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Abstract -Vague sets are one of the extensions of fuzzy $&tgue binary soft set is one hybrid structure
developed for dealing complicated situations witltertainties with two universes. Similarity measubave a
major role in application field of set theory. lig paper a similarity measure and weighted siitylaneasure is
developed for measuring the degree of similarityeen vague binary soft sets.

Keywords - vague binary soft set ; similarity measure ; wegtsimilarity measure
Notations —In this paper, VBSS denotes vague binary softéti, E), G, E)), W({, E), G, E)) is used to
denote similarity measures and weighted similarigasures of vague binary soft sets.

1. INTRODUCTION decision making medical diagnosis, signal detection
Georg Cantor's classical set theory wasecurity verification systems etc attracted therdibn
inadequate to handle with several real life sitrai of researchers, in a commenting manner to this, area

due to it's hard nature. So it need some reformatio nowadays.

in time as a result so many other theories comés ou Molodtsov [5] introduced soft set theony1i999
viz., fuzzy set theory, intuitionistic fuzzy setettry, to remove all the existing difficulties of traditial set
rough set theory, interval mathematics, vague s#teory. Free of restrictions in describing the paater
theory, soft set theory, neutrosophic set theory etset made soft set theory more convenient and user
These theories have their own positives and neggtiv friendly. In 2010 Athar Kharal [1] introduced distze

To overcome the negatives and extracting thmeasures and similarity measures for soft sets.
positives some new hybrid structures like fuzzyt,sof‘Majumdar’ and ‘Samanta’ introduced similarity
soft fuzzy, intuitionistic fuzzy, rough neutrosophi measure for soft sets based on distances using soft
vague soft, neutrosophic soft etc arose. Theseid®o matrices. They [9] also introduced in 2011 simthari
are used in a great extent to practical problemmeasures for fuzzy soft sets based on three differe
consisting uncertainties and vagueness where lerd measures set-theoretical approach, matching functio
theory always found to fail. Also the researcheand distance. In 1995 Shyi-Ming Chen [12] proposed
involving them are moving forward in a rapid speedwo similarity measures for measuring the degree of
globally. This paper concentrates in a particul@aa similarity between vague sets. In 2005, Jingli tu e
called similarity measures of one hybrid structural.,[7] presented a new similarity measure for wagu
vague binary soft sets, developed by Dr. Francingets. In 2006 , Faxin Zhao et al., [4] gave siritijar
Shalini. A. and Remya.P. B [5] in 2018. Similaritymeasures for vague sets based on set theoretical
measures can be used to measure how much two seethod. Feng Sheng Xu [6] gave a new method on
or patterns or images are alike. In other wordy themeasures of similarity between vague sets in 2009.
can tell ‘How much fuzzy ? - a fuzzy setis ! oHow  Qinrong Feng and Weinan Zheng [11] gave new
much vague ?’-a vague set is! etc. Similarity measu similarity measures for fuzzy soft sets in 2013eohs
based on set theoretical approach, distance aond different distance measures viz., normalized
matching function which satisfying some axiomatichamming distance, normalized Euclidean, normalized
conditions are well known. Entropy and distancéausdorff, hamming-hausdorff, chebyshev etc. They
measures can also furnish the same role adso gave one application based on distances. 14 20
that of similarity measures. i.e., they are als@hicai Liu et al., [14] introduced so many simitgri
some kind of measurement tools used in the above measures for fuzzy soft sets and pointed out draw
mentioned theories with uncertainties. So thesseth backs of some of them . In 2015 Wenyi Zeng, Yibin
together can work remarkably and can produce skverdhao and Yundong Gu [13] proposed similarity
useful theorems and formulae in this area. Sintylari measure for vague sets based on implication fungtio
measures and distances are duals since large @ista@hang Wang and Anjing Qu [2] proposed axiomatic
show low degree of similarity and vice versa. Sdlefinition soft entropy, similarity measure and
distance measures could be used to define simyilaritistance measure for vague soft sets in 2013. They
measures. Problem under consideration decidesso put forward some formulas to calculate thewh an
which kind of similarity measure to be chosensome relative theorems. In 2014 Dan Hu, Zhiyong
Wide applications of this topic in pattern recognmit Hong and Yong Wang [3] proposed a new approach to
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entropy and similarity measure of vague soft sets. trey(X)=0, frey(X)=1; tgey(¥)=1, f5e)(X)=0
2017 Manash Jyoti Borah and Bipan Hazarika [8] or
gave some applications of soft sets. They gave some tre)X)=L, frey(X) = 05 tg(e)(X)=0, fo(e)(¥)=1
new notions like exact fuzzy soft points, pointwisg\.) (F, Exc (G, ES(P, E)= M((F, E), (P, E)X
partial similarity etc. In this paper similarity amures min (M((F, E), (G, E)), M((G, E), (P, E))
and weighted similarity measures are developed for
vague binary soft sets. Definition 2.6. [2]

Let U = {X4, X, ..., %} be the universal set of elements
2. PRELIMINARIES and E ={g, ©,..., &} be the universal set of
Definition 2.1. [2, 3, 10] (Vague soft set) parameters. Hence (F, E) = {R)(&i = 1, 2, .., m} and
Let U be an initial universal set, V(U) be the mow (G, E)={G(e) /i =1, 2, ..., m} are two families of
set of vague sets on U and E be the set of parametgague soft sets. Define M((F, E), (G, E)) as fobow
with ACE. A pair , A) is called a vague soft set over I M (FELGE) |
U, whereF is a mapping given bf: A—V(U) m(((lzI;E)I,E()GiE))E)) m '
Definition 2.2. [5] |Srcen (%) = Seep (%))
Let U;,U, be two initial universes which is common toq_ 1 yn N )
a fixed set AE of parameters. Let V@ and V() S Lj1 +er (ed) € taen DI
denote the power set of vague sets on;, U, +|fF(ei) () — focep (xf)l
respectively and &E. A pair ¢, A) is said to be a
vague binary soft set over,UU, where F is a SFep () =trcep () = freep (%) and

mapping given by#: A—V(U1)xV(U,) and Seep ()= tacey (%) — feep (x;) called core  of
(F, A) = {e€A I(e, F(e))} F(e;) and Gg;) or degree of support of Ffend G(§
O e a vk € U respectivelySec,) (x;) € [-1, 11,5, (%;) € [-1,1]
F(e) x ’ : 1 Then M((F, E), (G, E)) is the similarity measure
Vi oy
( F(e)- Y Ve€A Vy €U,) between two vague soft sets (F, E) and (G, E)

Yi

Definition 2.7. [12]
Lemma 2.3. [10] Let A and B be two vague sets in the universe of

Let (F4, E;) and (F», E) be two soft sets over the same A = TP [taup), 1-fa(up]

B = Tieqlte(ui), 1=Fpuy)]

finite universe U. Then the following conditions hold : u; ’ u; ’
(1) SFi, F)=9F,, Fy) 1 <i < n. Letw be the weight of the element u
(2 0<9F,F)<1 in the universe of discourse U, whergav[0, 1] and
(B SF,F)=1 1 < i < n. Using weighting function W similarity
Definition 2.4. [12] between the vague sets A and B can be

A and B are two vague sets over the universe @fvaluated using the formula below: W(A, B) =
discourse U =4, u,, ..., u,} - _ _ S w 1-[S@a (ui)-S"p (u))
Va(uy) = [ta(w), 1-f4(w;)] is the membership value iz W MUAW)Vp @) _ 221 ( | z )

/ Sawi T w

of u; in vague set A andw;) = [tp (i), I~fa(w)]l  \yhere W(lA,l BE [0, 1]; Larger value of W(A, B)

is the membership value of in vague set B. indicates more similarity between vague sets ABnd
_vyvn pta)i-fa(u) _vn tBW)1-fpuy)

Let A =T, [0 /A00) B =y (o /o),

Similarity between vague sets A and B can b8 S!MlLAR_”—Y M'_EA_SU_RES FOR VBSS's )

obtained by the function, Inf‘ih|stse;ct:jon a} smyllanty measure for vague bjna
_1 soft sets is develope

T(AB)=, 2y M(Va(w) Ve(w)) Definition 3.1.

= % Y, (1 _ |W|) - T(AB) € [0,1]. Let M:((VSS(U)XVSS(U,)) x((VSS(U) x VSS(L))

Larger value of T(AB) indicates more similarity = [0, 1] be a mapping. Lef( A) and (, B) be two

between the sets. VBSS's such that,H, A) € VSS(U) x VSS(U,) and

(G, B) € VSS(U)XVSS(U,).Then M(F, A),(G, B)) is
Definition 2.5. [3] called thesimilarity measure between vague binary
Let M : VSS(UXVSS(U)- [0, 1] be a mapping. soft sets if it satisfies the following conditions:

For (F,EEVSS(U)and(G,EVSS(U), M((F,E), (G,E)) ) ) . )
is called the degree of similarity between (F,E}l an(Cy) M ((F, A), (G, B)) = M ((G, B) .(F, A))
(G,E) if it satisfies the following conditions

(Ma) M((F, E), (G,E)) =% (F,E) = (G, E) (CHM((F, A), (G,B) =1= (F, A) = (G, B)

(M) M((F, E), (G, E)) = 0= for all e E, x€ U
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COM((F, A), @, B) =0

Vg€ (ANB), VX €EU,
ti(e)(%1)=0, Loy (%) = 10T tp(e)(x)) = 1,40 (%;)=0&
fie) (%) = 0, ey (x;) = 10r i) (x))=1,f ey () = O

& Vg€ (AnB), VY € U,,
tiicey (Vi) =0t 6 ey (Vi) =101 Loy (Vi) =1, ts o) (Vi) =0&
iy i)=0, féeyVi)=10r f ey (Vi) =1, féey(Vk)= 0

(Cs) (F,A4) < (G,B) € (F,C) > M((F, A), (P, C))
min (M ((¥,4), (G,B) ), M ((G, B), (P, ©))); where
(B, C)eVSS(U)x VSS(W) and A, B, CS E

Definition 3.2.
(Similarity Measure between two VBSS's)

LetU; ={X1, %, ..o, X%ob, Uz ={Y1, Yo, -..., Y} be the
common universal set and E ={e,,...., &, } be the

set of parameters. Hendé,(A) = {£, /i=1, 2, ..., m}
and G, B) = {G,,/i=1, 2, ..., m} are two families of
VBSS's. Define M (¥, A), (G, B)) as follows :

.. . . Me, ((F,A),(G,B
M ((F, A), €, ) = et (EHCD)

Card(AUB)
where
M, ((F, A),(G, B)) =

|Sicen (%5) = Sécen ()| ]
1
1- QZ?ﬂ +|tﬁ(ei) (xj) —téep (x]-)|
Hfien () = Fecen ()]
|Sﬁ(ei) (yk) - S(i(ei) (yk)| ]

1
_52£:1 +|tﬁ(ei) (Yk) - t(}"(ei) (Yk)|
+|fiep O = Fecen Gl

Now the following proof shows that the above define ; ,_
similarity measure clearly satisfies the conditions

given in Def 3.1. Hence Def 3.2 is clearly a $amiiy
measure for VBSS'’s.
Proof
(C) M, ((F, A), (G, B)) =
|Sien (1) = Secen ()] ]
1= 30 | ey (5) = taep ()] |
+|Fien %) = Feen )]
|Sien i) = Sécep Wi ]
55 Zher | Hlticep D) = tiep 0]
+fiten ) = Fecen Wi
|SG'(ei) (xj) - Sﬁ(ei) (xj)|
= 1—$2?:1 ey () = ticep ()]
+Hfeep (%) = Fiicen (%)

|Sd(ei) V) — SF'(ei) (yk)|
oo Zhe | Hlteen 01 = tien 0

e 00 = freen G0
=M (G, B), ¢, A)

(CD) Sk () = Seep (x| <2,
|ticen () = teep (D < 1,

|ficen ) = faen ()| <1
and

|Sﬁ(ei) i) = Séep | <2,
|tien ) — taey )| <1,

|ficen ) = Fécep G| <1
So using formula

M, ((F, A),(G,B))E[0,1] = M ((G, B), (, A) € [0, 1]

(CHM((F, A), G, B) =1
& s Seieans) Me, ((%,A),(¢,B)) =1

© M, ((F, A), G,B) =1;Ve €ANB)

|Sécen (%) = Skcen ()] ]

o =3 | Hesen (5) = tien ()]
+fecen (%) = Frcen ().

1Sécep ) = Siep )] ]

o ke | Hleen 01 = tirep G| [ =0
+|féep 01 — ficen O]

&[Sk (1) = Seep (] =0,
[tien () = teep ()] =0,
|f ey () = facep ()| =0

and
i i) — Séep Wi)| =0,
|fﬁ(ei) Vi) — técep )| =0,

|ficen i) = Facep )| =0
EANB,Vx;€UandVe; € (ANB),Y y, € Uy

& (F,A)=(G,B)

(CH)M((F, A), (G,B)=0
S cmaom Zectanm Me, ((,4), (6,B))=0
o M, ((F,A),(G,B) =0

|Secen (%) = Sicen ()| ]

d éZ}l:l +|t6(ei) (xj) — Liep (xj)|
+fecen (%) = Frcen ()1,
Séep W) = Siep D] ]
o Ty | Hteen 01 = tiep G| | = 1
+[feen ) = Fiep @il

& [Sacep () = Siep x| = 2,
|teep () = tixcen ()| = 1,
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|fecen ) = Fiep ()] = 1
Ve; € (ANB),V x; € Uy

|Sice D) = Séep )| = 2

|tecen () = tiep ()| =1

|féen 01 = Firep )| =1,
Ve; € (ANB), Vy, €U,

S ey (%) = 0,tgey () =1
or

ticep () = Litgep () =0
and

fiep (%) =0, feep (k) =1

or
feep ) =1, fee) (x)=0;
&
tiepy k) = 0,85(ep ) =1
or
tieny ) = Litgep Vi)=0;
and
Fiep Ok) =0, feep k) =1
or

fiep Ok) =1, feep r) = 0

(Cy) (F, A)c (G,B)c (P, C)
= tiep (%) < tacep (%) < toep (%) 5
fien (%) = Facen (%) = Ficep (%7)

titep Vi) < técep i) < tiepy i) s
fﬁ(ei) (yk) = fé(ei) (Yk) = fﬁ(ei) (yk)

= tien (%) = toen ()]
2 |ty (%7) —
|ficen () = Ficen (39)]
2 |fﬁ(ei) (xj) - fd(ei) (x1)|
= |Siep (%) = Ssep ()]
= |5ﬁ(ei) (x,-) —Sé(ep (x,-)|;

Lécep (xj)l;

|Sﬁ(ei) (yk) - Sﬁ(ei) (Yk.)| = |Sﬁ(ei) (yk) - S(i(ei) (yk)|
= M ((F,A), (P, C)< M.((F,A), G, B))

= M ((F, A), (P, C))< M ((F, A), G, B)).

Similarly it can be proved that,

M ((F, A), (1'?', C)=Mm (G, B), @, C). )
Hence M (€, A), (P, C))< min (M (, A), (G, B)),
M ((G, B), (P, C)),V (P, C)€ VSS(U) x VSS(U)

Example 3. 3. (With fixed parameter set)
Let U, = {a, b}, U, = {X, y} be a common universe
with a fixed set of parameters E =,{ e, e5,e,} and

A = {e;, e3}. Let (F, A) and (G, A) be two vague

binary soft sets defined as follows :

[0.1,0. 4-] [0.3,0.6] [0.6,0.8] [0.5,0.7]
) (e, (222, 208 (28] 32T,
(F, A) = ( ([0507] [80]y ([0.708] [0.3,0.51))
93, a ’ b ] x 1] y

[0.2,0.6] [0.6,0.7] [0.3,0.7]
< 07l (03!

[0.6,0.7]
6 A) = ( b a ’ Ty ))’
( ! ) - [0.4,0.7] [0.8,0.9] [0.7,0.8] [0.5,0.6] )
(93:( a ’ b )!( x ’ y ))

Using the above method Similarity Measure of these
sets is found as M#( A), (G, A)) = 0.45€ [0, 1]

Example 3.4. (With different parameter set)
Let U; = {a, b}, U, = {X, y} be a common universe
with a fixed set of parameters E =;{ e,} and
A = {eq, eses}, B = { e3,e4,e5}. Let (F, A) and
(G, B) be two VBSS's defined as follows:

[0.1,0.5])

( [0.2,0.4] \
(ell< a ) b !( ) )
[0.5,0.9] [0408] [0.7,0.9] 0304]
(e5, (2202 22081, ] ).

0.1,0.3] [0.3,0.6] 0204 0607
(e, (22221 2206 ] 27h)

[0506 [0.4,0.8]

(F,A) =

0.3,0.7 0.5,0.9 0.2,0.9] [0.4,0.8
(e, (22070, 200 (2091 B228)),
. 0.2,0.8] [0.1,0.5] 0.6,0.8] 04-09
(G, B) = { (e, 0208 B ><[ L), b
[04-06] [0307 [0607 [0209]
(e5, (2201, 207, ¢ )
Using the above menuoned method S|m|Iar|ty measure
between these sets is M'((A), (G, B)) = 0.2& [0, 1]

’

Remark 3.4.1. (Some Special Cases)

Case (i): Aand Bare empty subsets of E

M ((F, 8), (€, 0)) =T,y Me,(F, 8), (G, 8)) = 0
Case (ii): A and B are non-empty subsets of E
M(EAGBY=
mzeie(mm M, ((F,A), (G,B))

Case(iii) : A&B coincides with full parameter set E
M ((F, E), G, E)) -mz Mg, ((F,E), (G,E))
Case (iv) : A= @, Bisanon-empty subset of E
M((F\).(6 B))=rmi s Zeico Me, (F, ), (G, B))=0
Case (v) : A is a non-empty subset of E, B = @
M((F.A),(G )=z Zeieo Moy (F, A), (6, 9))=0
Case (vi) : Aisa non—empty subset of E and B = E
M((F,A),(G E))=———3c,., M, (F, A), (G,E))

Card (E)
Case (vii) : A =E and B is a non-empty subset of E

M ((F, E), (G, B)) = Yeies Me,(F,E), (G, B))
Remark 3.4.2.
A and B are both empty or any one of them takes

empty value , similarity measure between thess set
will be always zero

Card (E)

4, WEIGHTED SIMILARITY MEASURES
FOR VBSS's
Definition 4.1.
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Let Uy = {X3 Xz, ..., Xah, Uz = {y1 Y2, ..., %} be the
common universal set and Ex{e,..., &} be the set

of parameters. Hence“( A) ={F(e;)! i= 1, 2,.., m}
and @, B) = {G(e;)/ i= 1, 2, ..., m} are two families

(2]

of vague binary soft sets. Suppose the weight ef th

elements in the universe of discoursgi®/w and the
weight of the elements in the universe of discoliise
is denoted by w where we [0, 1] and w €0, 1].

(3]

Degree of similarity between vague binary soft sets

(F, A) and G, B) can be written by theveighting
function denoted by W §, A), (G, B)) and is given by

m w
<2i=1M€i (FEMEE )

. i Card(AuB)
R )
M ((F, A), (G, B) =
|SG"(81') (xj) - Sﬁ(ei) (xj)|
1_$Z7=1 wi [ +taey () = ticen (1)
+feen (45) = Frcep (%)
ISécep i) = Sircep 01|
oy ke Wi | Htaee) 01 = ticey 0]
+|féoep Wiy = fiecen @)

Example 4.1.1.

Let (£, A) and (;, B) be two VBSS's defined as in
example 3.3. Suppose that the weights allottedkfor
y, &, b are respectively 0.4, 1.0, 0.6, 0.9. Degke
similarity between the VBSS’§“( A) and ¢, B) can
be evaluated using the above mentioned formula.
gotas W (£, A), (G, B)) = 0.3€ [0, 1]

5. CONCLUSION

For fuzzy sets at present so many similarity
measures are in use. But all the existing tools
are found to get failed in the case of vague sets.
Using a new tool-score function of vague
values- Shyi-Ming Chen introduced similarity
measure and weighted similarity measure for
vague sets. In 2013 Chang Wang et.al.,
introduced similarity for vague soft sets. They
also proved so many theorems connecting the
three uncertainty tools similarity measure,
distance measure, entropy of vague soft sets.
Being one extension of fuzzy sets, vague sets
play an important role in the application field
like similarity measures. In this paper two
similarity measures are developed for vague
binary soft sets. The present result can be
further extended to the other tools of
uncertainty like entropy, distance measures etc
and to its application field.
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