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Abstract -Vague sets are one of the extensions of fuzzy sets. Vague binary soft set is one hybrid structure 
developed for dealing complicated situations with uncertainties with two universes. Similarity measures have a 
major role in application field of set theory. In this paper a similarity measure and weighted similarity measure is 
developed for measuring the degree of similarity between vague binary soft sets. 
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Notations – In this paper, VBSS denotes vague binary soft set. M((F� , E), (G� , E)), W((F� , E), (G� , E)) is used to 
denote similarity measures and weighted similarity measures of vague binary soft sets.    
 
1. INTRODUCTION    
       Georg Cantor’s classical set theory was 
inadequate to handle with several real life situations 
due to it’s hard nature. So it need some reformations 
in time as a result so many other theories comes out 
viz., fuzzy set theory, intuitionistic fuzzy set theory, 
rough set theory, interval mathematics, vague set 
theory, soft set theory, neutrosophic set theory etc. 
These theories have their own positives and negatives. 
To overcome the negatives and extracting the 
positives some new hybrid structures like fuzzy soft, 
soft fuzzy, intuitionistic fuzzy, rough neutrosophic, 
vague soft, neutrosophic soft etc arose. These theories 
are used in a great extent to practical problems 
consisting uncertainties and vagueness where hard set 
theory always found to fail. Also the researches 
involving them are moving forward in a rapid speed 
globally. This paper concentrates in a particular area 
called similarity measures of one hybrid structure 
vague binary soft sets, developed by Dr. Francina 
Shalini. A. and Remya.P. B [5] in 2018. Similarity 
measures can be used to measure how much two sets 
or patterns or images are alike. In other words they 
can tell ‘How much fuzzy ? ‘- a fuzzy set is ! or ‘ How 
much vague ?’-a vague set is! etc. Similarity measures 
based on set theoretical approach, distance and 
matching function which satisfying some axiomatic 
conditions are well known. Entropy and distance 
measures can also furnish the same role as                               
that of similarity measures. i.e., they are also                        
some kind of measurement tools used in the above 
mentioned  theories with uncertainties. So these three 
together can work remarkably and can produce several 
useful theorems and formulae in this area. Similarity  
measures and distances are duals since large distance 
show low degree of similarity and vice versa. So 
distance measures could be used to define similarity 
measures. Problem under consideration decides                    
which kind of similarity measure to be chosen.                           
Wide applications of this topic in pattern recognition, 

decision making medical diagnosis, signal detection, 
security verification systems etc attracted the attention 
of researchers, in a commenting manner to this area, 
nowadays. 
         Molodtsov [5] introduced soft set theory in 1999 
to remove all the existing difficulties of traditional set 
theory. Free of restrictions in describing the parameter 
set made soft set theory more convenient and user 
friendly. In 2010 Athar Kharal [1] introduced distance 
measures and similarity measures for soft sets. 
‘Majumdar’ and ‘Samanta’ introduced similarity 
measure for soft sets based on distances using soft 
matrices. They [9] also introduced in 2011 similarity 
measures for fuzzy soft sets based on three different 
measures set-theoretical approach, matching function 
and distance.  In 1995 Shyi-Ming Chen [12] proposed 
two similarity measures for measuring the degree of 
similarity between vague sets. In 2005, Jingli lu et 
al.,[7] presented a new similarity measure for vague 
sets. In 2006 , Faxin Zhao et al., [4] gave similarity 
measures for vague sets based on set theoretical 
method. Feng Sheng Xu [6] gave a new method on 
measures of similarity between vague sets in 2009. 
Qinrong Feng and Weinan Zheng [11] gave new 
similarity measures for fuzzy soft sets in 2013 based 
on different distance measures viz., normalized 
hamming distance, normalized Euclidean, normalized 
hausdorff, hamming-hausdorff, chebyshev etc. They 
also gave one application based on distances. In 2014 
Zhicai Liu et al., [14] introduced so many similarity 
measures for fuzzy soft sets and pointed out draw 
backs of some of them . In 2015 Wenyi Zeng, Yibin 
Zhao and Yundong Gu [13] proposed similarity 
measure for vague sets based on implication functions. 
Chang Wang and Anjing Qu [2] proposed axiomatic 
definition soft entropy, similarity measure and 
distance measure for vague soft sets in 2013. They 
also put forward some formulas to calculate them and 
some relative theorems. In 2014 Dan Hu, Zhiyong 
Hong and Yong Wang [3] proposed a new approach to 
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entropy and similarity measure of vague soft sets.  In 
2017 Manash Jyoti Borah and Bipan Hazarika [8] 
gave some applications of soft sets. They gave some 
new notions like exact fuzzy soft points, pointwise 
partial similarity etc. In this paper similarity measures 
and weighted similarity measures are developed for 
vague binary soft sets. 
 
2. PRELIMINARIES 
Definition 2.1. [2, 3, 10] (Vague soft set)                                                                            
Let U be an initial universal set,  V(U) be the power 
set of vague sets on U and E be the set of parameters 
with A⊆E. A pair (��, A) is called a vague soft set over 
U, where �� is a mapping given by ��: A→V(U) 
 
Definition 2.2. [5]                                                                                                              
Let U1,U2 be two initial universes which is common to 
a fixed set A⊆E of parameters. Let V(U1) and V(U2) 
denote the power set of vague sets on  U1, U2  
respectively and A⊆E. A pair (�� , A) is said to be a 
vague binary soft set over U1, U2 where ��  is a 
mapping given by �� : A→V(U1)×V(U2) and                  
(�� , A) = {e∈A /(e, �� (e))} 

�� (e) =
 〈�
�  ��������� ; ∀� ∈ �, ∀ �� ∈ ��〉 ,
 〈�
��  ���������  ;  ∀ � ∈ �,   ∀  � ∈ �!〉" 

 
Lemma 2.3. [10]                                                                               
 
Let (F1, E1) and (F2, E2) be two soft sets over the same 
finite universe U. Then the following conditions hold : 

(1) S(F1, F2) = S(F2, F1) 
(2) 0 ≤ S(F1, F2) ≤ 1 
(3) S(F1, F2) = 1 

Definition  2.4. [12]                                                                            
A and B are two vague sets over the universe of 
discourse U = {$� , $! ,  … , $%}.                                                  
VA($�) = [&'($�), 1−)'($�)]  is the membership value 
of $� in vague set A and VB($�) = [&* ($�), 1−)*($�)]  
is the membership value of $� in vague set B.                             

Let A = ∑ [-.�/��,�012�/��/� ]%�4�  , B = ∑ [-5�/��,�016�/��/� ]%�4� . 

Similarity between vague sets A and B can be 
obtained  by the function,                                                     

T(A,B)=
�% ∑ 7%�4� (VA($�),VB($�))                                           

= 
�% ∑  81 − :;��2�/���0;��6�/���! :<%�4�  ; T(A,B) ∈ [0,1]. 

Larger value of T(A,B) indicates more similarity 
between the sets. 
 
Definition 2.5. [3]                                                                                        
Let M : VSS(U)×VSS(U)→ [0, 1] be a mapping.                        
For (F,E)∈VSS(U)and(G,E)∈VSS(U), M((F,E), (G,E)) 
is called the degree of similarity between (F,E) and 
(G,E) if it satisfies the following conditions                                                                                 
(M1) M ((F, E), (G, E)) = M((G, E), (F, E))                                            
(M2) M ((F, E), (G, E))∈[0,1]                                                     
(M3) M ((F, E), (G, E)) = 1⇔ (F, E) = (G, E)                                           
(M4) M((F, E), (G, E)) = 0 ⇔ for all e∈ E, x ∈ U                 

          &>�?�(x)=0,    )>�?�(x)=1;  &@�?�(x)=1,   )@�?�(x)=0                       
                                         or                                                            
          &>�?�(x)=1, )>�?�(x) = 0 ; &@�?�(x)=0, )@�?�(x)=1                               
(M5) (F, E)⊆ (G, E)⊆(P, E) ⇒ M((F, E), (P, E))≤               
                      min (M((F, E), (G, E)), M((G, E), (P, E))                            
 
Definition 2.6. [2]                                                                                    
Let U = {x1, x2, ..., xn} be the universal set of elements 
and E ={e1, e2,…, em} be the universal set of 
parameters. Hence (F, E) = {F (ei) / i = 1, 2, .., m} and 
(G, E) = {G(ei) / i = 1, 2, …, m} are two families of 
vague soft sets. Define M((F, E), (G, E)) as follows: 

M((F,E),(G,E))= 
∑ B� ��>,C�,�@,C��D�EF G   ;  

Mi ((F, E), (G, E)) =  

1− �H% ∑ I JK>�?�� L�MN − K@�?�� L�MNJ +J&>�?�� L�MN − &@�?�� L�MNJ+J)>�?�� ��M� − )@�?�� ��M�JP%M4� .                            

 K>�?�� ��M� = &>�?�� ��M� − )>�?�� ��M� and                           K@�?�� ��M�= &@�?�� ��M� − )@�?�� ��M� called core of             
F(��) and G(��) or degree of support of F(ei) and G(ei) 
respectively, K>�?�� L�MN ∈ [−1, 1],K@�?�� L�MN ∈ [−1, 1] 
Then M((F, E), (G, E)) is the similarity measure 
between two vague soft sets (F, E) and (G, E)                                                                               
 
Definition 2.7. [12]                                                                            
Let A and B be two vague sets in the universe of 
discourse U = {u1, u2, ..., un}.                                                       

A = 
∑ [-.�QR�,   �012�QR�]S�EF /�  , B = 

∑ [-5�QR�,   �016�QR�]S�EF /�  ,                     

1 ≤ i ≤ n. Let wi be the weight of the element ui                        
in the universe of discourse U, where wi ∈ [0, 1] and                           
1 ≤ i ≤ n. Using weighting function W similarity 
between the vague sets A and B can be                          
evaluated using the formula below: W(A, B) = 

∑ T∗  B��2 �/��,�6 �/���S�EF ∑ T�S�EF  = 
∑ T�∗ V�0WX�Y2 LZ�N�[X�Y6 LZ�N�\ W]S�EF ∑ T�S�EF  

where W(A, B)∈ [0, 1]; Larger value of W(A, B) 
indicates more similarity between vague sets A and B 
 
3. SIMILARITY MEASURES FOR VBSS’s   
In this section a similarity measure for vague binary 
soft sets is developed                                                       
Definition 3.1.                                                                                          
Let M:((VSS(U1)×VSS(U2)) ×((VSS(U1) × VSS(U2)) → [0, 1] be a mapping. Let (�� , A) and (̂ � , B)  be two 
VBSS’s such that, (�� , A) ∈ VSS(U1) × VSS(U2) and 
( �̂ , B) ∈ VSS(U1)×VSS(U2).Then M((�� , A),( �̂ , B)) is 
called the similarity measure between vague binary 
soft sets if it satisfies the following conditions:                          
 
(C1) M ((�� , A), (̂ � , B)) = M ((̂ � , B) ,(�� , A))                                       
 
(C2) M ((�� , A), (̂ � , B))∈[0,1]                                                  
 
(C3) M ((�� , A), (̂ � , B)) = 1⇔ (�� , A) = (̂ � , B)                              
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(C4) M ((�� , A), (̂ � , B)) = 0 ⇔  
 ∀ ei ∈ (A∩B),  ∀ xj ∈ ��                                                                                                                                  &>� �?�(�M)=0, &@� �?�(�M) = 1or &>� �?�(�M) = 1, &@� �?�(�M)=0&                          )>� �?�(�M) = 0, )@� �?�(�M) = 1or )>� �?�(�M)=1,)@� �?�(�M) = 0 
 
&  ∀ ei ∈ (A∩B),  ∀ yk ∈ �!,                                                           &>� �?�( `)=0,&@� �?�( `)=1or &>� �?��( `)=1, &@� �?�( `)=0&  )>� �?�( `)=0, )@� �?�( `)=1or )>� �?�( `) =1, )@� �?�( `)= 0 
 
(C5) (�� , �� ⊆ L^,� aN ⊆ �b� , c� ⇒  M ((�� , A), (b� , C))                                    
min (M ((�� , ��, L^,� aN ), M (L^,� aN, �b� , c�)); where 
(b� , C)∈VSS(U1)× VSS(U2) and A, B, C ⊆ E 
 
Definition 3.2.                                                                                            
(Similarity Measure between two VBSS’s)                    
Let �� = {x1, x2, …., xn},   �! = {y1, y2, …., yp} be the 
common universal set and E = {e1, e2,…., em } be the 
set of parameters. Hence (�� , A) = {��?�/ i = 1, 2, …, m} 

and (̂ � , B) = { �̂?�/ i = 1, 2, …, m} are two families of 
VBSS’s. Define M ((�� , A), (̂ � , B)) as follows :                                                    

M ((�� , A), (̂ � , B)) = 
∑ B�� 8�>� ,d�,�@� ,e�<��∈�2∩6�fghi�'∪*�                                                

where  
 7?�((�� , A),( �̂ , B)) = 
 

1  −   �k% ∑ I JK>� �?�� L�MN − K@� �?��L�MNJ +J&>� �?�� L�MN − &@� �?�� L�MNJ+J)>� �?�� L�MN − )@� �?�� L�MNJP%M4�       

     

     − �kl ∑ I JK>��?�� � `� − K@� �?�� � `�J+J&>��?�� � `� − &@� �?�� � `�J+J)>��?�� � `� − )@� �?�� � `�JPl̀4�  

 
Now the following proof shows that the above defined 
similarity measure clearly satisfies the conditions 
given in Def  3.1. Hence Def 3.2  is clearly a similarity 
measure for VBSS’s. 
Proof                                                                                          
(C1) 7?�((�� , A), (̂ � , B)) =  

1− �k% ∑ I JK>� �?�� L�MN − K@� �?�� L�MNJ+J&>� �?�� L�MN − &@� �?�� L�MNJ+J)>� �?�� ��M� − )@� �?�� ��M�JP%M4� .

− �kl ∑ I JK>� �?�� � `� − K@� �?�� � `�J+J&>� �?�� � `� − &@� �?�� � `�J+J)>� �?�� � `� − )@� �?�� � `�JPl̀4�  

= 1− �k% ∑ I JK@� �?�� L�MN − K>� �?�� L�MNJ+J&@� �?�� L�MN − &>��?�� L�MNJ+J)@� �?�� L�MN − )>� �?�� L�MNJP%M4�  

    − �kl ∑ I JK@� �?�� � `� − K>� �?�� � `�J+J&@� �?�� � `� − &>� �?�� � `�J+J)@� �?�� � `� − )>� �?�� � `�JPl̀4�   

 = M (( �̂ , B), (�� , A)) 
 
(C2)  JK>��?�� ��M� − K@� �?�� ��M�J ≤ 2, 

         J&>� �?�� ��M� − &@� �?�� ��M�J ≤ 1, 

         J)>� �?�� ��M� − )@� �?�� ��M�J ≤ 1 
                                       and 
         JK>� �?�� � `� − K@� �?�� � `�J ≤ 2, 

         J&>� �?�� � `� − &@� �?�� � `�J ≤ 1, 

         J)>� �?�� � `� − )@� �?�� � `�J ≤ 1 
So using formula                                                7?�((�� , A),( �̂ ,B))∈[0,1] ⇒ 7 (( �̂ , B), (�� , A)) ∈ [0, 1]  
 
(C3) M ((�� , A), (̂ � , B)) = 1 

           ⟺ 
�fghi�'∪*� ∑ 7?� 8L�� , AN, L �̂ , BN<?�∈�'∩*�  = 1                       

               ⟺ 7?�((�� , A), (̂ � , B)) = 1; ∀ �� ∈ �� ∩ a� 

⇔ �k% ∑ I JK@� �?�� L�MN − K>� �?�� L�MNJ+J&@� �?�� L�MN − &>� �?�� L�MNJ+J)@� �?�� L�MN − )>� �?�� L�MNJP%M4�  

+ �kl ∑ I JK@� �?�� � `� − K>� �?�� � `�J+J&@� �?�� � `� − &>� �?�� � `�J+J)@� �?�� � `� − )>� �?�� � `�JPl̀4�  = 0  

 
             ⟺ JK>� �?�� ��M� − K@� �?�� ��M�J = 0, 

                   J&>��?�� ��M� − &@� �?�� ��M�J = 0, 

                   J)>��?�� ��M� − )@� �?�� ��M�J = 0  
                                         and 
                   JK>��?�� � `� − K@� �?�� � `�J = 0, 

                   J&>��?�� � `� − &@� �?�� � `�J = 0, 

                   J)>��?�� � `� − )@� �?�� � `�J = 0  ∀ �� ∈ A∩B, ∀ �M ∈ U1 and  ∀ �� ∈ �� ∩ a�,∀  ` ∈ U2  
                
               ⟺   (�� , A) = (̂ � , B)                                                          
 
(C4) M ((�� , A), (̂ � , B)) = 0 

          ⟺ �fghi�'∪*� ∑ 7?� 8L�� , AN, L �̂ , BN<?�∈�'∩*� =0 

           ⟺ 7?�L��� , �N, � �̂ , a�� = 0 

           ⟺ �k% ∑ I JK@� �?�� L�MN − K>� �?�� L�MNJ+J&@� �?�� L�MN − &>��?�� L�MNJ+J)@� �?�� L�MN − )>� �?�� L�MNJP%M4�  

            + �kl ∑ I JK@� �?�� � `� − K>� �?�� � `�J+J&@� �?�� � `� − &>� �?�� � `�J+J)@� �?�� � `� − )>� �?�� � `�JPl̀4�  = 1 

                    
             ⟺ JK@� �?�� ��M� − K>��?�� ��M�J = 2, 

                   J&@� �?�� ��M� − &>��?�� ��M�J = 1,  



International Journal of Research in Advent Technology, Vol.7, No.4, April 2019 
E-ISSN: 2321-9637 

Available online at www.ijrat.org 
 

257 
 

                   J)@� �?�� ��M� − )>��?�� ��M�J = 1,  
          ∀ �� ∈ (A∩B), ∀ �M ∈ U1                                               
                    JK>��?�� � `� − K@� �?�� � `�J = 2,  

                    J&@� �?�� ��M� − &>��?�� ��M�J = 1,  

                    J)@� �?�� � `� − )>� �?�� � `�J =1, 
           ∀ �� ∈ (A∩B),  ∀  ` ∈ U2  
                 
               ⟺ &>� �?�� ��M� = 0, &@� �?�� ��M� = 1    
                                          or   
                      &>� �?�� ��M� = 1, &@� �?�� ��M� = 0   
                                        and  
  
                      )>� �?�� ��M� = 0, )@� �?�� ��M� = 1  
                                           or  
                     )>� �?�� ��M� = 1, )@� �?�� ��M� = 0 ;  
                                               & 
 
                            &>� �?�� � `� = 0, &@� �?�� � `� = 1   
                                                   or   
                             &>� �?�� � `� = 1, &@� �?�� � `�=0 ;                                  
                                                and 
                             )>� �?�� � `� = 0, )@� �?�� � `� = 1  
                                                   or    
                             )>� �?�� � `� =1,  )@� �?�� � `�  =  0                                                                 
 
(C5) (F, A)⊆ (G, B) ⊆ (P, C)  
          ⇒ &>� �?�� L�MN ≤ &@� �?�� L�MN ≤ &r� �?�� L�MN ;      

               )>��?�� L�MN ≥ )@� �?�� L�MN ≥ )r� �?�� L�MN   
 
              &>��?�� � `� ≤ &@� �?�� � `� ≤ &r� �?�� � `� ;                                   
              )>��?�� � `� ≥ )@� �?�� � `� ≥ )r� �?�� � `�                                           
                                                                                                             
             ⇒ J&>��?�� L�MN − &r� �?�� L�MNJ 
                                        ≥ J&>� �?�� L�MN − &@� �?�� L�MNJ; 
                  J)>� �?�� L�MN − )r� �?�� L�MNJ 
                                        ≥ J)>��?�� L�MN − )@� �?�� L�MNJ                                                                 ⇒ JK>� �?�� L�MN − Kr� �?�� L�MNJ 
                                         ≥ JK>� �?�� L�MN − K@� �?�� L�MNJ;  
 JK>��?�� � `� − Kr� �?�� � `�J ≥ JK>��?�� � `� − K@� �?�� � `�J 
 ⇒ 7?�((�� , A), (b� , C)) ≤    7?�((�� , A), (̂ � , B)) ⇒ M ((�� , A), (b� , C)) ≤ M ((�� , A), (̂ � , B)).                                  
Similarly it can be proved that,                                                                
M ((�� , A), (b� , C)) ≤ M (( �̂ , B), (b� , C)).                                 
Hence M ((�� , A), (b� , C)) ≤ min (M ((�� , A), (̂ � , B)), 
M (( �̂ , B), (b� , C)), ∀ (b� , C) ∈ VSS(U1) × VSS(U2) 
 
Example 3. 3. (With fixed parameter set)                                   
Let U1 = {a, b}, U2 = {x, y} be a common universe 
with a fixed set of parameters E = {��, �! �t,�H} and 
A = { ��, �t}. Let (F, A) and (G, A) be two vague 
binary soft sets defined as follows : 

(�� , A) = u8��, 〈[v.�,v.H]g , [v.t,v.x]y 〉 , 〈[v.x,v.k]� , [v.z,v.{]� 〉<,   8�t, 〈[v.z,v.{]g , [v.k,v.|]y 〉 , 〈[v.{,v.k]� , [v.t,v.z]� 〉< } 

( �̂ , A) = u8��, 〈[v.!,v.x]g , [v.x,v.{]y 〉 , 〈[v.t,v.{]� , [v.x,v.{]� 〉<,   8�t, 〈[v.H,v.{]g , [v.k,v.|]y 〉 , 〈[v.{,v.k]� , [v.z,v.x]� 〉< }.                         

Using the above method Similarity Measure of these 
sets is found as M ((�� , A), (̂ � , A)) =  0.45 ∈ [0, 1] 
 
Example 3.4. (With different parameter set)                           
Let �� = {a, b}, �! = {x, y} be a common universe 
with a fixed set of parameters E = {��, �!} and                            
A = {��, �t,�H}, B = {  �t,�H, �z}.  Let (�� , A) and                  
( �̂ , B) be two VBSS’s defined as follows:  
                                                                                                       

(�� , A) = 

⎩⎪⎨
⎪⎧ 8��, 〈[v.!,v.H]g , [v.�,v.z]y 〉 , 〈[v.z,v.x]� , [v.H,v.k]� 〉< , 8�t, 〈[v.z,v.|]g , [v.H,v.k]y 〉 , 〈[v.{,v.|]� , [v.t,v.H]� 〉< ,8�H, 〈[v.�,v.t]g , [v.t,v.x]y 〉 , 〈[v.!,v.H]� , [v.x,v.{]� 〉< ⎭⎪⎬

⎪⎫
 

 

( �̂ , B) = 

⎩⎪⎨
⎪⎧8�t, 〈[v.t,v.{]g , [v.z,v.|]y 〉 , 〈[v.!,v.|]� , [v.H,v.k]� 〉< ,8�H, 〈[v.!,v.k]g , [v.�,v.z]y 〉 , 〈[v.x,v.k]� , [v.H,v.|]� 〉< , 8�z, 〈[v.H,v.x]g , [v.t,v.{]y 〉 , 〈[v.x,v.{]� , [v.!,v.|]� 〉<⎭⎪⎬

⎪⎫
.                                            

Using the above mentioned method similarity measure 
between these sets is M ((�� , A), ( �̂ , B)) = 0.26∈ [0, 1]                              
 
Remark 3.4.1. (Some Special Cases)   
Case (i): A and  B are empty subsets of E                                                                     

M ((�� , ∅), (̂ � , ∅)) =
�fghi ∅ ∑ 7?����� , ∅�, � �̂ , ∅��?�∈∅  = 0  

Case (ii): A and B are non-empty subsets of E                    
M((�� ,�),( �̂ ,B))=�fghi �'∪*� ∑ 7?����� , A�, � �̂ , B��?�∈�2∩6�                                          

Case(iii) : A&B coincides with full parameter set E                                                                       
M ((�� , E), (̂ � , E)) = 

�fghi �C� ∑ 7?�∈����� , E�, � �̂ , E��?�            

Case (iv) : A = ∅, B is a non-empty subset of E                  

M((�� ,∅),( �̂ ,B))=
�fghi �*� ∑ 7?����� , ∅�, � �̂ , B��?�∈∅ =0                                

Case (v) : A is a non-empty subset of E, B = ∅                      

M((�� ,�),( �̂ ,∅))=
�fghi �'� ∑ 7?����� , A�, � �̂ , ∅��?�∈∅ =0                                       

Case (vi) : A is a non-empty subset of E and B = E                    

M((�� ,�),( �̂ ,E))=
�fghi �C� ∑ 7?����� , A�, � �̂ , E��?�∈2  

Case (vii) : A =E and B is a non-empty subset of E                    
M ((�� , �), (̂ � , B)) = 

�fghi �C� ∑ 7?����� , E�, � �̂ , B��?�∈6  

Remark 3.4.2.                                                                                              
A and B are both empty or any one of them takes 
empty value ,  similarity measure between these sets 
will be always zero  
 
4. WEIGHTED SIMILARITY MEASURES 

FOR VBSS’s 
Definition 4.1.                                                                                        
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Let U1 = {x1, x2, …, xn}, U2 = {y1, y2, …, yp} be the 
common universal set and E={e1, e2,…, em} be the set 
of parameters. Hence (�� , A) ={�� (��)/ i= 1, 2,.., m} 
and (̂ � , B) = { �̂ (��)/ i= 1, 2, …, m} are two families 
of vague binary soft sets. Suppose the weight of the 
elements in the universe of discourse U1 is wj and the 
weight of the elements in the universe of discourse U2 
is denoted by wk

* where wj ∈ [0, 1] and wk
* ∈ [0, 1]. 

Degree of similarity between vague binary soft sets 
(�� , A) and (̂ � , B) can be written by the weighting 
function denoted by W ((�� , A), (̂ � , B)) and is given by 

W((�� , A), (̂ � , B)) = 

�∑ ��� L
� ,�N,��� ,���D�EF�����2∪6�  �
8∑ T�S�EF � ∑ T�∗S�EF <  7?�T((�� , A), (̂ � , B)) = 

1− �k% ∑ �M I JK@� �?�� L�MN − K>� �?�� L�MNJ+J&@� �?�� L�MN − &>� �?�� L�MNJ+J)@� �?�� L�MN − )>� �?�� L�MNJP%M4�     
 − �kl ∑ � ∗̀ I JK@� �?�� � `� − K>� �?�� � `�J+J&@� �?�� � `� − &>� �?�� � `�J+ J)@� �?�� � `� − )>� �?�� � `�JPl̀4�  

 
Example 4.1.1. 
Let (�� , A) and (̂ � , B) be two VBSS’s defined as in 
example 3.3. Suppose that the weights allotted for x, 
y, a, b are respectively 0.4, 1.0, 0.6, 0.9. Degree of 
similarity between the VBSS’s (�� , A) and (̂ � , B) can 
be evaluated using the above mentioned formula. It 
got as W ((�� , A), (̂ � , B)) = 0.3 ∈ [0, 1] 
 
5. CONCLUSION 

For fuzzy sets at present so many similarity 
measures are in use. But all the existing tools 
are found to get failed in the case of vague sets. 
Using a new tool-score function of vague 
values- Shyi-Ming Chen introduced similarity 
measure and weighted similarity measure for 
vague sets. In 2013 Chang Wang et.al., 
introduced similarity for vague soft sets. They 
also proved so many theorems connecting the 
three uncertainty tools similarity measure, 
distance measure, entropy of vague soft sets. 
Being one extension of fuzzy sets, vague sets 
play an important role in the application field 
like similarity measures. In this paper two 
similarity measures are developed for vague 
binary soft sets. The present result can be 
further extended to the other tools of 
uncertainty like entropy, distance  measures etc 
and to its application field. 
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