|\arg \left(1+\frac{1}{b}\left(\frac{D^{m}(f * r)(z)}{D^{n}\left(f^{*} r\right)(z)}-1\right)\right)\right|<\frac{\alpha \pi}{2}, \quad(z \in U)$
and $\left|\arg \left(1+\frac{1}{b}\left(\frac{D^{m}(g * r)(w)}{D^{n}(g * r)(w)}-1\right)\right)\right|<\frac{\alpha \pi}{2}$,
($w \in U$)
Where the function g is given by (1.3).
Definition: 1.4
A function $f(z)$ given by (1.1) is said to be in the class $f \in S_{\Sigma, r}^{m, n, b, \delta}(\gamma)$, $\left(m, n \in N_{0}, m>n, 0<\alpha \leq 1\right)$, if the following conditions are satisfied: $f(z), r(z) \in A$ and

$$
\begin{equation*}
\mathfrak{R}\left(1+\frac{1}{b}\left(\frac{D^{m}\left(f^{*} r\right)(z)}{D^{n}\left(f^{*} r\right)(z)}-1\right)\right)>\gamma,(z \in U) \tag{1.6}
\end{equation*}
$$

$\& \Re\left(1+\frac{1}{b}\left(\frac{D^{m}(g * r)(w)}{D^{n}(g * r)}-1\right)\right)>\gamma,(w \in U)(1.7)$
Where the function g is given by (1.3).

Definition: 1.5

A function $h(z), p(z): U \rightarrow C$ satisfy the conditions $\quad \min \{\mathfrak{R}(h(z)), \mathfrak{R}(p(z))\}>0 \quad, \quad z \in U$ and $h(0)=p(0)=1$.

For a function $f \in S_{\Sigma, r}^{m, n, b, \delta}(h(z), p(z))$ defined by (1.1), ($m, n \in N_{0}, m>n, 0<\alpha \leq 1$). if the following conditions are satisfied: $f, r \in A$ and

$$
\begin{equation*}
\left(1+\frac{1}{b}\left(\frac{D^{m}(f * r)(z)}{D^{n}(f * r)(z)}-1\right)\right) \in h(z),(z \in U) \tag{1.8}
\end{equation*}
$$

$\&\left(1+\frac{1}{b}\left(\frac{D^{m}(g * r)(w)}{D^{n}(g * r)(w)}-1\right)\right) \in p(z),(w \in U)$
(1.9)

Where the function g is given by (1.3).

Remarks

(i). $S_{\Sigma, 1}^{m, n, 1,1}(\alpha)=H_{\Sigma}^{m, n}(\alpha)$,(Seker.B [11])
(ii). $S_{\Sigma, 1}^{1,0,1,}(\alpha)=S_{\Sigma}^{*}(\alpha),($ Brannan and Taha [3])
(iii). $S_{\Sigma, 1}^{2,1,1,1}(\alpha)=C_{\Sigma}(\alpha),($ Brannan and Taha [3])

2. MAIN RESULT

To derive our main results, we should recall the following lemma [4].

Lemma 2.1

Let $h \in P$ the family of all functions h analytic in U for which $\operatorname{Re}\{h(z)>0\}$ and have the form $h(z)=1+p_{1} z+p_{2} z^{2}+p_{3} z^{3}+\ldots$. for $z \in U$.Then $\left|p_{n} \leq 2\right|$, for each n.
Theorem 2.2
Let the function $f(z)$ given by (1.1) be in the bi-univalent function class $S_{\Sigma}^{m, n, b, \delta}(h, p)$.Then

$$
\left|a_{2}\right| \leq \frac{2 \sqrt{|b|}}{r_{2} \sqrt{2\left[\begin{array}{l}
\left((1+2 \delta)^{m}-(1+2 \delta)^{n}\right) \\
-\left((1+\delta)^{m+n}-(1+\delta)^{2 n}\right)
\end{array}\right]}}
$$

$$
\begin{equation*}
\text { and }\left|a_{3}\right| \leq \frac{1}{r_{3}}\binom{\frac{4|b|^{2}}{\left[(1+\delta)^{m}-\left(1+\delta n^{n}\right]^{2}\right.}}{+\frac{2|b|}{\left[(1+2 \delta)^{m}-(1+2 \delta)^{n}\right]}} \tag{2.1}
\end{equation*}
$$

Proof

Let consider the function h and p Satisfying the conditions of the definition (1.5) with the form $h(z)=1+h_{1} z+h_{2} z^{2}+h_{3} z^{3}+\ldots \ldots . ., z \in U \&$ $p(w)=1+p_{1} w+p_{2} w^{2}+p_{3} w^{3}+$ \qquad , $w \in U$ respectively.

Available online at www.ijrat.org

Since $f, r \in S_{\sum, r}^{m, n, b, \delta}(h, p)$,then
$\left(1+\frac{1}{b}\left(\frac{D^{m}(f * r)(z)}{D^{n}(f * r)(z)}-1\right)\right)=h(z),(z \in U)$
and
$\left(1+\frac{1}{b}\left(\frac{D^{m}(g * r)(w)}{D^{n}(g * r)(w)}-1\right)\right)=p(z),(w \in U)$
respectively.
By equating the coefficient of (2.3 and (2.4), we get
$\left((1+\delta)^{m}-(1+\delta)^{n}\right) a_{2} r_{2}=b h_{1}$
$\left((1+2 \delta)^{m}-(1+2 \delta)^{n}\right) a_{3} r_{3}$
$-\left((1+\delta)^{m+n}-(1+\delta)^{2 n}\right) a_{2}^{2} r_{2}^{2}=b h_{2}$
$-\left((1+\delta)^{m}-(1+\delta)^{n}\right) a_{2} r_{2}=b p_{1}$
and
$-\left((1+2 \delta)^{m}-(1+2 \delta)^{n}\right) a_{3} r_{3}$
$+\left[\begin{array}{c}2\left((1+2 \delta)^{m}-(1+2 \delta)^{n}\right) \\ -\left((1+\delta)^{m+n}-(1+\delta)^{2 n}\right)\end{array}\right] a_{2}^{2} r_{2}^{2}=b p_{2}$
From (2.5) \& (2.7),

$$
\begin{equation*}
h_{1}=-p_{1} \tag{2.9}
\end{equation*}
$$

And
$2\left[(1+\delta)^{m}-(1+\delta)^{n}\right]^{2} a_{2}^{2} r_{2}^{2}=b^{2}\left(h_{1}^{2}+p_{1}^{2}\right)$
$\therefore a_{2}^{2}=\frac{b^{2}\left(h_{1}^{2}+p_{1}^{2}\right)}{2 r_{2}^{2}\left((1+\delta)^{m}-(1+\delta)^{n}\right)^{2}}$
From (2.6) \&(2.8),
$2\left[\begin{array}{c}\left((1+2 \delta)^{m}-(1+2 \delta)^{n}\right) \\ -\left((1+\delta)^{m+n}-(1+\delta)^{2 n}\right)\end{array}\right] a_{2}^{2} r_{2}^{2}=b\left(h_{2}+p_{2}\right)$
$\therefore a_{2}^{2}=\frac{b\left(h_{2}+p_{2}\right)}{2 r_{2}^{2}\left[\begin{array}{l}\left((1+2 \delta)^{m}-(1+2 \delta)^{n}\right) \\ -\left((1+\delta)^{m+n}-(1+\delta)^{2 n}\right)\end{array}\right]}$
$2\left((1+2 \delta)^{m}-(1+2 \delta)^{n}\right) a_{3} r_{3}$
$=2\left((1+2 \delta)^{m}-(1+2 \delta)^{n}\right) a_{2}^{2} r_{2}^{2}+b\left(h_{2}-p_{2}\right)$
$\therefore a_{3}=\frac{1}{r_{3}}\binom{\frac{b^{2}\left(h_{1}^{2}+p_{1}^{2}\right)}{2\left((1+\delta)^{m}-(1+\delta)^{n}\right)^{2}}}{+\frac{b\left(h_{2}-p_{2}\right)}{2\left((1+2 \delta)^{m}-(1+2 \delta)^{n}\right)}}$
From Lemma (2.1),(2.11),(2.13) and (2.15), we get

$$
\begin{aligned}
& \left|a_{2}\right| \leq \frac{2 \sqrt{|b|}}{r_{2} \sqrt{2\left[\begin{array}{l}
\left((1+2 \delta)^{m}-(1+2 \delta)^{n}\right) \\
-\left((1+\delta)^{m+n}-(1+\delta)^{2 n}\right)
\end{array}\right]}} \\
& \text { and }\left|a_{3}\right| \leq \frac{1}{r_{3}}\binom{\frac{4|b|^{2}}{\left[(1+\delta)^{m}-(1+\delta)^{n}\right]^{2}}}{+\frac{2|b|}{\left[(1+2 \delta)^{m}-(1+2 \delta)^{n}\right]}}
\end{aligned}
$$

This completes the theorem (2.2).

Theorem 2.3

Let the function f, r given by (1.1) be in the bi-univalent function class $S_{\Sigma, r}^{m, n, b, \delta}(\alpha)$.Then

$$
\left|a_{2}\right| \leq \frac{2 \alpha \sqrt{|b|}}{r_{2} \sqrt{2 \alpha\left[\begin{array}{l}
\left((1+2 \delta)^{m}-(1+2 \delta)^{n}\right) \tag{2.16}\\
-\left((1+\delta)^{m+n}-(1+\delta)^{2 n}\right)
\end{array}\right]}}
$$

and $\left|a_{3}\right| \leq \frac{1}{r_{3}}\binom{\frac{4|b|^{2} \alpha^{2}}{\left[(1+\delta)^{m}-(1+\delta)^{n}\right]^{2}}}{+\frac{2|b| \alpha}{\left[(1+2 \delta)^{m}-(1+2 \delta)^{n}\right]}}$
(2.17)

Proof
Let consider the function h and p
Satisfying the conditions of the definition (1.5) with the form
$h(z)=1+h_{1} z+h_{2} z^{2}+h_{3} z^{3}+$ \qquad ,$z \in U$
and
$p(w)=1+p_{1} w+p_{2} w^{2}+p_{3} w^{3}+$ \qquad $w \in U$
respectively.
Since $f, r \in S_{\Sigma, r}^{m, n, b, \delta}(\alpha)$,then

$$
\begin{equation*}
\left(1+\frac{1}{b}\left(\frac{D^{m}\left(f^{*} r\right)(z)}{D^{n}(f * r)(z)}-1\right)\right)=[h(z)]^{\alpha},(z \in U) \tag{2.18}
\end{equation*}
$$

$\operatorname{and}\left(1+\frac{1}{b}\left(\frac{D^{m}\left(g^{*} r\right)(w)}{D^{n}\left(g^{* r)(w)}\right.}-1\right)\right)=[p(z)]^{\alpha},(w \in U)$
respectively.
From Lemma (2.1),(2.11),(2.13) and (2.15), we get

$$
\left|a_{2}\right| \leq \frac{2 \alpha \sqrt{|b|}}{r_{2} \sqrt{2 \alpha\left[\begin{array}{l}
\left((1+2 \delta)^{m}-(1+2 \delta)^{n}\right) \\
-\left((1+\delta)^{m+n}-(1+\delta)^{2 n}\right)
\end{array}\right]}}
$$

and

$$
\left|a_{3}\right| \leq \frac{1}{r_{3}}\binom{\frac{4|b|^{2} \alpha^{2}}{\left[(1+\delta)^{m}-(1+\delta)^{n}\right]^{2}}}{+\frac{2|b| \alpha}{\left[(1+2 \delta)^{m}-(1+2 \delta)^{n}\right]}}
$$

This completes the theorem (2.3).

Theorem 2.4

Let the function f, r given by (1.1) be in the biunivalent function class $S_{\Sigma, r}^{m, n, b, \delta}(\gamma)$.Then
$\left|a_{2}\right| \leq \frac{2(1-\gamma) \sqrt{|b|}}{r_{2} \sqrt{2(1-\gamma)\left[\begin{array}{l}\left((1+2 \delta)^{m}-(1+2 \delta)^{n}\right) \\ -\left((1+\delta)^{m+n}-(1+\delta)^{2 n}\right)\end{array}\right]}}$
and $\left|a_{3}\right| \leq \frac{1}{r_{3}}\binom{\frac{4|b|^{2}(1-\gamma)^{2}}{\left[(1+\delta)^{m}-(1+\delta)^{n}\right]^{2}}}{+\frac{2|b|(1-\gamma)}{\left[(1+2 \delta)^{m}-(1+2 \delta)^{n}\right]}}$
(2.21)

Proof
Let consider the function h and p Satisfying the conditions of the definition (1.5) with the form
$h(z)=1+h_{1} z+h_{2} z^{2}+h_{3} z^{3}+\ldots \ldots . ., z \in U \quad$ and $p(w)=1+p_{1} w+p_{2} w^{2}+p_{3} w^{3}+\ldots \ldots . ., w \in U$ respectively.
Since
$f, r \in S_{\Sigma, r}^{m, n, b, \delta}(\gamma)$,then
$\left(1+\frac{1}{b}\left(\frac{D^{m}(f * r)(z)}{D^{n}\left(f^{*} r\right)(z)}-1\right)\right)=\gamma+(1-\gamma) h(z)$,
$(z \in U)$
and $\left(1+\frac{1}{b}\left(\frac{D^{m}(g * r)(w)}{D^{n}(g * r)(w)}-1\right)\right)=\gamma+(1-\gamma) p(z)$
, $(w \in U)$
respectively.
From Lemma (2.1),(2.11),(2.13) and (2.15), we get
$\left|a_{2}\right| \leq \frac{2(1-\gamma) \sqrt{|b|}}{r_{2} \sqrt{2(1-\gamma)\left[\begin{array}{l}\left((1+2 \delta)^{m}-(1+2 \delta)^{n}\right) \\ -\left((1+\delta)^{m+n}-(1+\delta)^{2 n}\right)\end{array}\right]}}$
and $\left|a_{3}\right| \leq \frac{1}{r_{3}}\binom{\frac{4|b|^{2}(1-\gamma)^{2}}{\left[(1+\delta)^{m}-(1+\delta)^{n}\right]^{2}}}{+\frac{2|b|(1-\gamma)}{\left[(1+2 \delta)^{m}-(1+2 \delta)^{n}\right]}}$
Letting $\delta=1$ in theorem (2.2), (2.3) and (2.4), we obtain the following corollaries.

Corollary 2.5

Let the function $f(z)$ given by (1.1) be in the bi-univalent function class $S_{\Sigma, 1}^{m, n, b, 1}(h, p)$
.Then $\quad\left|a_{2}\right| \leq \sqrt{\left.\frac{2|b|}{\left[\left((3)^{m}-(3)^{n}\right)-\left((2)^{m+n}-(2)^{2 n}\right)\right.}\right]}$
and $\left|a_{3}\right| \leq \frac{4|b|^{2}}{\left[(2)^{m}-(2)^{n}\right]^{2}}+\frac{2|b|}{\left[(3)^{m}-(3)^{n}\right]}$
(2.25)

Corollary 2.6

Let the function $f(z)$ given by (1.1) be in the bi-univalent function class $S_{\Sigma, 1}^{m, n, b, 1}(\alpha)$.Then (using definition (1.3))
$\left|a_{2}\right| \leq \sqrt{\left.\frac{2|b| \alpha}{\left[(3)^{m}-(3)^{n}\right)-\left((2)^{m+n}-(2)^{2 n}\right)}\right]}$
and $\left|a_{3}\right| \leq \frac{4|b|^{2} \alpha^{2}}{\left[(2)^{m}-(2)^{n}\right]^{2}}+\frac{2|b| \alpha}{\left[(3)^{m}-(3)^{n}\right]}$
(2.27)

Corollary 2.7

Let the function $f(z)$ given by (1.1) be in the bi-univalent function class $S_{\Sigma, 1}^{m, n, b, 1}(\gamma)$.Then (using definition (1.4))
$\left|a_{2}\right| \leq \sqrt{\left.\frac{2|b|(1-\gamma)}{\left[(3)^{m}-(3)^{n}\right)-\left((2)^{m+n}-(2)^{2 n}\right)}\right]}$
and $\left|a_{3}\right| \leq \frac{4|b|^{2}(1-\gamma)^{2}}{\left[(2)^{m}-(2)^{n}\right]^{2}}+\frac{2|b|(1-\gamma)}{\left[(3)^{m}-(3)^{n}\right]}$
(2.29)

Letting $\delta=1 \& b=1$ in theorem (2.2), (2.3) and (2.4), we obtain the following corollaries Seker [6].

Corollary 2.8

Let the function $f(z)$ given by (1.1) be in the bi-univalent function class $S_{\Sigma, 1}^{m, n, 1,1}(h, p)$
.Then $\quad\left|a_{2}\right| \leq \sqrt{\frac{2}{\left[\left((3)^{m}-(3)^{n}\right)-\left((2)^{m+n}-(2)^{2 n}\right)\right]}}$
and $\left|a_{3}\right| \leq \frac{4}{\left[(2)^{m}-(2)^{n}\right]^{2}}+\frac{2}{\left[(3)^{m}-(3)^{n}\right]}$

Corollary 2.9

Let the function $f(z)$ given by (1.1) be in the bi-univalent function class $S_{\sum, 1}^{m, n, 1,}(\alpha)$.Then (using definition (1.3))
$\left|a_{2}\right| \leq \sqrt{\frac{2 \alpha}{\left.\left[(3)^{m}-(3)^{n}\right)-\left((2)^{m+n}-(2)^{2 n}\right)\right]}}$
and $\left|a_{3}\right| \leq \frac{4 \alpha^{2}}{\left[(2)^{m}-(2)^{n}\right]^{2}}+\frac{2 \alpha}{\left[(3)^{m}-(3)^{n}\right]}$

Corollary 2.10

Let the function $f(z)$ given by (1.1) be in the bi-univalent function class $S_{\Sigma, 1}^{m, n, 1,1}(\gamma)$.Then (using definition (1.4))
$\left|a_{2}\right| \leq \sqrt{\left[\frac{2(1-\gamma)}{\left.\left[(3)^{m}-(3)^{n}\right)-\left((2)^{m+n}-(2)^{2 n}\right)\right]}\right.}$
and $\left|a_{3}\right| \leq \frac{4(1-\gamma)^{2}}{\left[(2)^{m}-(2)^{n}\right]^{2}}+\frac{2(1-\gamma)}{\left[(3)^{m}-(3)^{n}\right]}$ (2.35)

ACKNOWLEDGMENT

The authors thank the referees for their valuable suggestions which lead to the improvement of this paper.

REFERENCES

[1] Al-Oboudi.(2004), On univalent functions defined by a generalized Salagean operator, Int. Journal of Mathematics and Mathematical Science, Vol.27, 1429--1436.
[2] Brannan D.A, Clunie (1980), Aspects of contemporary complex analysis, Academic press New York, London.
[3] Brannan D.A, Taha T.S (1986), On some classes of bi-valent functions, Studia Univ Babes-Bolyoni Math, Vol.31, 70-77.
[4] Ch. Pommerenke (1975), Univalent functions, Vandenhoeck and Rupercht, Gottingen.
[5] Duren P.L (1983), Univalent functions, Springer-Verlag, New York.
[6] Frasin B.A. and M.K. Aouf (2011), New Subclasses of bi-univalent functions, Applied Mathematics letters, Vol.24, 1569-1573.
[7] G. St. Salagean (1983), Subclasses of univalent functions, Lecture Notes in Math. Vol.1013, Springer-Verlag, Berlin, 362-372.
[8] Lewin M (1967). On a coefficient problem for bi-valent functions, Proc Amer Math Soc, Vol.18, 63-68.
[9] Qing-Hua Xu, Ying-Chun Gui and H.M. Srivastava (2012), Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Applied Mathematics letters, Vol.25, 990-994.
[10]R. M.El-Ashwah, subclass of bi-univalent function defined by convolution, J. Egypt. Math. Soc., 2014, 22, 348-351.
[11] Seker.B (2018), On a new Subclasses of biunivalent functions defined by using Salagean operator, Turk J Math, Vol.42, 2891-2896.

